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SOLVABILITY OF CERTAIN SEQUENCE SPACES
EQUATIONS WITH OPERATORS

Bruno de Malafosse®”

Abstract. In this paper we deal with special sequence space equa-
tions (SSE) with operators, which are determined by an identity whose
each term is a sum or a sum of products of sets of the form x, (T)
and X, (T) where f map U™ to itself and x is any of the symbols s,

5%, or 5. Among other things under some conditions we solve (SSE)

with operators x, (C (A) D7)+x,, (C (1) D7) = Xy, and x, (C (A) C (u))+

Yo (C(\) C (1)) = x, where € {s,5°}, and x, (C'(\) Ds)+5 (C () D) =
X, Where x is either of the symbols s, or s and C (v) D- is a factorable
matrix.
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1. Introduction

In [21] Wilansky introduced sets of the form a=! * x, where a = (a,,),, is
a sequence satisfying a, # 0 for all n, and Y is any set of sequences. Recall
that © = (), belongs to a !y if (any),>; belongs to x. In this way,

for any strictly positive sequence a, are defined the sets s¥, sEf’ and s, by

a~! % x where y is either of the sets ¢y, ¢, and £, respectively. In [H, 8] the
sum S, + S, and the product s, * s, of the sets s, and s, were defined, and
characterizations of matrix transformations mapping in the sets s,+s9 (A?) and

Sq+ Sbc) (A?) were given, where A is the operator of the first difference. In [I6]
de Malafosse and Malkowsky gave among other things properties of the matrix
of weighted means considered as operator in the set s,. Characterizations of

matrix transformations mapping in s% ((A - )\I)h) + S(BC) ((A - uI)l) with A,

p, h, I € C can be found in [d]. There are many other results using the sets s2,
sff) and s,, let us cite for instance applications to the following topics, o— core,
[7], solvability of infinite tridiagonal systems, [6], measure of noncompactness,
[R], Hardy theorem, [P0] and statistical convergence, [T9).

In this paper our aim is to solve special sequence spaces equations (SSE),
which are determined by an identity whose each term is a sum or a sum of
products of sets of the form x, (T) and X, (T) where f maps U™ to itself,

0

and Y is any of the symbols s, s°, or s(¢), the sequence z is the unknown and T is
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a given triangle. The resolution of such (SSE) consists in determining the set of
all sequences x satisfying the identity, see for instance |3, 01, [5, I2, I, 14, [0].

This paper is organized as follows. In Section 2 we recall some results on
the sum and the product of sets of the form x,, where x is either of the symbols
s, or s°. In Section 3 we solve the sequence spaces equations x, (C (\) D,) +
Xe (C (1) D7) = x3 and x, (Ng) + X, (NpDyyp) = x, for x € {s,s°}, where
N, is the operator of weighted means in some cases and we solve another type
of (SSE) defined by x, (C (A) D7)+ s2 (C (n) D) = s9 where ¥ is either of the
symbols s, or 5(°). In Section 4 we deal with (SSE) with operators represented
by products of triangles of the form x, (C (A) C (1)) + x,, (C (Ao) C (1)) = xp

where C (v) D, is a factorable matrix for y € {s,s}.

2. Sum and product of sequence spaces of the

form y,, where Y is either of the symbols s, s°
2.1. The sets x,, where x is either of the symbols
s, %, or s for a e UT

We write s, £, ¢ and ¢q for the sets of all complex, bounded, convergent
and convergent to naught sequences, respectively. For a given infinite matrix
A = (Anm)n,m>1 we define the operators A,,, for any integer n > 1, by A, (§) =
> AnmEm, where € = (£,,)m>1, and the series are assumed convergent for
all n. So we are led to the study of the operator A defined by A = (A, (£)),,51
mapping a sequence space into another sequence space. a

A Banach space E of complex sequences with the norm ||| ; is a BK space
if each projection P,:E — C defined by P,§ = &,, is continuous. A BK space
E is said to have AK if every sequence £ € E has a unique representation
E=>2, §ne(") where e(™ is the sequence with 1 in the n-th position, and 0
otherwise.

