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JOIN-CLOSED SUBSETS OF AN ORDERED SET.
UNICITY OF THE JOIN-BASIS

Achille Achache1

Abstract. We define the notions of cluster points and isolated points
of a subset of an arbitrary closure space. We recall the notion of free
subset and the notion of basis.

We apply all that to the closure space made of the join-closed subsets
of an arbitrary ordered set E. We establish that a join-closed subset has
at most one basis. The set I(E) of the isolated points of E is exactly the
set of the completely join-irreducible elements of E. When I(E) gener-
ates E, I(E) is the unique basis of E (we give examples). When I(E)
does not generate E, E has no basis.
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1. Basic notions

Throughout this paper, (E,F) is a closure space, i.e. E is a set and F is a
Moore system on E (F is a subset of 2E such that for any G ⊂ F ,

∩
G ∈ F ,

whence E ∈ F). Let f : 2E 7→ 2E be the associated closure (when X ⊂ E,

f(X) =
∩

{Y ∈ F : X ⊂ Y }). Let us call open subsets the complements of

the closed subsets. Let us call neighborhood of a point x ∈ E each subset
containing an open subset containing x. Let us denote by C : 2E 7→ 2E the
mapping defined by C(X) = E \X. Let us say that a point x is adherent to
X when it belongs to f(X).

A point x is adherent to X if and only if each neighborhood of x meets X.
Indeed, if we denote by Ω the complete lattice of the open sets, we get :

x ∈ f(X) ⇔ (X ⊂ Y ∈ F ⇒ x ∈ Y ) ⇔ ∀Y ∈ F , (X ∩ C(Y ) = ∅ ⇒ x ∈ Y )

⇔ (x ∈ Z ∈ Ω ⇒ X ∩ Z ̸= ∅).

Let us call cluster point of X each point x of E such that x ∈ f(X \ {x}).
Equivalently, x is a cluster point of X if and only if each neighborhood of x
meets X in (at least) a point different from x.

Let us write X for f(X). Let us denote by A(X) the set of the cluster
points of X. Clearly, X = X ∪ A(X). We deduce that X is closed if and only
if A(X) ⊂ X.

Let us define the induced closure space on X by the Moore system {X ∩F :
F ∈ F}. Let us say that a point x of X is X-isolated when there exists a
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neighborhood V of x such that V ∩X = {x}, i.e. when x ̸∈ A(X). It comes to
say that there exists F ∈ F such that X \ F = {x}. The set of the X-isolated
points is I(X) = X \A(X).

The E-isolated (or, more simply : isolated) points are the x such that {x}
is open. Observe the inclusion X ∩ I(E) ⊂ I(X), which can be strict (taking
E = R with the usual closed subsets and X = N), or not (taking E = ∅). For
more about this please check [5].

Lemma 1.1. Whenever x ∈ X ⊂ E, the following properties are equivalent :

(1) x ∈ A(X)

(2) ∃Y ⊂ X \ {x} such that x ∈ Y

(3) f(X \ {x}) = f(X)

Proof. Relations (1) ⇒ (2) and (3) ⇒ (1) are obvious.

To prove (2) ⇒ (3) let us put H = X \ {x}.
We get X = f(H ∪ {x}) = f(H ∪ {x}) = H.

Let us put S(X) = X∩A(X). Since the mapping A : 2E 7→ 2E is increasing,
S is also increasing. Let us call X-superfluous the points of S(X).

A subset X of E is said to be free when it is minimal among the subsets Y
of E such that f(Y ) = f(X).

Let us say that a subset Z of E generates the closed subset F when f(Z) =
F . This subset Z is said to be a basis for F when it is a free generating subset
of F (i.e. when Z is a minimal generating subset for F ).

Lemma 1.2. A subset X is free if and only if it is devoid of X-superfluous
points.

Proof. Suppose X is not free. It can be found a proper subset Y of X such
that f(Y ) = f(X). Choose x ∈ X \ Y . We get x ∈ f(X) = f(Y ) hence, by
Lemma 1.1, x is superfluous, and S(X) ̸= ∅.

Conversely, suppose S(X) ̸= ∅. Let x ∈ S(X) and put Y = X \ {x}. Since
Y is a proper subset of X and generates f(X), X is not free.

