SOLVABILITY OF CERTAIN SEQUENCE SPACES EQUATIONS WITH OPERATORS

Bruno de Malafosse ${ }^{(1)}$

Abstract

In this paper we deal with special sequence space equations (SSE) with operators, which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$ where f map U^{+}to itself and χ is any of the symbols s, s^{0}, or $s^{(c)}$. Among other things under some conditions we solve (SSE) with operators $\chi_{a}\left(C(\lambda) D_{\tau}\right)+\chi_{x}\left(C(\mu) D_{\tau}\right)=\chi_{b}$, and $\chi_{a}(C(\lambda) C(\mu))+$ $\chi_{x}(C(\lambda \sigma) C(\mu))=\chi_{b}$ where $\chi \in\left\{s, s^{0}\right\}$, and $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{0}\left(C(\mu) D_{\tau}\right)=$ χ_{b} where χ is either of the symbols s, or $s^{(c)}$ and $C(\nu) D_{\tau}$ is a factorable matrix.

AMS Mathematics Subject Classification (2010): 40C05, 46A45
Key words and phrases: matrix transformations, BK space, multiplier of sets of sequences, sequence space inclusion equations, sequence space equations with operators

1. Introduction

In [21] Wilansky introduced sets of the form $a^{-1} * \chi$, where $a=\left(a_{n}\right)_{n \geq 1}$ is a sequence satisfying $a_{n} \neq 0$ for all n, and χ is any set of sequences. Recall that $x=\left(x_{n}\right)_{n \geq 1}$ belongs to $a^{-1} * \chi$ if $\left(a_{n} x_{n}\right)_{n \geq 1}$ belongs to χ. In this way, for any strictly positive sequence a, are defined the sets $s_{a}^{0}, s_{a}^{(c)}$ and s_{a} by $a^{-1} * \chi$ where χ is either of the sets c_{0}, c, and ℓ_{∞} respectively. In $[5,8]$ the sum $s_{a}+s_{b}$ and the product $s_{a} * s_{b}$ of the sets s_{a} and s_{b} were defined, and characterizations of matrix transformations mapping in the sets $s_{a}+s_{b}^{0}\left(\Delta^{q}\right)$ and $s_{a}+s_{b}^{(c)}\left(\Delta^{q}\right)$ were given, where Δ is the operator of the first difference. In [[6] de Malafosse and Malkowsky gave among other things properties of the matrix of weighted means considered as operator in the set s_{a}. Characterizations of matrix transformations mapping in $s_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+s_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$ with λ, $\mu, h, l \in \mathbb{C}$ can be found in $[g]$. There are many other results using the sets s_{a}^{0}, $s_{a}^{(c)}$ and s_{a}, let us cite for instance applications to the following topics, σ-core, [7], solvability of infinite tridiagonal systems, [6], measure of noncompactness, [18], Hardy theorem, [20] and statistical convergence, [19].

In this paper our aim is to solve special sequence spaces equations (SSE), which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$ where f maps U^{+}to itself, and χ is any of the symbols s, s^{0}, or $s^{(c)}$, the sequence x is the unknown and T is

[^0]a given triangle. The resolution of such (SSE) consists in determining the set of all sequences x satisfying the identity, see for instance [[13, [1, [5, [2, [7], [4, [0]].

This paper is organized as follows. In Section 2 we recall some results on the sum and the product of sets of the form χ_{a}, where χ is either of the symbols s, or s^{0}. In Section 3 we solve the sequence spaces equations $\chi_{a}\left(C(\lambda) D_{\tau}\right)+$ $\chi_{x}\left(C(\mu) D_{\tau}\right)=\chi_{b}$ and $\chi_{a}\left(\bar{N}_{q}\right)+\chi_{x}\left(\bar{N}_{p} D_{q / p}\right)=\chi_{b}$ for $\chi \in\left\{s, s^{0}\right\}$, where \bar{N}_{q} is the operator of weighted means in some cases and we solve another type of (SSE) defined by $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{0}\left(C(\mu) D_{\tau}\right)=s_{b}^{0}$ where χ is either of the symbols s, or $s^{(c)}$. In Section 4 we deal with (SSE) with operators represented by products of triangles of the form $\chi_{a}(C(\lambda) C(\mu))+\chi_{x}(C(\lambda \sigma) C(\mu))=\chi_{b}$ where $C(\nu) D_{\tau}$ is a factorable matrix for $\chi \in\left\{s, s^{0}\right\}$.

