CHARACTERIZATION OF H^p-SPACES WITH BOUNDARY VALUES IN SOME SPACES OF BEURLING TEMPERED ULTRADISTRIBUTIONS

Ljupčo Nastovski¹

Abstract. In this paper we give necessary and sufficient conditions for a function f belonging to H^p space with the convergence in the sense of ultradistribution $S'^{(s)}$, s > 1.

AMS Mathematics Subject Classification (2010): 46F20

Key words and phrases: ${\cal H}^p$ spaces, ultradistributions, Beurling tempered ultradistributions

1. Introduction

In [11], the next theorem is proved:

Theorem 1.1. Let f be an analytic function in the upper half-plane $Imz \ge 0$ and suppose that there exists $n \in \mathbb{N}$ such that in every half-plane $Imz \ge \delta > 0$, there exists $C_{\delta} > 0$ such that

$$|f(z)| \le C_{\delta}(1+|z|)^n$$

Then, f is in $H^p(\Pi^+)$ $(1 \le p \le \infty)$ if and only if f(x + iy) converges to $f(x) \in L^p(-\infty, \infty)$ in the sense of converges in $(S^1)'$, as $y \to 0$.

S. Pilipović in 2004 posed the following problem: Let s > 1 and let f(z) be an analytic function in the upper half plain Π^+ and let for every $\delta > 0$ there exist $C_{\delta} > 0$ and $K_{\delta} > 0$ such that:

$$|f(z)| \le C_{\delta} e^{K_{\delta}|z|^{1/s}}, Imz \ge \delta.$$

Is it true that $f \in H^p(\Pi^+)$ $(1 \le p \le \infty)$ if and only if f(z) converges to $f(x) \in L^p(R)$ in the sense of ultradistribution $S'^{(s)}, s > 1$?

We refer to Section 2 for generalized function spaces $(S^1)'$ and $S'^{(s)}$.

The aim of this paper is to give the positive answer to this question (Theorem 3.2).

Boundary values in ultradistributions spaces were studied by many authors, for example, [5], [7], [9], [10], [12]. (see references therein).

¹Department of Mathematics, Faculty of Science, University of Skopje, e-mail: ljupcona@iunona.pmf.ukim.edu.mk

2. Notation and notions

The following definitions and results are given in [1]. By $(M_p) = (M_p)_{p \in \mathbb{N}_0}$ we will denote a sequence of positive numbers which satisfies some of the following conditions:

$$(2.1) M_p^2 \le M_{p-1}M_{p+1}, \quad p \in \mathbb{N};$$

there are positive constants A and H such that

(2.2)
$$M_p \le AH^p \min_{0 \le q \le p} M_q M_{p-q} \quad p \in \mathbb{N}_0;$$

there is a constant A > 0 such that

(2.3)
$$\sum_{q=p+1}^{\infty} M_{q-1}/M_q \le ApM_p/M_{p+1}, p \in \mathbb{N};$$

Sometimes (2.2) and (2.3) will be replaced by the following weaker conditions:

(2.4) there are constants A and H such that $M_{p+1} \leq AH^p M_p$, $p \in \mathbb{N}_0$

(2.5)
$$\sum_{p=1}^{\infty} M_{p-1}/M_p < \infty.$$

If s > 1 the Gevrey sequence (M_p) given by $M_p = (p!)^s$, $M_p = p^{ps}$ and $M_p = \Gamma(1+ps)$, where Γ denotes the gamma function, are basic examples of sequences satisfying some of the above stated conditions.

For a sequence (M_p) , the associated functions M and M^* of Komatsu, are defined by

$$M(\rho) = \sup_{p \in \mathbb{N}_0} \log(\rho^p M_0/M_p), \quad 0 < \rho < \infty,$$
$$M^*(\rho) = \sup_{p \in \mathbb{N}_0} \log(\rho^p p! M_0/M_p), \quad 0 < \rho < \infty.$$

The formal series

$$\sum_{j=0}^{\infty} a_j z^j, \quad j \in \mathbb{C}$$

is an ultrapolynomial of class (M_p) (resp. of class $\{M_p\}$) if there are constants A > 0, h > 0 (resp. for every h > 0 there is an A > 0) such that

$$|a_j| \le Ah^j / M_j, \quad j \in \mathbb{N}_0.$$

Let (M_p) , $p \in \mathbb{N}_0$, be a sequence of positive numbers. We define $D((M_p), \Omega)$ (resp. $D(\{M_p\}, \Omega)$), where Ω is an open set in \mathbb{R}^n to be the set of all complex valued infinitely differentiable functions φ with compact support in Ω such that there exists an N > 0 for which

(2.6)
$$\sup_{t \in \mathbb{R}^n} |D_t^{\alpha} \varphi(t)| \le N H^{\alpha} M_{\alpha}, \quad \alpha \in \mathbb{N}_0^n$$

for all h > 0 (resp. for some h > 0). Here the positive constants N and h depend only on φ : they do not depend on α .

