JOIN-CLOSED SUBSETS OF AN ORDERED SET. UNICITY OF THE JOIN-BASIS

Achille Achache¹

Abstract. We define the notions of cluster points and isolated points of a subset of an arbitrary closure space. We recall the notion of free subset and the notion of basis.

We apply all that to the closure space made of the join-closed subsets of an arbitrary ordered set E. We establish that a join-closed subset has at most one basis. The set I(E) of the isolated points of E is exactly the set of the completely join-irreducible elements of E. When I(E) generates E, I(E) is the unique basis of E (we give examples). When I(E)does not generate E, E has no basis.

AMS Mathematics Subject Classification (2010): 06A15

Key words and phrases: closure space, join-closed subset of an ordered set, meet-closed subset, antiexchange property, convexity, join-basis, meet-basis

1. Basic notions

Throughout this paper, (E, \mathcal{F}) is a closure space, i.e. E is a set and \mathcal{F} is a Moore system on E (\mathcal{F} is a subset of 2^E such that for any $\mathcal{G} \subset \mathcal{F}$, $\bigcap \mathcal{G} \in \mathcal{F}$, whence $E \in \mathcal{F}$). Let $f : 2^E \mapsto 2^E$ be the associated closure (when $X \subset E$, $f(X) = \bigcap \{Y \in \mathcal{F} : X \subset Y\}$). Let us call *open subsets* the complements of the closed subsets. Let us call *neighborhood* of a point $x \in E$ each subset containing an open subset containing x. Let us denote by $C : 2^E \mapsto 2^E$ the mapping defined by $C(X) = E \setminus X$. Let us say that a point x is *adherent* to X when it belongs to f(X).

A point x is adherent to X if and only if each neighborhood of x meets X. Indeed, if we denote by Ω the complete lattice of the open sets, we get :

$$\begin{aligned} x \in f(X) \Leftrightarrow (X \subset Y \in \mathcal{F} \Rightarrow x \in Y) \Leftrightarrow \forall Y \in \mathcal{F}, (X \cap C(Y) = \emptyset \Rightarrow x \in Y) \\ \Leftrightarrow (x \in Z \in \Omega \Rightarrow X \cap Z \neq \emptyset). \end{aligned}$$

Let us call cluster point of X each point x of E such that $x \in f(X \setminus \{x\})$. Equivalently, x is a cluster point of X if and only if each neighborhood of x meets X in (at least) a point different from x.

Let us write \overline{X} for f(X). Let us denote by A(X) the set of the cluster points of X. Clearly, $\overline{X} = X \cup A(X)$. We deduce that X is closed if and only if $A(X) \subset X$.

Let us define the *induced* closure space on X by the Moore system $\{X \cap F : F \in \mathcal{F}\}$. Let us say that a point x of X is X-isolated when there exists a

¹140 Rue Dedieu, 69100 Villeurbanne, France, e-mail: achille.achache@orange.fr

neighborhood V of x such that $V \cap X = \{x\}$, i.e. when $x \notin A(X)$. It comes to say that there exists $F \in \mathcal{F}$ such that $X \setminus F = \{x\}$. The set of the X-isolated points is $I(X) = X \setminus A(X)$.

The *E*-isolated (or, more simply : isolated) points are the x such that $\{x\}$ is open. Observe the inclusion $X \cap I(E) \subset I(X)$, which can be strict (taking $E = \mathbb{R}$ with the usual closed subsets and $X = \mathbb{N}$), or not (taking $E = \emptyset$). For more about this please check [5].

Lemma 1.1. Whenever $x \in X \subset E$, the following properties are equivalent : (1) $x \in A(X)$ (2) $\exists Y \subset X \setminus \{x\}$ such that $x \in \overline{Y}$

- $(3) f(X \setminus \{x\}) = f(X)$
- Proof. Relations $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$ are obvious. To prove $(2) \Rightarrow (3)$ let us put $H = X \setminus \{x\}$. We get $\overline{X} = f(H \cup \{x\}) = f(\overline{H} \cup \{x\}) = \overline{H}$.

Let us put $S(X) = X \cap A(X)$. Since the mapping $A : 2^E \mapsto 2^E$ is increasing, S is also increasing. Let us call X-superfluous the points of S(X).

