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JOIN-CLOSED SUBSETS OF AN ORDERED SET.
UNICITY OF THE JOIN-BASIS

Achille Achache®

Abstract. We define the notions of cluster points and isolated points
of a subset of an arbitrary closure space. We recall the notion of free
subset and the notion of basis.

We apply all that to the closure space made of the join-closed subsets
of an arbitrary ordered set 2. We establish that a join-closed subset has
at most one basis. The set I(E) of the isolated points of E is exactly the
set of the completely join-irreducible elements of E. When I(E) gener-
ates E, I(E) is the unique basis of E (we give examples). When I(E)
does not generate E, E has no basis.
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1. Basic notions

Throughout this paper, (E,F) is a closure space, i.e. E is a set and F is a
Moore system on E (F is a subset of 2 such that for any G ¢ F, NG € F,
whence E € F). Let f : 2% s 2F be the associated closure (when X C E,
f(X) = ﬂ{Y € F:X CY}). Let us call open subsets the complements of
the closed subsets. Let us call neighborhood of a point x € FE each subset
containing an open subset containing x. Let us denote by C : 2F s 2F the
mapping defined by C(X) = E '\ X. Let us say that a point = is adherent to
X when it belongs to f(X).

A point z is adherent to X if and only if each neighborhood of x meets X.

Indeed, if we denote by 2 the complete lattice of the open sets, we get :

refX)e(XCYeF=zeY)eVWeF(XNCY)=0=z€Y)

SeZeQ=XnNZ+#0D).

Let us call cluster point of X each point z of E such that x € f(X \ {z}).
Equivalently, x is a cluster point of X if and only if each neighborhood of =
meets X in (at least) a point different from x.

Let us write X for f(X). Let us denote by A(X) the set of the cluster
points of X. Clearly, X = X U A(X). We deduce that X is closed if and only
if A(X) C X.

Let us define the induced closure space on X by the Moore system {X N F :
F € F}. Let us say that a point  of X is X-isolated when there exists a
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neighborhood V' of x such that VN X = {z}, i.e. when z ¢ A(X). It comes to
say that there exists F' € F such that X \ F' = {z}. The set of the X-isolated
points is I(X) = X \ A(X).

The E-isolated (or, more simply : isolated) points are the x such that {z}
is open. Observe the inclusion X NI(F) C I(X), which can be strict (taking
E = R with the usual closed subsets and X = N), or not (taking F = (}). For
more about this please check [H].

Lemma 1.1. Whenever x € X C E, the following properties are equivalent :
(1) x € A(X) o
(2) Y C X\ {z} such thatx €Y
(3) f(X\{z}) = f(X)

Proof. Relations (1) = (2) and (3) = (1) are obvious.
To prove (2) = (3) let us put H = X \ {z}.
We get X = f(HU{z}) = f(HU{z}) =H. O

Let us put S(X) = XNA(X). Since the mapping A : 2F ++ 2F is increasing,
S is also increasing. Let us call X -superfluous the points of S(X).

A subset X of F is said to be free when it is minimal among the subsets Y
of E such that f(YV) = f(X).

Let us say that a subset Z of E generates the closed subset F' when f(Z) =
F. This subset Z is said to be a basis for F when it is a free generating subset
of F (i.e. when Z is a minimal generating subset for F').

Lemma 1.2. A subset X is free if and only if it is devoid of X -superfluous
points.

Proof. Suppose X is not free. It can be found a proper subset Y of X such
that f(Y) = f(X). Choose z € X \'Y. We get z € f(X) = f(Y) hence, by
Lemma [T, 2 is superfluous, and S(X) # 0.

Conversely, suppose S(X) # (. Let 2 € S(X) and put Y = X \ {z}. Since
Y is a proper subset of X and generates f(X), X is not free. O

It follows that X is free if and only if X = I(X).
Lemma 1.3. The set I(X) of the X -isolated points of X s free.

Proof. Since I(X) C X, S(I(X)) C S(X), therefore S(I(X)) C S(X)NI(X)
0.

oo

Let us return to the the induced space X. The associated closure px :
2% 3 2% is defined by px(Y) = X NY. It is easily seen that, when ¥ C X,
Y is free if and only if it is px-free. When F' is closed, we get for any Y C F'
(since Y C F), pr(Y) =Y. It follows that for any subset Y of F, pr(Y) = F
if and only if f(Y) = F, and that the bases of F' are the same as the pp-bases.

Let us say that a point x of the closed subspace F is extremal when F\{z} €
F, which comes to say that = € I(F').
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Lemma 1.4. Let F be a closed subset of E.

1. If the subset G generates F', I(F) C G.

2. In the case where I(F) generates F, the subsets X generating F are
those verifying I(F) C X C F; moreover, I(F) is the smallest basis of F'.

Proof. 1. Suppose z € I(F)\ G. Since G C F \ {z}, it follows FF = G C
f(F\{z}) C F, hence f(F\ {z}) = F. Then F \ {z} is not closed, i.e.
z ¢ I(F), a contradiction.