The topologies of $D((M_p), \Omega)$ and $D(\{M_p\}, \Omega)$ are given in Komatsu [4]. Let D(h, K) denote the space of smooth functions supported by a compact set K for which (2.6) holds and $D((M_p), K)$ and $D(\{M_p\}, K)$ denote subspaces of $D((M_p), \Omega)$ and $D(\{M_p\}, \Omega)$ consisting of the elements supported by K, respectively. Recall that

$$\begin{array}{lll} D^{(M_p)}(\Omega) = D((M_p), \Omega) &= & ind \lim_{K \subset \Omega} proj \lim_{h \to 0} D(h, k) \\ &= & ind \lim_{K \subset \Omega} D((M_p), K); \\ D^{\{M_p\}}(\Omega) = D((M_p), \Omega) &= & ind \lim_{K \subset \Omega} ind \lim_{h \to 0} D(h, k) \\ &= & ind \lim_{K \subset \Omega} D(\{M_p\}, K). \end{array}$$

The dual space of $D^{(M_p)}(\Omega)$ equipped with strong topology will be denoted with $D'^{(M_P)}(\Omega)$, and will be called a space of ultradistribution of Beurling type. Respectively, with $D'^{\{M_p\}}(\Omega)$ will be denoted the dual space of $D^{\{M_P\},\Omega}$ and will be called ultradistribution of Roumieu type.

Let the sequence (M_p) satisfies the conditions (2.1) and (2.5). The spaces of the ultradifferentiable functions which has an ultrapolynomial growth are test spaces for the spaces of tempered ultradistributions.

Let $S_r^{(M_p),m} = S_r^{(M_p),m}(\mathbb{R}^n)$ and $S_{\infty}^{(M_p),m} = S_{\infty}^{(M_p),m}(\mathbb{R}^n)$ be the space of smooth functions φ on \mathbb{R}^n such that

$$\sigma_{m,r}(\varphi) = \left[\sum_{\alpha,\beta\in\mathbb{N}_0^n} \int_{\mathbb{R}^n} \left| \frac{m^{\alpha+\beta}}{M_\alpha M_\beta} < x >^{\beta} \varphi^{(\alpha)}(x) \right|^r dx \right]^{1/r} \\ = \left[\sum_{\alpha,\beta\in\mathbb{N}_0^n} \left(\left\| \frac{m^{\alpha+\beta}}{M_\alpha M_\beta} < x >^{\beta} \varphi^{(\alpha)} \right\|_r \right)^r \right]^{1/r} < \infty,$$

and

$$\sigma_{m,\infty}(\varphi) = \sup_{\alpha,\beta \in \mathbb{N}_0^n} \frac{m^{\alpha+\beta}}{M_{\alpha}M_{\beta}} \| \langle x \rangle^{\beta} \varphi^{(\alpha)} \|_{\infty},$$

equipped with the topology induced by the norms $\sigma_{m,r}$ and $\sigma_{m,\infty}$, respectively, where $\langle x \rangle = (1 + |x|^2)^{1/2}$.

Let $S^{(M_p)} = S^{(M_p)}(\mathbb{R}^n)$ and $S^{\{M_p\}} = S^{\{M_p\}}(\mathbb{R}^n)$ be the projective (as $m \to \infty$) and the inductive (as $m \to 0$) limits of the space $S_2^{(M_p),m}$ respectively. The dual spaces of $S^{(M_p)}$ and $S^{\{M_p\}}$ are denoted by $S'^{(M_p)}$ and $S'^{\{M_p\}}$

respectively. These are the spaces of tempered ultradistributions of Beurling and Roumie type, respectively.

In the case when the sequence (M_p) is defined with $M_p = p!^s$, s > 1, the spaces of tempered ultradistributions $S'^{(M_p)}$ and $S'^{\{M_p\}}$ will be denote with $S'^{(s)}$ and $S'^{\{s\}}$, respectively. These spaces are studied in Grudzinski [3] and Pilipović [8].

A non-trivial example, in case n = 1 , of an element of the space S'^* is

$$< f, \varphi > = \int_{R} f \varphi dx, \quad \varphi \in S^{*},$$

where f is a locally integrable function of the ultrapolynomial growth of the class *, i.e.

$$|f(x)| \le P(x), \quad x \in \mathbb{R}$$

where P is an ultrapolynomial of the class * (* denotes (M_p) or $\{M_p\}$). Note that if (2.4) is fulfilled the function f is of the ultrapolynomial growth of the class (M_{α}) (respectively, $\{M_p\}$) if and only if for some m > 0 and some C > 0 (respectively, for every m > 0 there exists C > 0) such that

$$|f(x)| \le CexpM(m|x|), \quad x \in \mathbb{R}.$$

Let f be an analytic function in the upper half-plane $\Pi^+ = \{z : Imz > 0\}$ and let p > 0. Then $f \in H^p(\Pi^+) = H^p$ if

$$\sup_{y>0}\int_{-\infty}^{\infty}|f(x+iy)|^{p}dx<+\infty.$$

We need the following results.