A subset X of E is said to be *free* when it is minimal among the subsets Y of E such that f(Y) = f(X).

Let us say that a subset Z of E generates the closed subset F when f(Z) = F. This subset Z is said to be a *basis* for F when it is a free generating subset of F (i.e. when Z is a minimal generating subset for F).

Lemma 1.2. A subset X is free if and only if it is devoid of X-superfluous points.

Proof. Suppose X is not free. It can be found a proper subset Y of X such that f(Y) = f(X). Choose $x \in X \setminus Y$. We get $x \in f(X) = f(Y)$ hence, by Lemma 1.1, x is superfluous, and $S(X) \neq \emptyset$.

Conversely, suppose $S(X) \neq \emptyset$. Let $x \in S(X)$ and put $Y = X \setminus \{x\}$. Since Y is a proper subset of X and generates f(X), X is not free.

It follows that X is free if and only if X = I(X).

Lemma 1.3. The set I(X) of the X-isolated points of X is free.

Proof. Since $I(X) \subset X$, $S(I(X)) \subset S(X)$, therefore $S(I(X)) \subset S(X) \cap I(X) = \emptyset$.

Let us return to the induced space X. The associated closure $\varphi_X : 2^X \mapsto 2^X$ is defined by $\varphi_X(Y) = X \cap \overline{Y}$. It is easily seen that, when $Y \subset X$, Y is free if and only if it is φ_X -free. When F is closed, we get for any $Y \subset F$ (since $\overline{Y} \subset F$), $\varphi_F(Y) = \overline{Y}$. It follows that for any subset Y of F, $\varphi_F(Y) = F$ if and only if f(Y) = F, and that the bases of F are the same as the φ_F -bases.

Let us say that a point x of the closed subspace F is extremal when $F \setminus \{x\} \in \mathcal{F}$, which comes to say that $x \in I(F)$.

Lemma 1.4. Let F be a closed subset of E.

1. If the subset G generates $F, I(F) \subset G$.

2. In the case where I(F) generates F, the subsets X generating F are those verifying $I(F) \subset X \subset F$; moreover, I(F) is the smallest basis of F.

Proof. 1. Suppose $z \in I(F) \setminus G$. Since $G \subset F \setminus \{z\}$, it follows $F = \overline{G} \subset f(F \setminus \{z\}) \subset F$, hence $f(F \setminus \{z\}) = F$. Then $F \setminus \{z\}$ is not closed, i.e. $z \notin I(F)$, a contradiction.

2. Suppose $I(F) \subset X \subset F$. We deduce $f(I(F)) \subset f(X) \subset f(F)$, whence f(X) = F.

Since I(F) is free, it is a basis of F. If X is any basis of F, X generates F, whence $I(F) \subset X$.

Lemma 1.5. For any subset X of E, the following statements are equivalent :

(1) A(X) = A(X)(2) $S(\overline{X}) = A(X)$ (3) $I(X) = I(\overline{X}).$

 $\begin{array}{l} \textit{Proof.} \ (1) \Rightarrow (2). \ S(\overline{X}) = A(\overline{X}) \cap \overline{X} = A(X) \cap \overline{X} = A(X). \\ (2) \Rightarrow (1). \ \text{Since } \overline{X} \text{ is closed}, \ A(\overline{X}) \subset \overline{X}, \text{ so } A(\overline{X}) \subset A(\overline{X}) \cap \overline{X} = S(\overline{X}) = A(X). \\ (2) \Rightarrow (3). \ I(\overline{X}) = \overline{X} \setminus S(\overline{X}) = \overline{X} \setminus A(X) = I(X). \end{array}$

$$(3) \Rightarrow (2). \ S(\overline{X}) = \overline{X} \setminus I(\overline{X}) = \overline{X} \setminus I(X) = A(X).$$

Proposition 1.6. Suppose that the closure space (E, \mathcal{F}) is such that, for every free subset X of E, $A(X) = A(\overline{X})$.

Then, a closed subset F has at most one basis. When I(F) generates F, the unique basis of F is I(F), otherwise F has no basis.