It follows that X is free if and only if X = I(X).

Lemma 1.3. The set I(X) of the X-isolated points of X is free.

Proof. Since I(X) ⊂ X, S(I(X)) ⊂ S(X), therefore S(I(X)) ⊂ S(X)∩I(X) =
∅.

Let us return to the the induced space X. The associated closure φX :
2X 7→ 2X is defined by φX(Y ) = X ∩ Y . It is easily seen that, when Y ⊂ X,
Y is free if and only if it is φX -free. When F is closed, we get for any Y ⊂ F
(since Y ⊂ F ), φF (Y ) = Y . It follows that for any subset Y of F , φF (Y ) = F
if and only if f(Y ) = F , and that the bases of F are the same as the φF -bases.

Let us say that a point x of the closed subspace F is extremal when F \{x} ∈
F , which comes to say that x ∈ I(F ).
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Lemma 1.4. Let F be a closed subset of E.
1. If the subset G generates F , I(F ) ⊂ G.
2. In the case where I(F ) generates F , the subsets X generating F are

those verifying I(F ) ⊂ X ⊂ F ; moreover, I(F ) is the smallest basis of F .

Proof. 1. Suppose z ∈ I(F ) \ G. Since G ⊂ F \ {z}, it follows F = G ⊂
f(F \ {z}) ⊂ F , hence f(F \ {z}) = F . Then F \ {z} is not closed, i.e.
z ̸∈ I(F ), a contradiction.

2. Suppose I(F ) ⊂ X ⊂ F . We deduce f(I(F )) ⊂ f(X) ⊂ f(F ), whence
f(X) = F .

Since I(F ) is free, it is a basis of F . If X is any basis of F , X generates F ,
whence I(F ) ⊂ X.

Lemma 1.5. For any subset X of E, the following statements are equivalent :
(1) A(X) = A(X)
(2) S(X) = A(X)
(3) I(X) = I(X).

Proof. (1) ⇒ (2). S(X) = A(X) ∩X = A(X) ∩X = A(X).
(2) ⇒ (1). Since X is closed, A(X) ⊂ X, so A(X) ⊂ A(X) ∩X = S(X) =

A(X).
(2) ⇒ (3). I(X) = X \ S(X) = X \A(X) = I(X).
(3) ⇒ (2). S(X) = X \ I(X) = X \ I(X) = A(X).

Proposition 1.6. Suppose that the closure space (E,F) is such that, for every
free subset X of E, A(X) = A(X).

Then, a closed subset F has at most one basis. When I(F ) generates F ,
the unique basis of F is I(F ), otherwise F has no basis.

Proof. Let B be a basis of F . Since B is free, B = I(B). We deduce, by
Lemma 1.5, B = I(B) = I(B) = I(F ).

2. Results

In the sequel, E is an ordered set. Let us call R the set of all subsets of
E admitting a supremum. We put, for x ∈ E, Tx = {t ∈ E : t < x} and
↓ x = {t ∈ E : t ≤ x}. We will use the axiom of choice.

Definition 2.1. ([1, p.26], [2, p.53], [4]) An element x of E is said to be
completely join-irreducible when one of the two following equivalent properties
holds true :

(1) For any Y ∈ R, x =
∨

Y implies x ∈ Y .
(2) x is not the supremum of Tx.

Proof. (of the equivalence)
(1) → (2). If x was the supremum of Tx, we could deduce x ∈ Tx.
(2) → (1). Let y be an upper bound of Tx such that y ̸≥ x. Suppose

x =
∨

Y . If x ̸∈ Y , Y ⊂ Tx hence y is an upper bound of Y , and y ≥
∨
Y = x,

a contradiction. We conclude that x ∈ Y .
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Let us say that a subset X of E is ∨-closed (or more simply closed) when it
contains all existing supremums of subsets of X. We can define on E a closure
space by considering the Moore system F of all ∨-closed subsets.

Lemma 2.2. The closure of an arbitrary subset X of E is

Y = {∨H : H ⊂ X andH ∈ R}.

Proof. 1. Let us first prove that Y is closed. Let Z be a subset of Y possessing a
supremum. To each z ∈ Z we associate a subset Mz of X such that z =

∨
Mz.