2. Suppose I(F) C X C F. We deduce f(I(F)) C f(X) C f(F), whence
f(X)=F.

Since I(F) is free, it is a basis of F. If X is any basis of F'; X generates F,
whence I(F) C X. O

Lemma 1.5. For any subset X of E, the following statements are equivalent :
(1) AX) = AX)
(2)  S(X)=A(X)

3) I(X)=I(X).

Proof. (1) = (2). S(X)=AX)NX = A(X)NX = A(X).

(2) = (1). Since X is closed, A(X) C X, s0 A(X) CAX)NX =S3(X) =
A(X).
@)= (5) 100 = X\ S0 =X\ A) = 100,

3) = (2). S(X) =X\ I(X) = X\ I(X) = A(X). O

Proposition 1.6. Suppose that the closure space (E, F) is such that, for every
free subset X of E, A(X) = A(X).

Then, a closed subset F' has at most one basis. When I(F') generates F,
the unique basis of F is I(F), otherwise F' has no basis.

Proof. Let B be a basis of F. Since B is free, B = I(B). We deduce, by

Lemma 3, B = I(B) = I(B) = I(F). O

2. Results

In the sequel, E is an ordered set. Let us call R the set of all subsets of
E admitting a supremum. We put, for z € E, T, = {t € E : t < z} and
lz={te E:t <z} We will use the axiom of choice.

Definition 2.1. (f1, p.26], [2, p.53], [4]) An element x of E is said to be
completely join-irreducible when one of the two following equivalent properties
holds true :

(1) ForanyY e R,z =\Y impliesz €Y.

(2)  x is not the supremum of Ty.

Proof. (of the equivalence)

(1) = (2). If  was the supremum of T}, we could deduce z € T}.

(2) — (1). Let y be an upper bound of T, such that y 2 z. Suppose
z=\Y. Ifz €YY C T, hence y is an upper bound of Y, and y > VY =z,
a contradiction. We conclude that z € Y. O
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Let us say that a subset X of E is V-closed (or more simply closed) when it
contains all existing supremums of subsets of X. We can define on E a closure
space by considering the Moore system F of all V-closed subsets.

Lemma 2.2. The closure of an arbitrary subset X of E is
Y={VH:HC XandH € R}.

Proof. 1. Let us first prove that Y is closed. Let Z be a subset of Y possessing a
supremum. To each z € Z we associate a subset M, of X such that z = \/ M,.
The sets Z and N = |J{M, : z € Z} have the same upper bounds. So, N € R
and \/ N = \/ Z. We have simultaneously N C X, N €¢ R and VN =/ Z.
By the definition of Y it follows \/ Z € Y.

2. So, we have X C Y € F.

3. Suppose X C P € F. Let x € Y. It is possible to find H C X such that
x =\ H. Since P is closed, x € P.

4. We conclude that Y is the smallest closed subset containing X. O

Let us now localize, for a given subset X, the X-superfluous and the X-
isolated elements of X. First, by the definition of the cluster points, we get:

A(X)={zx € E:3H C X\ {z} such that x:\/H}

O A(X) = {ecE:IH C X such that 2 = \/ H and = ¢ H}.
We deduce

S(X)={r € X :3H C X such that x:\/H and x ¢ H}
and

I(X)={zeX:VHCX, (x=\/H=uzcH)}
We observe that I(E) is the set of all completely V-irreducible elements.
Proposition 2.3. Whenever X is an arbitrary subset of E, A(X) = A(X).

Proof. Since A(X) C A(X), we need only prove that = ¢ A(X) = z ¢ A(X).

We must estabish that, whenever H is a subset of X such that x = \/ H,
we can deduce that x € H.

Since H C X, we can associate to each y € H a subset M, C X such that
y = VV M,. We easily observe that, if we define P = |J{M, : y € H}, then
VP =z Since v ¢ A(X) and P C X, we deduce z € P. It is then possible
to find z € H such that x € M,. We get ¢ <\/ M, = z <\/ H = z, therefore
r=z¢€H. O

By Lemma 3, we deduce that the X-isolated points are exactly the ex-
tremal points of the closed subset generated by X.

Proposition 2.4. Let F be a \/-closed subset of the ordered set E. If I(F)
generates F, then I(F) is the unique basis of F, otherwise F' admits no basis.
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Proof. 1t is an obvious consequence of Proposition 8. O

In particular, if I(E) generates F, I(E) is the unique basis of E, otherwise
E has no basis. When I(FE) generates F, the subsets G generating E are exactly
those verifying I(E) C G (Lemma I4).

Notice that the closure f satisfies the anti-exchange property :

Ifo e (f(XU{y})\ (f(X)) and y € f(X U{x}), then x =y.

Indeed, there exists Z C X U {y} such that x =\/ Z. The condition y ¢ Z
would induce Z C X, whence x € f(X); therefore y € Z, so v > y. The
relation y € f(X) would imply z € f(X). So, by symmetry, y > .