Proof. Let B be a basis of F. Since B is free, B = I(B). We deduce, by Lemma 1.5, $B = I(B) = I(\overline{B}) = I(F)$.

2. Results

In the sequel, E is an ordered set. Let us call \mathcal{R} the set of all subsets of E admitting a supremum. We put, for $x \in E$, $T_x = \{t \in E : t < x\}$ and $\downarrow x = \{t \in E : t \leq x\}$. We will use the axiom of choice.

Definition 2.1. ([1, p.26], [2, p.53], [4]) An element x of E is said to be completely join-irreducible when one of the two following equivalent properties holds true :

(1) For any $Y \in \mathcal{R}$, $x = \bigvee Y$ implies $x \in Y$.

(2) x is not the supremum of T_x .

Proof. (of the equivalence)

(1) \rightarrow (2). If x was the supremum of T_x , we could deduce $x \in T_x$.

 $(2) \to (1)$. Let y be an upper bound of T_x such that $y \not\geq x$. Suppose $x = \bigvee Y$. If $x \notin Y, Y \subset T_x$ hence y is an upper bound of Y, and $y \geq \bigvee Y = x$, a contradiction. We conclude that $x \in Y$.

Let us say that a subset X of E is \lor -closed (or more simply closed) when it contains all existing supremums of subsets of X. We can define on E a closure space by considering the Moore system \mathcal{F} of all \lor -closed subsets.

Lemma 2.2. The closure of an arbitrary subset X of E is

$$Y = \{ \forall H : H \subset X \text{ and } H \in \mathcal{R} \}.$$

Proof. 1. Let us first prove that Y is closed. Let Z be a subset of Y possessing a supremum. To each $z \in Z$ we associate a subset M_z of X such that $z = \bigvee M_z$. The sets Z and $N = \bigcup \{M_z : z \in Z\}$ have the same upper bounds. So, $N \in \mathcal{R}$ and $\bigvee N = \bigvee Z$. We have simultaneously $N \subset X$, $N \in \mathcal{R}$ and $\bigvee N = \bigvee Z$. By the definition of Y it follows $\bigvee Z \in Y$.

2. So, we have $X \subset Y \in \mathcal{F}$.

3. Suppose $X \subset P \in \mathcal{F}$. Let $x \in Y$. It is possible to find $H \subset X$ such that $x = \bigvee H$. Since P is closed, $x \in P$.

4. We conclude that Y is the smallest closed subset containing X. \Box

Let us now localize, for a given subset X, the X-superfluous and the Xisolated elements of X. First, by the definition of the cluster points, we get:

$$A(X) = \{ x \in E : \exists H \subset X \setminus \{x\} \text{ such that } x = \bigvee H \}$$

i.e.

$$A(X) = \{ x \in E : \exists H \subset X \text{ such that } x = \bigvee H \text{ and } x \notin H \}.$$

We deduce

$$S(X) = \{x \in X : \exists H \subset X \text{ such that } x = \bigvee H \text{ and } x \notin H\}$$

and

$$I(X) = \{ x \in X : \forall H \subset X, \ (x = \bigvee H \Rightarrow x \in H) \}.$$

We observe that I(E) is the set of all completely \lor -irreducible elements.

Proposition 2.3. Whenever X is an arbitrary subset of E, $A(X) = A(\overline{X})$.

Proof. Since $A(X) \subset A(\overline{X})$, we need only prove that $x \notin A(X) \Rightarrow x \notin A(\overline{X})$.

We must establish that, whenever H is a subset of \overline{X} such that $x = \bigvee H$, we can deduce that $x \in H$.

Since $H \subset \overline{X}$, we can associate to each $y \in H$ a subset $M_y \subset X$ such that $y = \bigvee M_y$. We easily observe that, if we define $P = \bigcup \{M_y : y \in H\}$, then $\bigvee P = x$. Since $x \notin A(X)$ and $P \subset X$, we deduce $x \in P$. It is then possible to find $z \in H$ such that $x \in M_z$. We get $x \leq \bigvee M_z = z \leq \bigvee H = x$, therefore $x = z \in H$.

By Lemma 1.5, we deduce that the X-isolated points are exactly the extremal points of the closed subset generated by X.