Let a be a nonzero sequence. Using Wilansky’s notations we write 1/a x E
for the set of all £ = (£,),,»; such that (a,§,),~; € E. Let U be the set of
all real sequences & with &, > 0 for all n. If { € s we define D¢ as the diagonal
matrix defined by [D¢ |, = &, for all n, we have D, * £ = (1/a)”" % E and
it can be easily shown A € (D, x E, Dy x F) if and only if D, ,,AD, € (E,F)
where E, F C s. Recall that for a € UT we have s, = D, * lo, 80 = D, * cg
and s\ = D, * ¢ . Each of the previous sets is a BK space normed by [[£]|,,
where |||, = sup, (|, |/an) < co. So we can define s, as the set of all
sequences ¢ such that (£, /an), € ls, SO as the set of all sequences & such

that &,/a, — 0 (n — o) and s{9 as the set of all sequences & such that
& an — 1 (n— o0) for some | € C, (cf. [B, 8]). If a = (r")p>1, we write
Xa = X, Where x is any of the symbols s, s°, or 59 to simplify. When r = 1,
we obtain s; = o, s) = ¢y and sgc) =c. If we let e = (1,1,...), then we have
Se = 81 = loo, 89 = 8Y = ¢y and sl = sgc) = c¢. When A maps E into F we
write A € (E, F), see [2]. So we have A € F for all £ € E, (A € F means that
for each n > 1 the series defined by A, (£) = > A&, is convergent and
(An (€)),>1 € F). The set S, of all infinite matrices A = (Apm)n,m>1 such that
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[Allg, = sup,>q (an >0 [Aum| am) < oo is a Banach algebra with identity
normed by [[Allg . Recall that if A € (s4,s4), then [|AS|l, < [|A]lg [I€]l,, for

all £ € s,. It is well-known that S, = (s2,s,) = (s,(f), sa> = (84, 84)-

2.2. Sum of sets of the form x, where yx is either
of the symbols s, or s.

In this subsection we recall some properties of the sum E + F' of sets of the
form s, or s,.

Let E, F C s be two linear vector spaces. We write E + F for the set of
all sequences & = ¢ + ¢’ where ( € E and ¢’ € F. In the next result we use the

notation [max (a,b)],, = max (a,, b,). We prove the following results.

Proposition 1. Let a, b € Ut and assume x is either of the symbols s°, or s.
Then we have

(1) Xo C X if and only if there is K > 0 such that a,, < Kb, for all n.

(ii) X, = X3 if and only if s, = sp, that is, there are K1, Ko > 0 such that

bn
K1 < — < Ky for all n.

an

(”Z) Xa + Xb = Xa+b = Xmax(a,b)'
(iv) X + Xp = Xo o and only if b/a € L.

Proof. The case x = s was shown in [8, Proposition 1, p. 244], and [8, Theorem
4, p. 293]. The case x = s” can be shown similarly, since we have s, = s; if
and only if s% = s). O

Notice that x, C x; is equivalent to a € sy.

2.3. Solvability of the equation x, + x, = x;, Where Y is either of
the symbols s°, or s.

In the following we determine the set of all sequences z = (2,,),»; € U™
such that y, = 4,0 (1) (n — o0) if and only if there are u, v € s such that
y=u+v and u, = a, O (1) and v, = 2,0 (1) (n — o0) for all y € s. Similarly
we determine the sequences x € U™ such that y,, = b0 (1) if and only if there
are u, v € s such that y = v+ v and u,, = a,0(1) and v, = z,0(1) (n = 00).

Theorem 2. Let a, b € U, and consider the equation

(1) Xa + Xz = X

where X is either of the symbols s°, or s and x = (z,,),,, € U™ is the unknown.
Then -

(i) if a/b € ¢y, then equation (@) holds if and only if there are K1, Ky >0
depending on x, such that K1b, < x, < Kb, for all n, that is s, = sp.

(ii) If a/b, b/a € Ly, then equation (@) holds if and only if there is K > 0
depending on x such that 0 < x,, < Kb, for all n; that is, x € sp.

(iti) If a/b & Lo, then equation (@) has no solution in U™.
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Proof. The case of equation (W) where x = s was shown in [0]. For equation
() with x = s it is enough to note that s, + s, = s, can be written in the
form sq1, = s which is turn in 5%, = s} and s9 + s = s). This concludes
the proof. O

In the following corollary we write ¢l (u), u > 0, for the set of all sequences
¢ such that Ku™ < ¢, < K'u™ for all n and for some K, K’ > 0. This set
is an equivalence class for the relation ¢RE if s¢ = s¢r with ¢ = (u™),. The
following (SSE) is completely solved.