Theorem 2.1 ([6]). Let $f \in H^p(\Pi^+)$, $p \ge 1$. Then there exists $f^* \in L^p(\mathbb{R})$ such that for almost every $t \in \mathbb{R}$ the nontangential limit

$$\lim_{z \to t} f(z) = f^*(t)$$

Theorem 2.2 ([6]). If $f \in H^p(\Pi^+), 1 \le p$, then

$$f(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} f^*(t) dt, z = x + iy$$

Also, if $h \in L^p$, $(1 \le p)$ and

$$f(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} h(t) dt, z = x + iy$$

is an analytic function in Π^+ , then $f \in H^p(\Pi^+)$, and for its boundary function it is true that $f^*(t) = h(t)$ almost everywhere in \mathbb{R} .

Theorem 2.3 ([2]). If $f \in H^p, 1 \le p$, then

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} dt, Imz = y > 0$$

and the integral is equal to zero for each Imz = y < 0.

Characterization of H^p -spaces with boundary values...

Also, the opposite is true. If $h \in L^p$, $(1 \le p \le \infty)$ and if

$$\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{h(t)}{t-z}dt=0, Imz=y<0$$

then for each y > 0 the integral represents the function $f \in H^p(\Pi^+)$ with the, boundary function $f^*(x) = h(x)$ almost everywhere in \mathbb{R} .

Theorem 2.4 ([13]). Let f be an analytic function at $V \setminus \Omega$. If $f(x \pm i0) = \lim_{y\to 0^+} f(x\pm iy)$ exist in $D'^*(\Omega)$, if $f(x\pm i0)$ is bounded in Ω and if f(x+i0) = f(x-i0), then f is analytic at V.

3. Main Results

In Rajna's paper [11], a characterization of the functions from the $H^p(\Pi^+)$ -space, with asymptotic behavior and distributional boundary values, in the space of distribution $(S^1)'$, is given through Theorem 1.1. The distributions $(S^1)'$ are defined in the following way: S^1 is the space of all functions ϕ which are infinite differential on \mathbb{R} such that $|\phi^{(n)}(x)| \leq C_n e^{-a|x|}$, $n \in \mathbb{N}$, where $C_n > 0$ and a > 0 depend upon ϕ . The space S^1 is the image of S_1 by a Fourier transformation. Their duals distributional spaces are denoted by $(S_1)'$ and $(S^1)'$, respectively.

Let (M_p) be a sequence satisfying conditions (M.1), (M.2) and (M.3). Let $m_p = M_p/M_{p-1}, p \in N$. A polynomial

$$P_L(z) = \prod_{p=1}^{\infty} (1 + \frac{L}{m_p}z), Rez > 0$$

where L > 0 is some constant is an ultrapolynomial of (M_p) class.

The next inequality is true, and it is given in [4]. There exist $K_1 > 0, C_1 > 0$ such that

(3.1)
$$e^{M(L|z|)} \le |P_L(z)| \le C_1 e^{M(K_1|z|)}, Rez > 0.$$

Lemma 3.1. Let s > 1 and f be an analytic function in the upper half plain $\Pi^+ = \{z : Imz > 0\}$. Then, for every $\delta > 0$ there exist $C_{\delta} > 0$ and $K_{\delta} > 0$ such that:

$$|f(z)| \le C_{\delta} e^{K_{\delta}|z|^{1/s}}, Imz \ge \delta$$

if and only if for every $\delta > 0$ there exist $C_{\delta} > 0$ and the ultrapolynomial P_L of $(p!^s)$ - class, such that

$$|f(z)| \le C_{\delta} |P_L(iz)|, Imz \ge \delta.$$

Proof. Let for every $\delta > 0$ there exist $C_{\delta} > 0$ and the ultrapolynomial $P_L(z)$ of $(p!^s)$ - class such that

$$|f(z)| \le C_{\delta} |P_L(iz)|, Imz \ge \delta.$$

The inequality (3.1) implies that there exist $C_1 > 0$ and $L_1 > 0$ such that

$$|P_L(-iz)| \le C_1 e^{M(L|z|)} \approx C_1 e^{KL^{1/s}|z|^{1/s}}, \ Imz \ge \delta > 0$$

(We used the fact that $M(|z|) \approx C|z|^{1/s}$, for some C > 0).