Proposition 2.4. Let F be a \bigvee -closed subset of the ordered set E. If I(F) generates F, then I(F) is the unique basis of F, otherwise F admits no basis.

Proof. It is an obvious consequence of Proposition 1.6.

In particular, if I(E) generates E, I(E) is the unique basis of E, otherwise E has no basis. When I(E) generates E, the subsets G generating E are exactly those verifying $I(E) \subset G$ (Lemma 1.4).

Notice that the closure f satisfies the *anti-exchange property* :

If $x \in (f(X \cup \{y\})) \setminus (f(X))$ and $y \in f(X \cup \{x\})$, then x = y.

Indeed, there exists $Z \subset X \cup \{y\}$ such that $x = \bigvee Z$. The condition $y \notin Z$ would induce $Z \subset X$, whence $x \in f(X)$; therefore $y \in Z$, so $x \ge y$. The relation $y \in f(X)$ would imply $x \in f(X)$. So, by symmetry, $y \ge x$.

Let us say that a subset of E is *join-dense* when it generates E.

3. Examples

A. E is well-founded

Let us say that the ordered set E is *well-founded* when each non-empty subset of E has a minimal element. For instance, any finite ordered set, and the set \mathbb{N} of natural numbers ordered by divisibility, are well-founded.

Lemma 3.1. If x, y are two elements of a well-founded ordered set E verifying $x \not\leq y$, there exists an isolated point i such that $i \leq x$ and $i \not\leq y$.

Proof. The set $Z = \{z \in E : z \leq x \text{ and } z \leq y\}$ is non-empty, since $x \in Z$. Let i be a minimal element of Z. For each $a \in T_i$, we get, by the minimality of $i, a \notin Z$, hence $a \leq y$. Since $i \leq y$, and since y is an upper bound for T_i , it follows (cf. Definition 2.1) that $i \in I(E)$.

Proposition 3.2. Let E be a well-founded ordered set. For each $x \in E$:

$$x = \bigvee (I(E) \cap (\downarrow x))$$

Proof. Put $H = I(E) \cap (\downarrow x)$. Let us show that $x \leq y$ whenever y is an upper bound of H. Suppose $x \not\leq y$. Let i be an isolated point such that $i \leq x$ and $i \not\leq y$ (c.f. Lemma 3.1). Since $i \in H$, it follows $i \leq y$, a contradiction.

Proposition 3.3. Let E be a well-founded ordered set. Then : A subset X of E is join-dense if and only if $I(E) \subset X$. The set I(E) is the unique basis of E.

Proof. These are easy consequences of Lemma 1.4, Propositions 1.6 and 3.2. \Box

For instance, the basis of the complete lattice \mathbb{N} of natural numbers ordered by divisibility, is made of the powers other than 1 of prime integers.

B. E is a complete lattice

Let *H* be an arbitrary subset of a complete lattice *E*. Let E^* be the dual of *E*. Let us define the two mappings $a : 2^H \mapsto E$ and $b : E \mapsto 2^H$ by $a(X) = \lor X$ and $b(t) = H \cap (\downarrow t)$.

Since $a(X) \leq t \Leftrightarrow X \subset b(t)$, if we consider a and b as mappings from 2^H to E^* and from E^* to 2^H , respectively, then the pair (a, b) is a Galois connexion. It follows that $c = b \circ a$ is a closure on 2^H and $\omega = a \circ b$ is an aperture on E. The set of all fixed points of c is $\mathcal{P} = \{H \cap (\downarrow t) : t \in E\}$. The set of all fixed points of ω is the join-closed subset \overline{H} generated by H. The mappings $i : \mathcal{P} \mapsto \overline{H}$ and $j : \overline{H} \mapsto \mathcal{P}$ defined by i(X) = X and j(t) = b(t) are reciprocal isomorphisms.

When H = I(E) and $\overline{H} = E$, we know (Proposition 1.6) that I(E) is the unique basis of E, and we observe that E is isomorphic to \mathcal{P} .

Suppose now that H denotes the set set of the isolated points of E. Denote by \mathcal{M} the system of all initial subsets of \overline{H} . Let us define the mapping m : $\mathcal{M} \to E$ by $m(X) = \bigvee X$. It can be easily verified that m is surjective if and only if H is the (unique) basis of L.