The sets Z and N =
∪
{Mz : z ∈ Z} have the same upper bounds. So, N ∈ R

and
∨
N =

∨
Z. We have simultaneously N ⊂ X, N ∈ R and

∨
N =

∨
Z.

By the definition of Y it follows
∨

Z ∈ Y .
2. So, we have X ⊂ Y ∈ F .
3. Suppose X ⊂ P ∈ F . Let x ∈ Y . It is possible to find H ⊂ X such that

x =
∨
H. Since P is closed, x ∈ P .

4. We conclude that Y is the smallest closed subset containing X.

Let us now localize, for a given subset X, the X-superfluous and the X-
isolated elements of X. First, by the definition of the cluster points, we get:

A(X) = {x ∈ E : ∃H ⊂ X \ {x} such that x =
∨

H}

i.e.
A(X) = {x ∈ E : ∃H ⊂ X such that x =

∨
H and x ̸∈ H}.

We deduce

S(X) = {x ∈ X : ∃H ⊂ X such that x =
∨

H and x ̸∈ H}

and
I(X) = {x ∈ X : ∀H ⊂ X, (x =

∨
H ⇒ x ∈ H)}.

We observe that I(E) is the set of all completely ∨-irreducible elements.

Proposition 2.3. Whenever X is an arbitrary subset of E, A(X) = A(X).

Proof. Since A(X) ⊂ A(X), we need only prove that x ̸∈ A(X) ⇒ x ̸∈ A(X).
We must estabish that, whenever H is a subset of X such that x =

∨
H,

we can deduce that x ∈ H.
Since H ⊂ X, we can associate to each y ∈ H a subset My ⊂ X such that

y =
∨
My. We easily observe that, if we define P =

∪
{My : y ∈ H}, then∨

P = x. Since x ̸∈ A(X) and P ⊂ X, we deduce x ∈ P . It is then possible
to find z ∈ H such that x ∈ Mz. We get x ≤

∨
Mz = z ≤

∨
H = x, therefore

x = z ∈ H.

By Lemma 1.5, we deduce that the X-isolated points are exactly the ex-
tremal points of the closed subset generated by X.

Proposition 2.4. Let F be a
∨
-closed subset of the ordered set E. If I(F )

generates F , then I(F ) is the unique basis of F , otherwise F admits no basis.
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Proof. It is an obvious consequence of Proposition 1.6.

In particular, if I(E) generates E, I(E) is the unique basis of E, otherwise
E has no basis. When I(E) generates E, the subsets G generating E are exactly
those verifying I(E) ⊂ G (Lemma 1.4).

Notice that the closure f satisfies the anti-exchange property :

If x ∈ (f(X ∪ {y})) \ (f(X)) and y ∈ f(X ∪ {x}), then x = y.

Indeed, there exists Z ⊂ X ∪ {y} such that x =
∨
Z. The condition y ̸∈ Z

would induce Z ⊂ X, whence x ∈ f(X); therefore y ∈ Z, so x ≥ y. The
relation y ∈ f(X) would imply x ∈ f(X). So, by symmetry, y ≥ x.

Let us say that a subset of E is join-dense when it generates E.

3. Examples

A. E is well-founded

Let us say that the ordered set E is well-founded when each non-empty
subset of E has a minimal element. For instance, any finite ordered set, and
the set N of natural numbers ordered by divisibility, are well-founded.

Lemma 3.1. If x, y are two elements of a well-founded ordered set E verifying
x ̸≤ y, there exists an isolated point i such that i ≤ x and i ̸≤ y.

Proof. The set Z = {z ∈ E : z ≤ x and z ̸≤ y} is non-empty, since x ∈ Z. Let
i be a minimal element of Z. For each a ∈ Ti, we get, by the minimality of
i, a ̸∈ Z, hence a ≤ y. Since i ̸≤ y, and since y is an upper bound for Ti, it
follows (cf. Definition 2.1) that i ∈ I(E).

Proposition 3.2. Let E be a well-founded ordered set. For each x ∈ E :

x =
∨

(I(E) ∩ (↓ x))

Proof. Put H = I(E)∩ (↓ x)). Let us show that x ≤ y whenever y is an upper
bound of H. Suppose x ̸≤ y. Let i be an isolated point such that i ≤ x and
i ̸≤ y (c.f. Lemma 3.1). Since i ∈ H, it follows i ≤ y, a contradiction.