Corollary 3. Letr, u> 0. The set A, of allx € U" that satisfy the equation

(2) Xr + Xo = Xu where x € {s°, s}
is defined by
cl (u) forr < u,
A= sy U™ forr =u,
(] forr > u.

2.4. Product of sequence spaces of the form y, for x € {so, s}.

In this subsection we will deal with some properties of the product E x F' of
particular subsets E and F' of s. For any sequences £ € F and 1 € F' we put
€' = (€,£5,), 5, Most of the following results were shown in [5].

For any sets of sequences E and F, we write ExF for the set of all sequences
£¢' such that ¢ € F and ¢ € F. We immediately have the following results where
Sy, x € {s%, s}, is constituted of all the sets of the form x, with a € U™T.

Proposition 4. The set S, where x € {so,s} with multiplication * is a
commutative group with X, as the unit element.

Proof. First it can easily be seen that x, * X = Xa5- We deduce the map
¢ : Ut — 8, defined by 1 (a) = x, is a surjective homomorphism and since
U™ with the multiplication of sequences is a group it is the same for S,. Then
the unit element of S, is ¥ (e) = x;. O

Remark 5. Note that the inverse of x,, is x;,, with x € {so, s}.

As a direct consequence of Proposition @ we deduce the following corollary.

Corollary 6. Leta, b, c € UT and let x € {s°,s}. Then

(1) Xa * Xb = Xab-

(1) Xa * Xo = Xa * Xe of and only if x, = X.-

(iii) The sequence x = (xy,),~, € U™ satisfies the equation x, * X, = X
if and only if Kib,/a, < z, < Kab,/a, for all n and for some K1, Ko > 0
depending on x.

Throughout this paper the unknown of each sequence spaces equation is a
sequence € UT.
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3. The (SSE) with operators represented by factorable
matrices

In this section we deal with the resolution of (SSE) of the form x, (C (\) D)
+ Xo (C (k) D) = x3 and X, (Ng) + Xz (NpDgyp) = X3 for x € {s,s°} where
N, is the operator of weighted means in some cases. Then we solve the (SSE)
Xa (C(N) D;) + 52 (C (n) D;) = sY, where x is either of the symbols s, or s(¢).

3.1. The operators C (), A (n) and the sets I', I’ and C,

The infinite matrix T = (¢ nm)n m>1 1s said to be a triangle if t,,, = 0
for m > n and t,, # 0 for all n. Now let U be the set of all sequences
(un),>; € s, with u, # 0 for all n. The infinite matrix C (1) = (¢nm),, m>1s
for n = (n,,),,>, € U, is defined by T

1 .
— if m <n,
Cnm = Mn
0 otherwise.

It can be shown that the matrix A () = (dnm),, ,n>; With

N if m=n,
Ay = —Np_1 fm=n—-Tandn>2,
0 otherwise,

is the inverse of C (), that is C (n) (A(n)&) = A(n) (C(n)§) for all £ € s.
If n = e we get the well known operator of the first difference represented by
A (e) = A. We then have A, =¢&,, —&,,_; for all n > 1, with the convention
&y = 0. Tt is usually written ¥ = C'(e). Note that A = ¥71 and A, ¥ € Sg
for any R > 1.

Consider the sets
—~ 1
¢ = {f cUt: [C = —
5
_ + . : En—l _ + .7 fn—l
=¢€&eU": lim [—— | <1;,I'=<£€ U™ : limsup <1
n— o0 gn 00 fn
and

= {§ € U™ : there exist C > 0 and v > 1 such that &, > Cy™ for all n} .

By [4 Proposition 2.1, p. 1786] and [I6, Proposition 2.2 p. 88|, we obtain the
next lemma.

Lemma 7. fCFCaCGl.
We also need the following results.

Lemma 8. [8, Proposition 9, p. 300] Let a, b€ UT. Then
(i) the following statements are equivalent
() x, (A) = x, where x is any of the symbols s, or s°,
(B) a € Cy and s, = Sp.
(i) a € T if and only if s (A) = s$9.

rom the preceding results we deduce the following;:
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3.2. Application to the equation x,(C(\) D;) + x, (C(u)D;) = x
where z is the unknown

Let a, b, A\, u, 7 € UT and consider the equation
(3) Xa (C(N) D7) + X, (C (1) Dr) = X, where x = s°, or s

and x € U™ is the unknown. The operator represented by C' (\) D, = Dy /»XD-
is called a factorable matrix. For y = s° solving the (SSE) (B) consists of
determining all sequences x € U™ such that the condition y,, /b, — 0 (n — o)
holds if and only if there are u, v € s such that y = v + v and
TiUL + ... + TpUn T101 + ... + TpUn
— 0 and
/\nan My Ty

—0 (n—o0) forallyes.