Now we will show that the opposite holds. Let for every $\delta > 0$ there exist C > 0 and $K_{\delta} > 0$ such that

$$|f(z)| \le C_{\delta} e^{K_{\delta}|z|^{1/s}}, Imz \ge \delta$$

From (3.1), it follows

$$e^{L|z|^{1/s}} \le |P_L(z)|, Rez > 0.$$

The next theorem is the main result of the paper. It answers positively the posed question, as we noted in Introduction.

Theorem 3.2. Let s > 1 and let f be an analytic function in the upper halfplane Π^+ and let for each $\delta > 0$ there exist $C_{\delta} > 0$ and the ultrapolynomial $P_L(z)$ of $(p!^s)$ -class, such that

(3.2)
$$|f(z)| \le C_{\delta} |P_L(iz)|, \quad Imz \ge \delta.$$

Then, $f \in H^p(\Pi^+)$, $(1 \le p \le \infty)$ if and only if f(z) converges to $f(x) \in L^p(\mathbb{R})$ in the sense of the ultradistributions $S'^{(s)}$.

Proof. Let $f(z) \in H^p(\Pi^+)$. We will show that $f(x+iy) \to f(x)$ when $y \to 0$ in the sense of ultradistributions $S^{'(s)}$ (f(x) is a bounded function for f(z)). Note that the following is true: for every $y > 0, f_y(x) = f(x+iy)$ is ultradistribution in $S^{'(s)}$, because $f_y(x)$ is locally integrable and it is ultrapolinomial bounded, i.e. there exists an ultrapolinomial P so that $|f_y(x)| \leq P(x)$ holds for every $x \in \mathbb{R}$. This is true because of the condition (3.2). Now, we will show that $f(x+iy) \to f(x)$ when $y \to 0$ in the sense of ultradistribution $S^{'(s)}$. Let $\phi \in S^{(s)}$. We have:

$$|\langle f_y, \phi \rangle - \langle f, \phi \rangle| = |\langle f_y - f, \phi \rangle|$$
$$\leq \int_{-\infty}^{\infty} |f(x + iy) - f(x)| |\phi(x)| dx$$
$$\left(\int_{-\infty}^{\infty} |f(x + iy) - f(x)|^p dx\right)^{\frac{1}{p}} \left(\int_{-\infty}^{\infty} |\phi(x)|^{p'}\right)^{\frac{1}{p'}} \to 0$$

when $y \to 0$. Where $\frac{1}{p} + \frac{1}{p'} = 1$.

 \leq

Now, we will prove the opposite. Let f(x+iy) converge to $f(x) \in L^p(-\infty,\infty)$ in the sense of the ultradistribution $S'^{(s)}$ as $y \to 0$. We will prove that $f \in H^p(\Pi^+)$.

Let $N_p = (p!)^{s-\rho}$, where $s - \rho > 1$, $\rho > 0$. Let $\widetilde{P}_L(z)$ be an ultrapolynomial of $(p!^s)$ -class which corresponds to the sequence (N_p) .

Let $\epsilon > 0$. We will define a function $g_{\epsilon}(z) = \frac{f(z)}{\psi_{\epsilon}(z)}$, where $\psi_{\epsilon}(z) = \widetilde{P}_{L}(i\epsilon z)$, Rez > 0.

Step one:

Let $\epsilon > 0$ be fixed. We will show that for every fixed y > 0,

$$G_{\epsilon}(u) = \frac{1}{\sqrt{2\pi}} e^{yu} \int_{-\infty}^{\infty} g_{\epsilon}(x+iy) e^{-ixu} dx, u \in \mathbb{R}$$

is a smooth function independent of y > 0.

Let $y_1 > y_2 > 0$ be fixed numbers and let $\delta > 0$ such that $y_2 > \delta$.

We will approximate $|g_{\epsilon}(z)|$ in $\{z : Imz \geq \delta\}$.

We will use the inequalities in (3.1). Taking into consideration (3.2) we have that

$$|g_{\epsilon}(z)| = \frac{|f(z)|}{|\psi_{\epsilon}(z)|} \le \frac{C_{\delta}|P_{L}(-i\varepsilon z)|}{\widetilde{P}_{L}(-i\varepsilon z)|}$$
$$\le \frac{C_{\delta}Ce^{M(L_{1}|z|)}}{e^{2N(L\epsilon|z|)}}, Imz \ge \delta > 0$$

Since $M(t) \approx Kt^{\frac{1}{s}}$ and $N(t) \approx K_1 t^{\frac{1}{s-\rho}}$, for some $K, K_1 > 0$, we obtain

$$\frac{e^{M(L_1|z|)}}{e^{2N(L\epsilon|z|)}} \approx e^{KL_1^{\frac{1}{s}}|z|^{\frac{1}{s}} - 2K_1L^{\frac{1}{(s-\rho)}}\epsilon^{\frac{1}{(s-\rho)}}|z|^{\frac{1}{(s-\rho)}}} \to 0, |z| \to \infty$$

So there exists $K_{\epsilon,\delta} > 0$ such that, for every $z \in \mathbb{C} Imz \ge \delta > 0$ there holds:

$$|g_{\epsilon}(z)| \leq K_{\epsilon,\delta} e^{-d|z|^{\frac{1}{(s-\rho)}}}$$

where $d = K_1 L^{\frac{1}{(s-\rho)}} \epsilon^{\frac{1}{(s-\rho)}} > 0$. This implies that g_{ϵ} is a smooth function.