C. Alexandroff system

Let us name Alexandroff system on a set S each join-closed Moore system \mathcal{A} . Clearly, if we denote by a the closure associated to \mathcal{A} , we can write, for $X \in \mathcal{A}$,

$$X = \bigcup \{a(\{x\}) : x \in X\} \quad (1)$$

Proposition 3.4. Let \mathcal{A} be an Alexandroff system on S.

1. The set of isolated elements of A is

$$\mathcal{B} = \{a(\{x\}) : x \in S\}.$$

2. \mathcal{B} is the unique basis of \mathcal{A} .

Proof. 1. Let X be an isolated element, (i.e. an element completely joinirreducible). By (1), there exists $t \in S$ such that $X = a(\{t\})$.

Conversely, suppose $X = a(\{z\})$. If $X = \bigcup \mathcal{M} (\mathcal{M} \subset \mathcal{A}), z \in \mathcal{M} \in \mathcal{M}$. Whence $X \subset \mathcal{M} \subset \bigcup \mathcal{M} = X$. So $X = \mathcal{M} \in \mathcal{M}$.

2. By (1), \mathcal{B} is join-dense.

Since the set Δ of all Alexandroff systems on S is meet-closed, $(2^{2^S}, \Delta)$ is a closure space.

Proposition 3.5. Let (S, \mathcal{F}) be a closure space.

Let us denote by \overline{x} the closed subset generated by $x \in S$.

1. The Alexandroff system generated by \mathcal{F} is $\mathcal{A} = \{X \subset S : \forall x \in X, \overline{x} \subset X\}.$

2. Whenever $x \in S$, $a(x) = \overline{x}$.

3. The unique basis of \mathcal{A} is $\{\overline{x} : x \in S\}$.

Proof. 1. It is easily seen that $\mathcal{F} \subset \mathcal{A} \in \Delta$. Suppose $\mathcal{F} \subset \mathcal{N} \in \Delta$: it is easy to see that $\mathcal{A} \subset \mathcal{N}$.

2. Clearly, if $X \subset S$, $a(X) = \bigcup \{\overline{x} : x \in X\}$. Therefore, $a(x) = \overline{x}$.

It seems not to be known in what case \mathcal{F} has a basis.

4. Annex

1. Edelman and Jamison proved (in [3]) that each anti-exchange finite closure space has a unique join-basis. Whence we deduce that, if in the closure space on a poset E associated to the Moore system of all the join-closed subsets of E there is no basis, E is infinite. Example of that situation: E is the real interval [0, 1]; since I(E) is empty, the closure of I(E) is $\{0\}$; hence E has no base.

2. We present some other examples, based on the fact that, when a complete lattice is atomistic (i.e., when each element is a supremum of atoms), the atoms are exactly the completely meet-irreducible elements.

2a.(Szpilrajn, [6]) Let S be an arbitrary set. Let Ω be the set of orders on S. Let $\Omega' = \Omega \cup \{S^2\}$. The obtained complete lattice has for the unique meet-basis the set of total orders on S.

2b. Let L be an arbitrary lattice (with 0 and 1). Let F be the Moore system of the filters on L. Let U be the set of the ultra-filters. The complete lattice F possesses the unique join-basis the set U.

References

- Caspard, N., Leclerc, B., Monjardet, B., Les ensembles ordonnés finis : concepts, résultats et usages. Springer, 2007.
- [2] Davey, B.A., Priestley, H.A., Introduction to lattices and order. Cambridge, 2003.
- [3] Edelmanand, P.H., Jamison, E., The thoery of convex geometries. Geometrae dedicata 19 (1989), 247-270.
- [4] Erné, M., Šešelja, B., Tepavčević, A., Posets generated by irreducible elements. Order 20 (2003), 79-89.
- [5] Ore, O., Some studies on closure relations. Duke J. of Math. 10 (1943), 761-785.
- [6] Szpilrajn, E., Sur l'extension de l'ordre partiel. Fundamenta mathemeticae 16 (1930), 386-389.

Received by the editors March 16, 2011