Let us say that a subset of F is join-dense when it generates E.

3. Examples

A. FE is well-founded

Let us say that the ordered set E is well-founded when each non-empty
subset of E has a minimal element. For instance, any finite ordered set, and
the set N of natural numbers ordered by divisibility, are well-founded.

Lemma 3.1. If z,y are two elements of a well-founded ordered set E verifying
x Ly, there exists an isolated point i such thati <z andi £ y.

Proof. The set Z ={z € E:z <z and z £ y} is non-empty, since x € Z. Let
i be a minimal element of Z. For each a € T;, we get, by the minimality of
i, a € Z, hence a < y. Since i £ y, and since y is an upper bound for T;, it
follows (cf. Definition ETI) that ¢ € I(E). O

Proposition 3.2. Let E be a well-founded ordered set. For each x € E :
z=\/U(E)N({x)
Proof. Put H =I(E)N(} x)). Let us show that x <y whenever y is an upper

bound of H. Suppose x £ y. Let ¢ be an isolated point such that i < z and
i € y (c.f. Lemma B). Since i € H, it follows i < y, a contradiction. O

Proposition 3.3. Let E be a well-founded ordered set. Then :
A subset X of E is join-dense if and only if I(E) C X.
The set I(E) is the unique basis of E.

Proof. These are easy consequences of Lemma [, Propositions [ and B2. [

For instance, the basis of the complete lattice N of natural numbers ordered
by divisibility, is made of the powers other than 1 of prime integers.
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B. F is a complete lattice

Let H be an arbitrary subset of a complete lattice . Let E* be the dual of
E. Let us define the two mappings a : 27 — E and b: E — 2 by a(X) = VX
and b(t) = HN ({ t).

Since a(X) <t < X C b(t), if we consider a and b as mappings from 2 to
E* and from E* to 2 respectively, then the pair (a,b) is a Galois connexion.
It follows that ¢ = boa is a closure on 27 and w = a o b is an aperture on
E. The set of all fixed points of cis P = {HN (| t) : t € E}. The set of all
fixed points of w is the join-closed subset H generated by H. The mappings
i:P+— Hand j: H+— P defined by i(X) = X and j(t) = b(t) are reciprocal
isomorphisms.

When H = I(E) and H = E, we know (Proposition [8) that I(E) is the
unique basis of F/, and we observe that E is isomorphic to P.

Suppose now that H denotes the set set of the isolated points of E. Denote
by M the system of all initial subsets of H. Let us define the mapping m :
M — E by m(X) =\ X. It can be easily verified that m is surjective if and
only if H is the (unique) basis of L.

C. Alexandroff system

Let us name Alexandroff system on a set S each join-closed Moore system
A. Clearly, if we denote by a the closure associated to A, we can write, for
X e A,

X =Jtalzh) sz e X} ()

Proposition 3.4. Let A be an Alexandroff system on S.
1. The set of isolated elements of A is

B={a({z}):x € S}.
2. B is the unique basis of A.

Proof. 1. Let X be an isolated element, (i.e. an element completely join-
irreducible). By (1), there exists ¢t € S such that X = a({t}).

Conversely, suppose X = a({z}). T X =M M C A), z € M € M.
Whence X CM C UM =X.So X =M e M.

2. By (1), B is join-dense. O

Since the set A of all Alexandroff systems on S is meet-closed, (225, A) is
a closure space.

Proposition 3.5. Let (S, F) be a closure space.

Let us denote by T the closed subset generated by x € S.

1. The Alexandroff system generated by F is A={X C S:Vx € X,T C
X}.
2. Whenever x € S, a(zr) = 7.

3. The unique basis of A is {T : x € S}.

Proof. 1. Tt is easily seen that F C A € A. Suppose F C N € A : it is easy
to see that A C V.
2. Clearly, if X C S, a(X) = |U{Z : z € X}. Therefore, a(z) = 7. O
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It seems not to be known in what case F has a basis.

4. Annex

1. Edelman and Jamison proved (in [3]) that each anti-exchange finite
closure space has a unique join-basis. Whence we deduce that, if in the closure
space on a poset E associated to the Moore system of all the join-closed subsets
of E there is no basis, E is infinite. Example of that situation: E is the real
interval [0, 1]; since I(E) is empty, the closure of I(E) is {0}; hence E has no
base.

2. We present some other examples, based on the fact that, when a complete
lattice is atomistic (i.e., when each element is a supremum of atoms), the atoms
are exactly the completely meet-irreducible elements.

2a.(Szpilrajn, [B]) Let S be an arbitrary set. Let  be the set of orders
on S. Let ' = QU {S?}. The obtained complete lattice has for the unique
meet-basis the set of total orders on S.

2b. Let L be an arbitrary lattice (with 0 and 1). Let F be the Moore
system of the filters on L. Let U be the set of the ultra-filters. The complete
lattice F' possesses the unique join-basis the set U.
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