We will use the integral $\int_{\Gamma} g_{\epsilon}(z) e^{-izu} dz$, where the contour Γ is the boundary of $\Omega = \{z : -a < Rez < a, y_1 < Imz < y_2\}.$

For the fixed $u \in \mathbb{R}$ the function $z \mapsto g_{\epsilon(z)}e^{-izu}$, $z \in \Pi^+$ is an analytic function in Ω , so by Cauchy's Theorem we obtain $\int_{\Gamma} g_{\epsilon}(z)e^{-izu}dz = 0$.

Hence,

$$e^{y_2 u} \int_{-a}^{a} g_{\epsilon}(x+iy_2) e^{-ixu} dx + e^{y_1 u} \int_{a}^{-a} g_{\epsilon}(x+iy) e^{-ixu} dx$$
$$+e^{-iau} \int_{y_2}^{y_1} g_{\epsilon}(a+iy) e^{yu} dy + e^{iau} \int_{y_1}^{y_2} g_{\epsilon}(-a+iy) e^{yu} du = 0.$$

Because of $|g_{\epsilon}(\pm a + iy)| \le K_{\epsilon,\delta}e^{-d|\pm a + iy|^{1/(s-\rho)}} \le K_{\epsilon,\delta}e^{-d|a|^{1/(s-\rho)}}$ we obtain

$$\lim_{a \to \infty} \int_{y_1}^{y_2} |g_{\epsilon}(a+iy)| e^{yu} dy = \lim_{a \to \infty} \int_{y_2}^{y_1} |g_{\epsilon}(-a+iy)| e^{yu} dy = 0.$$

So
$$e^{y_2 u} \int_{-\infty}^{\infty} g_{\epsilon}(x+iy_2) e^{-ixu} dx = e^{y_1 u} \int_{-\infty}^{\infty} g_{\epsilon}(x+iy_1) e^{-ixu} dx$$
 i.e.

(3.3)
$$G_{\epsilon}(u) = \frac{1}{\sqrt{2\pi}} e^{yu} \int_{-\infty}^{\infty} g_{\epsilon}(x+iy) e^{-ixu} dx$$

is independent of y > 0. So, we have proved step one.

Step two:

We shall prove that, for $G_{\epsilon}(u) = \frac{1}{\sqrt{2\pi}} e^{yu} \int_{-\infty}^{\infty} g_{\epsilon}(x+iy) e^{-ixu} dx$, $u \in \mathbb{R}$, it is true that $G_{\epsilon}(u) = 0$ for u < 0 and $G_{\epsilon}(u)$ has an exponential growth, when u > 0.

Since, $\int_{-\infty}^{\infty} |g_{\epsilon}(x+iy)| dx < +\infty$, there exists $K_{\epsilon} > 0$ such that for every $u \in \mathbb{R}$ and $y \geq \delta$ it is true that $|G_{\epsilon}(u)| \leq K_{\epsilon} e^{uy}$.

So, if u < 0, we obtain $G_{\epsilon}(u) = 0$ and if u > 0 we obtain that $|G_{\epsilon}(u)| \le A_{\delta,\epsilon} e^{\delta u}$ for some constant $A_{\delta,\epsilon}$.

Step three:

Let $\epsilon > 0$ be fixed. We shall prove that $e^{-yu}G_{\epsilon}(u) \to G_{\epsilon}(u)$ in the sense of $S^{'(s)}$ when $y \to 0$, i.e.

(3.4)
$$< e^{-yu}G_{\epsilon}(u), \phi(u) > \rightarrow < G_{\epsilon}(u), \phi(u) >, \text{ when } y \to 0 \text{ for every } \phi \in S^{(s)}.$$

Let $\phi_1, \phi_2 \in S^{(s)}$, that they are equal at $(-\infty, p)$ for some p > 0. Because of $suup G_{\epsilon} \subset [0, \infty)$ it is true $\langle G_{\epsilon}(u), \phi_1 \rangle = \langle G_{\epsilon}(u), \phi_2 \rangle$. So, if $\gamma \in S^{(s)}$ such that $\gamma(u) = 0$ for u < -2 and $\gamma(u) = 1$ for u > -1 we obtain that

$$< e^{-yu}G_{\epsilon}(u), \phi > = < G_{\epsilon}(u), e^{-yu}\phi > = < G_{\epsilon}(u), \gamma(u)e^{-yu}\phi >$$

To prove (3.4), it suffices to show that $\gamma e^{-yu} \phi \to \phi$ when $y \to 0$ in $S^{(s)}$.