Proposition 3.3. Let E be a well-founded ordered set. Then :

A subset X of E is join-dense if and only if I(E) ⊂ X.

The set I(E) is the unique basis of E.

Proof. These are easy consequences of Lemma 1.4, Propositions 1.6 and 3.2.

For instance, the basis of the complete lattice N of natural numbers ordered
by divisibility, is made of the powers other than 1 of prime integers.
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B. E is a complete lattice

Let H be an arbitrary subset of a complete lattice E. Let E∗ be the dual of
E. Let us define the two mappings a : 2H 7→ E and b : E 7→ 2H by a(X) = ∨X
and b(t) = H ∩ (↓ t).

Since a(X) ≤ t ⇔ X ⊂ b(t), if we consider a and b as mappings from 2H to
E∗ and from E∗ to 2H , respectively, then the pair (a, b) is a Galois connexion.
It follows that c = b ◦ a is a closure on 2H and ω = a ◦ b is an aperture on
E. The set of all fixed points of c is P = {H ∩ (↓ t) : t ∈ E}. The set of all
fixed points of ω is the join-closed subset H generated by H. The mappings
i : P 7→ H and j : H 7→ P defined by i(X) = X and j(t) = b(t) are reciprocal
isomorphisms.

When H = I(E) and H = E, we know (Proposition 1.6) that I(E) is the
unique basis of E, and we observe that E is isomorphic to P.

Suppose now that H denotes the set set of the isolated points of E. Denote
by M the system of all initial subsets of H. Let us define the mapping m :
M → E by m(X) =

∨
X. It can be easily verified that m is surjective if and

only if H is the (unique) basis of L.

C. Alexandroff system

Let us name Alexandroff system on a set S each join-closed Moore system
A. Clearly, if we denote by a the closure associated to A, we can write, for
X ∈ A,

X =
∪

{a({x}) : x ∈ X} (1)

Proposition 3.4. Let A be an Alexandroff system on S.
1. The set of isolated elements of A is

B = {a({x}) : x ∈ S}.

2. B is the unique basis of A.

Proof. 1. Let X be an isolated element, (i.e. an element completely join-
irreducible). By (1), there exists t ∈ S such that X = a({t}).

Conversely, suppose X = a({z}). If X =
∪
M (M ⊂ A), z ∈ M ∈ M.

Whence X ⊂ M ⊂
∪
M = X. So X = M ∈ M.

2. By (1), B is join-dense.

Since the set ∆ of all Alexandroff systems on S is meet-closed, (22
S

,∆) is
a closure space.

Proposition 3.5. Let (S,F) be a closure space.
Let us denote by x the closed subset generated by x ∈ S.
1. The Alexandroff system generated by F is A = {X ⊂ S : ∀x ∈ X,x ⊂

X}.
2. Whenever x ∈ S, a(x) = x.
3. The unique basis of A is {x : x ∈ S}.

Proof. 1. It is easily seen that F ⊂ A ∈ ∆. Suppose F ⊂ N ∈ ∆ : it is easy
to see that A ⊂ N .

2. Clearly, if X ⊂ S, a(X) =
∪
{x : x ∈ X}. Therefore, a(x) = x.
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It seems not to be known in what case F has a basis.

4. Annex

1. Edelman and Jamison proved (in [3]) that each anti-exchange finite
closure space has a unique join-basis. Whence we deduce that, if in the closure
space on a poset E associated to the Moore system of all the join-closed subsets
of E there is no basis, E is infinite. Example of that situation: E is the real
interval [0, 1]; since I(E) is empty, the closure of I(E) is {0}; hence E has no
base.

2. We present some other examples, based on the fact that, when a complete
lattice is atomistic (i.e., when each element is a supremum of atoms), the atoms
are exactly the completely meet-irreducible elements.

2a.(Szpilrajn, [6]) Let S be an arbitrary set. Let Ω be the set of orders
on S. Let Ω′ = Ω ∪ {S2}. The obtained complete lattice has for the unique
meet-basis the set of total orders on S.

2b. Let L be an arbitrary lattice (with 0 and 1). Let F be the Moore
system of the filters on L. Let U be the set of the ultra-filters. The complete
lattice F possesses the unique join-basis the set U .
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