We then have the following result.

Theorem 9. Leta, b, \, u, 7 € UT. Then

(i) If br ¢ C4, then equation (@) where x is the unknown has no solutions.

(is) If bt € C1 we then have

(a) if aX/bT € co, then equation (3) is equivalent to s, = Syr/,, that is
Kbt/ 1y, < 2 < KobyTn /1, for all n and for some Ky, Ko > 0.

(b) if a\/bT, bT/aX € L, then the solutions of (@) are all sequences that
satisfy x € spr/p, that is, n < KbpTy/py, for all n and for some K > 0.

(c) If a\/bT ¢ L, then (B) has no solution.
Proof. We have [C'(\) D;]™" = Dy/,A(\) and [C (1) D;]" = Dy, A (u) then
Xa (€ (N) D7) = [C (N Dr], o = DijrA (V) X
and x, (C (u) D) = Dy/;A (1) X, and equation (8) is equivalent to
Dl/‘rA (A) Xa + Dl/‘l‘A (/j/) Xz = Xb>
that is D1/, A (xax + Xuz) = Xp. Since A(X) = ADy and A () = AD,, we
deduce
(4) Xax + Xua: = Xb (Dl/TA) = Xbr (A) .
Then () is equivalent t0 X4,z = Xor (A) itself equivalent to X,\1 0 = Xpr

and br € C, by Lemma B. So if br ¢ C equation (8) has no solution and if
br € Cy it is enough to apply Theorem [ to the equation X, + X,z = Xpr- U

We can state the following corollaries.

Corollary 10. Consider the equation
() X1 (C(A\) Dr) + X, (C (1) Dr) = xy with x = s°, ors.

(i) If T ¢ Ch, then (@) has no solutions.

(is) If T € Ch, then

(a) if X € 2, then (@) is equivalent to s, = s,/,;

(b) if X € s, T € sy, then the solutions of (SSE) (@) are all sequences that
satisfy © € sr/,;

(c) if X & s;, then (@) has no solution.
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Proof. Tt is enough to take a = b = e in Theorem A. O

In the following remark where C'(A\) = C((n),) is the Cesaro operator
denoted by C1, the (SSE) is completely solved.

Remark 11. Consider the (SSE)
(6) x1 (C1D;) + x, (C1D;) = x; with x = s°, or s.

If 7 ¢ C; then (B) has no solution. If 7 € C; the solutions of (B) are all the
sequences that satisfy s, = s(;, /n) . This means that there are Ky, Ky > 0
such that K7, /n <z, < Ko7, /n for all n. Indeed, we have A\,, = n and since
T E 6’\1 implies that there is v > 1 such that 7,, > K~™ for all n and for some
K > 0, we deduce that n/7,, — 0 (n — 00). So it is enough to apply Corollary
I (if).

To state the next result, consider the equation

(7) Xa (C(N) + X, (C (1)) = xp with x = 5%, or s.

Corollary 12. Leta, b, A, p € Ut. Then

(i) If b ¢ C’l, then equation (1) has no solution.

(ii) If b € Ch, then 3 cases are possible,

(a) if aX/b € ¢y then the solutions x € U™ of equation ([1) are all sequences
that satisfy sz = sp/,;

(b) if there are ki, ko > 0 such that k1 < ap), /by < ko for all n, then
equation ([1) is equivalent to x € sp,;

(c) if ar/b & L, then equation ([I) has no solution.

Proof. This result follows from Theorem H with 7 = e. O
When a = e we obtain the next corollary where the (SSE) is totally solved.

Corollary 13. The equation x, (C1) + X, (C1) = x, with x = sY, or s, has
no solution if b ¢ Cl and if b € C1 the solutions are determined by Klb /n <
Zp < Koby, /n for all n and for some Ky, Ko > 0.

Proof. This result follows from Corollary [ with a = e, A\,, = u,, = n for all n.
Indeed, the condition b € C; implies that there is v > 1 such that b, > K~"
for all n. Then we have a, A, /b, < Kny™" =o0(1) (n — 00). O

Now state the next result where we put Ao = (n),,~,. Here the (SSE) is
also totally solved. -

Corollary 14. Let rqy, ro > 0 and consider the equation
(8) Xry (ClD)\o) + Xe (Cleo) = Xry with x = 50; or s.