Let h > 0 be fixed. We will show that $||e^{-yu}\theta(u) - \theta(u)||_h \to 0$ when $y \to 0$, where $\theta(u) = \gamma(u)\phi(u), u \in \mathbb{R}$, and $||\theta||_h = \sigma_{h,\infty}(\phi)$. We have (for every $u \in R$),

$$\begin{split} |\frac{h^{\alpha+\beta}(1+u^{2})^{\alpha/2}}{\alpha!^{s}\beta!^{s}}(e^{-yu}\theta(u)-\theta(u))^{(\beta)}|\\ &=\frac{h^{\alpha+\beta}(1+u^{2})^{\alpha/2}}{\alpha!^{s}\beta!^{s}}|\sum_{j=0}^{\beta}\binom{\beta}{j}(e^{-yu}-1)^{(\beta-j)}\theta^{(j)}(u)|\\ &=\frac{h^{\alpha+\beta}(1+u^{2})^{\alpha/2}}{\alpha!^{s}\beta!^{s}}|(e^{-yu}-1)\theta^{(\beta)}(u)+\sum_{j=0}^{\beta-1}\binom{\beta}{j}(-y)^{(\beta-j)}e^{-yu}\theta^{(j)}(u)|\\ &\leq (e^{-yu}-1)\sup_{\alpha,\beta}\frac{h^{\alpha+\beta}(1+u^{2})^{\alpha/2}|\theta^{(\beta)}(u)|}{\alpha!^{s}\beta!^{s}} \end{split}$$

$$\begin{aligned} +e^{-yu}|y|\frac{(2h)^{\alpha+\beta}(1+u^2)^{\alpha/2}}{\alpha!^s\beta!^s}\frac{1}{2^{\alpha+\beta}}|\sum_{j=0}^{\beta-1}\binom{\beta}{j}(-1)^{\beta-j}y^{\beta-j-1}e^{-yu}\theta^{(j)}(u)\\ &= \|\theta\|_h(e^{-yu}-1)\\ +e^{-yu}|y|\frac{1}{2^{\alpha+\beta}}|\sum_{j=0}^{\beta-1}\binom{\beta}{j}\frac{(-1)^{\beta-j}y^{\beta-j-1}}{(\beta-j)!^s}\frac{(2h)^{\alpha+\beta}(1+u^2)^{\alpha/2}\theta^{(j)}(u)}{\alpha!^sj!^s}|\\ &\leq \|\theta\|_h(e^{-yu}-1)+e^{-yu}|y|\frac{\|\theta\|_{2h}}{2^{\alpha+\beta}}\sum_{j=0}^{\beta-1}\binom{\beta}{j}\frac{|y|^{\beta-j-1}}{(\beta-j)!^s}\\ &\leq \|\theta\|_h(e^{-yu}-1)+e^{-yu}|y|\frac{\|\theta\|_{2h}}{2^{\alpha+\beta}}(1+|y|)^{\beta-1}.\end{aligned}$$

The last expression, for a sufficient small |y| will be less than

$$\|\theta\|_h (e^{-yu} - 1) + e^{-yu} |y| \frac{\|\theta\|_{2h}}{2^{\alpha+1}}$$

and this yields

$$\|e^{-yu}\theta(u) - \theta(u)\|_h \le \|\theta\|_h (e^{-yu} - 1) + e^{-yu}|y| \|\theta\|_{2h}, u \in \mathbb{R}.$$

Thus, it is proved that $\gamma e^{-yu}\phi \to \gamma\phi$ in $S^{(s)}$ when $y \to 0$. So, for every $\epsilon > 0$ it is true that $e^{-yu}G_{\epsilon} \to G_{\epsilon}$ in $S^{'(s)}$ when $y \to 0$. This completes the prof of step 3.

Notice that $g_{\epsilon}(x+iy)$ is a Fourier transform of $e^{-yu}G_{\epsilon}(u)$. It is known that the Fourier transformation $F: S'^{(s)} \to S'^{(s)}$, is continuous in week topology. Hence, the ultradistributional Fourier transform of $g_{\epsilon}(x+iy)$ converges in $S'^{(s)}$ when $y \to 0$ to the ultradistributional Fourier transform of G_{ϵ} which we denote by g_{ϵ} .

Step four:

We will prove that $g_{\epsilon}(x) = \frac{f(x)}{\psi_{\epsilon}(x)}, x \in \mathbb{R}$, as an ultradistribution in $S^{'(s)}$. Notice that, $(1/\psi_{\epsilon})(x+iy) \to (1/\psi_{\epsilon})(x)$ in the sense of ultradistribution $S^{'(s)}$ when $y \to 0$, and because $f(x+iy) \to f(x)$ in the sense of ultradistribution $S^{'(s)}$ when $y \to 0$, we get $g_{\epsilon}(x+iy) = (f/\psi_{\epsilon})(x+iy) \to (f/\psi_{\epsilon})(x)$ in the sense of ultradistribution $S^{'(s)}$ when $y \to 0$, we get $g_{\epsilon}(x+iy) = (g_{\epsilon}(x) + iy) \to (f/\psi_{\epsilon})(x)$ in the sense of ultradistribution $S^{'(s)}$ when $y \to 0$ (as a product of regular ultradistribution). It holds that $g_{\epsilon}(x+iy) \to g_{\epsilon}(x)$ in $S^{'(s)}$ when $y \to 0$. Thus we obtain that $g_{\epsilon}(x) = \frac{f(x)}{\psi_{\epsilon}(x)}, x \in \mathbb{R}$, as an ultradistribution in $S^{'(s)}$.

Step five:

We shall show that $g_{\epsilon} \in H^p, p \in [2, \infty)$, for every $\epsilon > 0$.

We need the following result:

If $f \in L^2(\mathbb{R})$, then $F(\tilde{f}) = F(\tilde{f})$, where on the left-hand side is an F-transformation in the sense of ultradistribution $S'^{(s)}$, and on the right-hand side is a regularization of F-transformation of f defined by $\tilde{f} = F(f) = \lim_{n \to \infty} F(\phi_n)$, where (ϕ_n) is a sequence in $S^{(s)}$ which converges to f in the space $L^2(\mathbb{R})$.

Because, $f \in L^p$, in view of Hölder's inequality, we get

$$\int_{-\infty}^{\infty} |g_{\epsilon}(x)|^2 dx = \int_{-\infty}^{\infty} |f(x)|^2 \frac{1}{|\psi_{\epsilon}(x)|^2} dx$$
$$\leq (\int_{-\infty}^{\infty} (|f(x)|^2)^{p/2} dx)^{2/p} (\int_{-\infty}^{\infty} \frac{dx}{|\psi_{\epsilon}(x)|^{2q}})^{1/q}.$$

where 1/p + 1/q = 1. So $g_{\epsilon}(x) \in L^2(-\infty, \infty)$. Because the function $1/\psi_{\epsilon}$ is bounded, we get that $g_{\epsilon}(x) \in L^p(-\infty, \infty)$. Also, because g_{ϵ} is a Fourier transform of G_{ϵ} , and $g_{\epsilon} \in L^2(-\infty, \infty)$, we obtain $G_{\epsilon} \in L^2(0, \infty)$, $(G_{\epsilon}(u) = 0$ for u < 0).

Now, because g_{ϵ} is a Fourier transform of $e^{-yu}G_{\epsilon}$ we get

$$g_{\epsilon}(z) = g_{\epsilon}(x+iy) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G_{\epsilon}(u) e^{-yu} e^{ixu} du =$$
$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} G_{\epsilon}(u) e^{i(xu+iyu)} du = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} G_{\epsilon}(u) e^{iuz} du, z \in \mathbb{C}, y > 0$$

Now, from the Theorem (Paley-Wiener)[2] we obtain $g_{\epsilon} \in H^2$ and from Poisson's Theorem [2] for integral representation we obtain that $g_{\epsilon} \in H^p$. Thus step five is proved.

Step six:

Now we will prove that $f(z) \in H^p$ for $p \in [2, \infty)$. It is true that $g_{\epsilon}(x) \to f(x)$ in $L^p(-\infty, \infty)$ when $\epsilon \to 0$. It follows that $g_{\epsilon}(z) \to f_1(z)$ when $\epsilon \to 0$, where $f_1 \in H^p$ and f(x) is its bounded function. The above is true, because of the next arguments.

Let
$$f_1(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{y^2 + (x-t)^2} f(t) dt \in H^p(\Pi^+)$$
.
Now we obtain

$$\begin{aligned} |g_{\epsilon}(z) - f_{1}(z)| &= \frac{1}{\pi} |\int_{-\infty}^{\infty} \frac{y}{y^{2} + (x-t)^{2}} (g_{\epsilon}(t) - f(t)) dt| \\ &\leq \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{y^{2} + (x-t)^{2}} |g_{\epsilon}(t) - f(t)| dt \\ &\leq \frac{1}{\pi} (\int_{-\infty}^{\infty} |g_{\epsilon}(t) - f(t)|^{p} dt)^{1/p} (\int_{-\infty}^{\infty} (\frac{y}{y^{2} + (x-t)^{2}})^{2} dt)^{1/q} \to 0, \epsilon \to 0 \end{aligned}$$

So $\lim_{\epsilon \to 0} g_{\epsilon}(z) = f_1(z), \ Imz > 0.$

Now, we obtain $(f - f_1)(x + iy) \to 0$ in the sense of ultradistribution $S^{'(s)}$ when $y \to 0$. Because $S^{'(s)} \subseteq D^{'(s)}(\Omega)$, $\Omega = (-R, R)$ we can use Theorem 2.4.