(i) If ro < 1, then equation (B) has no solution.

(11) If ro > 1, then

(a) if r1 < ra, then equation (B) is equivalent to sy = Spy;
(b) if 1 = 1o, then equation (8) is equivalent to © € Sy, ;
(c) if r1 > 1o, then equation (B) has no solution.
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Proof. 1) 1If r2 < 1, then we have (r3),~, ¢ C}, since by Lemma 7 we have

C; C Gy and by Corollary [2 equation (B) has no solutions. ii) Case when

ro > 1. (a) First we have
_ 1 n—1 1
lim (” 2 > - <1

n—00 n ry T

and since I' C C; we deduce (n13),>1 € C:. So by Theorem H we have

apAn _ (7’1)" =o(1) (n— o)

b Th nry T9

and s, = Sp,. The cases (b) and (c¢) can be shown similarly. O

3.3. The (SSE) with operators of the weighted means

In this subsection we use the operator of weighted means N, defined by the
triangle Nq] = ¢m/Qy for m < n, where Q,, = >_I" _, Gm, for all n, with
qeUT™.

Consider now the equation

nm

(9) Xa (Nq) + Xa (Nqu/p) = X, Where x = s% or s

for p, ¢ € UT. The question in the case when y = s is: what are the sequences
x € UT such that y, = O (b,) (n — o) if and only if there are u, v € s such
that y = v+ v and

qQuy + ... + gply QU1+ - F GuUn
=0(a,) and ————
Qn (an) P,

Since we have N, = Dy/o¥D, = C(Q) Dy, it is enough to take Q@ = A, u = P
and 7 = ¢ in Theorem B. We then have

Corollary 15. Let a, b, p, g € Ut. Then

(i) If bq ¢ C1, then (@) has no solution;

(1) if bq € Ch, then

(a) aQ/bq € co implies that (SSE) (@) is equivalent to s, = spq/p-

(b) If there are k1, ko > 0 such that k1 < a,Qn/bngn < ko for all n, the
solutions of (@) are all the sequences that satisfy x € spq/p (that is, x, <
Kb,q, /P, for all n).

(c) If aQ/bq ¢ Lo, then (@) has no solution.

This result leads to the following application.

=0 (zy) (n— o0) for all y?

Example 16. Let R > 0 and let S be the set of all sequences x € U™ that
satisfy the statement: y,/R™ — 0 (n — o0) if and only if there are u, v such
that y = v+ v and

1 O 1 <
on 122mum—>0and722mvm—>0(n—>oo) for all y € s.
m=1 m=1

nTy
It can be shown that the set S is empty if R < 1;if R =1, it is equal to s(1 /),
and if R > 1 it is determined by K; (2R)" /n <z, < K5 (2R)" /n for all n.

To end this section consider a new type of (SSE) using the sets s
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3.4. On the (SSE) x, (C (\) D;) + 2 (C (u) D;) = s where Y is either
(c)
s, Or s

Consider now another type of (SSE) with factorable matrices using the set
s((f) and that are totally solved. Here we determine the set of all the sequences
x € U™ such that the condition y, /b, — 0 (n — o) holds if and only if there

are u, v € s such that y = u + v and

71U1+...+T'LL ’7'1’[)1+...+T’U
2" s land il
)\nan HpnTn

—0 (n—00)
for all y € s and for some scalar [. We state the next lemma, which is a direct
consequence of [I'4, Theorem 4.4, p. 7).

Lemma 17. Let a, b € Ut and consider the (SSE)
(10) Xo + 82 = 59, where x is either s, or s(),

(1) if a/b € co, then the solutions of (D) are all the sequences that satisfy
Sy = Sp-

(i) if a/b ¢ co, then (D) has no solution.
From Lemma [ and Theorem B we deduce the resolution of the (SSE)
(11) X (C(N\) D;) + 52 (C (p) D) = s2 where y is either s, or 5.

Theorem 18. Let a, b, A, u, 7 € UT. Then
(i) if br ¢ Cq, then (SSE) (M) has no solution.

(is) If bt € 6'\1, then two cases are possible,
(a) if aX/bT € cg, then the solutions of (1) are all the sequences that satisfy

Sz = Sbr/us
(b) if aX/bT & ¢y, then (I3) has no solution.