So, from $(f - f_1)(x + iy) \to 0$ in the sense of $D^{'(s)}$, when $y \to 0$, we obtain $f - f_1 \equiv 0$ in the neighborhood of Ω , i.e. there exist r > 0 such that $(f - f_1)(x + iy) = 0$ for |x| < R and 0 < y < r. With analytic continuation, we get that $f(z) = f_1(z)$ for every $z \in \Pi^+$ i.e. $f \in H^p$.

Step seven:

We will show that $g_{\epsilon} \in H^p(\Pi^+)$, $p \in [1, 2)$ for every $\epsilon > 0$. Under the condition of Theorem 2.3, $f \in L^p(\mathbb{R})$. So, since $1/\psi_{\epsilon}$ is bounded, it is true that $g_{\epsilon} \in L^p(-\infty, \infty)$ and

$$G_{\epsilon} \in L^q(0,\infty), (q=p/(p-1)).$$

Again, we get the representation (3.3) with G_{ϵ} as the Fourier transform of some function in $L^{p}(-\infty,\infty)$.

The following is true:

(3.5)
$$\frac{\frac{1}{i(t-z)}}{\frac{1}{i(t-z)}} = \int_0^\infty e^{-itu} e^{izu} du, (Imz > 0) \\ = -\int_{-\infty}^0 e^{-itu} e^{izu} du, (Imz < 0)$$

Now we use Fubini's Theorem the fact that g_{ϵ} is the Fourier transform of G_{ϵ} and the equality (3.5) and obtain

$$\int_{-\infty}^{\infty} \frac{g_{\epsilon}(t)}{i(t-z)} dt = \int_{-\infty}^{\infty} (g_{\epsilon}(t) \int_{0}^{\infty} e^{-itu} e^{izu} du) dt =$$
$$\int_{0}^{\infty} (e^{i}zu \int_{-\infty}^{\infty} g_{\epsilon}(t) e^{-itu} dt) du = \sqrt{2\pi} \int_{0}^{\infty} G_{\epsilon}(u) e^{izu} du = 2\pi g_{\epsilon}(z), \ (Imz > 0).$$

The same argument gives that $g_{\epsilon}(z) = 0$ for Imz < 0 because that $G_{\epsilon}(u) = 0$ for u < 0.

Thus, Theorem 2.3 implies $g_{\epsilon} \in H^p$.

Step eight:

The proof that $f \in H^p(\mathbb{R})$ for $p \in [1, 2)$ is the same as in step six.

References

- Carmichael, R. D., Kaminski, A., Pilipović, S., Notes on Boundary Values in Ultradistribution Spaces. Lecture Notes Series of Seul University 49, 1999.
- [2] Duren, P. L., Theory of H^p spaces. New York: Acad. Press 1970.

- [3] Grudzinski, V.O., Temperierte Beurling-distributions. Math. Nachr. 91 (1979), 197-220.
- [4] Komatshu, H., Ultradistributions I. Structure theorems and characterisations. J. Fac. Sci. Univ. Tokyo Sec IA, 20 (1973), 25-105.
- [5] Komatshu, H., Ultradistributions II. J. Fac. Univ. Tokyo, Sect. IA 24 (1977), 607-628.
- [6] Kusis, P., Vvedenie v teoriu prostranstv H^p . Moskva: Mir, 1984.
- [7] Petzsche, H. J., Generalized function and the boundary values of holomorphic functions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), 391-431.
- [8] Pilipović, S., Tempered Ultradistributions, Boll.Un. Mat. Ital. (7) 2-B (1988), pp. 235-251.
- [9] Pilipović, S., Boundary value representation for a class of Beurling ultradistributions. Portugaliae Math. 45 (1988), 201-219.
- [10] Pilipović, S., Ultradistributional boundary values for a class of holomorphic function. Comment Math. Univ. Sancti Pauli 37 (1988), 63-71.
- [11] Raina, A. K., On the role of Hardy spaces in form factor bounds. Letter in Mathematics Physics 2 (1978), 513-519.
- [12] de Roever, J. W., Hyperfunctional singular support of distributions. J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 31 (1985), 585-631.
- [13] Stanković, B., Analytic ultradistributions. Proceedings of the American Mathematical Society, Vol. 123 No. 11 1995.

Received by the editors July 10, 2013