Proof. Let x be any of the symbols s, or s(°). Show that if = satisfies (IT),
then x, + 5%, = sp. and b7 € C;. Reasoning as in the proof of Theorem B,
we have that (I) is equivalent to

(12) Xax + 8pa = 85 (D1/78) = sp, (A),
and since we have s, C x,, C Sqx and ng C Sz, we deduce

0 0 0 0
sa)\+,uz = Sax + sz - Xax + S;Lm’ C Sax + Spx = Sai4px-

Then
0 0
Sartpz © Sor (A) C Sar+pax-

The first inclusion is equivalent to I € <52A+uw’ sy (A)) and to Dy - ADaxtpz €

(co, co). Since (co,co) C (co,51) = S1, we deduce

Qn )\n + HpZn

< K for all n.
bnTh
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The second inclusion yields A™! = ¥ € (527, sa)\+pz), that is Dy /(a4 pz) 2 Dbr €
(co,€o0) = S71 and
blTl =+ ...+ bn'rn

< K’ for all n.

an)\n + My T
We deduce
bim1 4+ ... +b,Th _ biT1 4+ . + b Th Gy + 14, T < KK’ for all n.
bnTn AnAn + fpTn bnTn

We conclude br € C; and by (I2) and Lemma B we have X, + s, = 57,

Conversely if x,y + s, = sy, and b7 € Ch, then (2) and () hold. We
conclude the proof using Lemma ["2. O

Remark 19. Note that the (SSE) in () has solutions if and only if b7 € C1
and aA/bT € cg.

4. On the equation x, (C (A\)C (n)) + x, (C(Ao)C (1)) = X,

In this section for a, b, A, p, 0 € U * we consider an equation that generalizes
(SSE) (B) and defined for b € C; by

(13) Xo (C(A) C (1) + x4 (C(Aa) C (1) = X5

where x is any of the symbols s, or s°. For y = s° the resolution of equation
(I3) consists in determining the set of all x € U™ such that for every y € s the
condition y, /b, — 0 (n — o0) holds if and only if there are u, v € s such that
y=1u-+wvand

(14)

)\la Z <12uk> —>Oand)\ le Z (12Uk> =0 (n— 00).

m=1 \""™ k=1 m=1 \"" k=1

To solve equation (I3) we state the following proposition.

Proposition 20. Assume that b € 6'\1 Then
(i) if b/ ¢ Cy, then equation (I3) has no solution.
(i1) Let b/u € Cy. Then
(a) if aAp/b € co, then equation (I3) holds if and only if sy = Sy xop;
(b) if arp/b, b/ap € Lo, then equation (I3) holds if and only if x € sp/rqp;
(c) if arp/b ¢ Lo, then equation (IL3) has no solution.

Proof. Equation (I3) is equivalent to A (u) (A (A) x, + A (Ao) x,) = X;, that
is

(15) AN Xa +A(A0) Xz = Xp (A (1) = Drypxy (B)
and since b € Cy, we have D1/uxpy (A) = Dijuxp = Xpju- So equation (IH)

is equivalent t0 X,\ + Xaos = Xp/u (A). Then by Lemma B equation (I3F) is

equivalent to b/u € a and X,\ + Xaoz = Xp/u- We conclude by Theorem I
and Corollary B that if aAu/b € ¢y equation, X,x + Xaos = Xp/, 18 equivalent
to 8z = Sp/a0p- The cases (b) and (c) follow immediately from Theorem .
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Example 21. The set of all z € U™ such that y,,/2" = O (1) (n — c0) holds
if and only if there are u, v € s such that y = u + v and

(16)
- p. k| = an —Z Ezvk = (1) (n— o)
m=1 k=1 " m=1 k=1
for all y is given by
(17) Kq2" <z, < K52" for all n.

Indeed, the previous statement is equivalent to the equation
(18) loo (CF) + 52 (C ((1/n),,) C1) = s2.

We have b = (2"), 5, € Ch,b/p = (2"/n), -, € C1 and apAnpi, /by = 02277 —
0 (n — 00). So we obtain (7). Furthermore for each z satisfying (I2), we have

(400 (012) + 52 (C((1/n),,) Cl)asa) = (82,84) fora € UT.
So A € (e (CF) + 5, (C((1/n),,) C1), 5q) if and only if

sup,, (e 25y [anm| 2™) < oo.
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