2. Sum and product of sequence spaces of the

form χ_{a}, where χ is either of the symbols s, s^{0}

2.1. The sets χ_{a}, where χ is either of the symbols

 s, s^{0}, or $s^{(c)}$ for $a \in U^{+}$We write s, ℓ_{∞}, c and c_{0} for the sets of all complex, bounded, convergent and convergent to naught sequences, respectively. For a given infinite matrix $\Lambda=\left(\lambda_{n m}\right)_{n, m \geq 1}$ we define the operators Λ_{n}, for any integer $n \geq 1$, by $\Lambda_{n}(\xi)=$ $\sum_{m=1}^{\infty} \lambda_{n m} \xi_{m}$, where $\xi=\left(\xi_{m}\right)_{m \geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator Λ defined by $\Lambda \xi=\left(\Lambda_{n}(\xi)\right)_{n \geq 1}$ mapping a sequence space into another sequence space.

A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a $B K$ space if each projection $P_{n}: E \rightarrow \mathbb{C}$ defined by $P_{n} \xi=\xi_{n}$ is continuous. A BK space E is said to have $A K$ if every sequence $\xi \in E$ has a unique representation $\xi=\sum_{n=1}^{\infty} \xi_{n} e^{(n)}$ where $e^{(n)}$ is the sequence with 1 in the n-th position, and 0 otherwise.

Let a be a nonzero sequence. Using Wilansky's notations we write $1 / a * E$ for the set of all $\xi=\left(\xi_{n}\right)_{n \geq 1}$ such that $\left(a_{n} \xi_{n}\right)_{n \geq 1} \in E$. Let U^{+}be the set of all real sequences ξ with $\xi_{n}>0$ for all n. If $\xi \in s$ we define D_{ξ} as the diagonal matrix defined by $\left[D_{\xi}\right]_{n n}=\xi_{n}$ for all n, we have $D_{a} * E=(1 / a)^{-1} * E$ and it can be easily shown $\Lambda \in\left(D_{a} * E, D_{b} * F\right)$ if and only if $D_{1 / b} \Lambda D_{a} \in(E, F)$ where $E, F \subset s$. Recall that for $a \in U^{+}$we have $s_{a}=D_{a} * \ell_{\infty}, s_{a}^{0}=D_{a} * c_{0}$ and $s_{a}^{(c)}=D_{a} * c$. Each of the previous sets is a BK space normed by $\|\xi\|_{s_{a}}$, where $\|\xi\|_{s_{a}}=\sup _{n}\left(\left|\xi_{n}\right| / a_{n}\right)<\infty$. So we can define s_{a} as the set of all sequences ξ such that $\left(\xi_{n} / a_{n}\right)_{n} \in \ell_{\infty}, s_{a}^{0}$ as the set of all sequences ξ such that $\xi_{n} / a_{n} \rightarrow 0 \quad(n \rightarrow \infty)$ and $s_{a}^{(c)}$ as the set of all sequences ξ such that $\xi_{n} / a_{n} \rightarrow l(n \rightarrow \infty)$ for some $l \in \mathbb{C}$, (cf. [3, [G]). If $a=\left(r^{n}\right)_{n \geq 1}$, we write $\chi_{a}=\chi_{r}$ where χ is any of the symbols s, s^{0}, or $s^{(c)}$ to simplify. When $r=1$, we obtain $s_{1}=\ell_{\infty}, s_{1}^{0}=c_{0}$ and $s_{1}^{(c)}=c$. If we let $e=(1,1, \ldots)$, then we have $s_{e}=s_{1}=\ell_{\infty}, s_{e}^{0}=s_{1}^{0}=c_{0}$ and $s_{e}^{(c)}=s_{1}^{(c)}=c$. When Λ maps E into F we write $\Lambda \in(E, F)$, see [$[Z]$. So we have $\Lambda \xi \in F$ for all $\xi \in E,(\Lambda \xi \in F$ means that for each $n \geq 1$ the series defined by $\Lambda_{n}(\xi)=\sum_{m=1}^{\infty} \lambda_{n m} \xi_{m}$ is convergent and $\left.\left(\Lambda_{n}(\xi)\right)_{n \geq 1} \in F\right)$. The set S_{a} of all infinite matrices $\Lambda=\left(\lambda_{n m}\right)_{n, m \geq 1}$ such that
$\|\Lambda\|_{S_{a}}=\sup _{n \geq 1}\left(a_{n}^{-1} \sum_{m=1}^{\infty}\left|\lambda_{n m}\right| a_{m}\right)<\infty$ is a Banach algebra with identity normed by $\|\Lambda\|_{S_{a}}$. Recall that if $\Lambda \in\left(s_{a}, s_{a}\right)$, then $\|\Lambda \xi\|_{s_{a}} \leq\|\Lambda\|_{S_{a}}\|\xi\|_{s_{a}}$ for all $\xi \in s_{a}$. It is well-known that $S_{a}=\left(s_{a}^{0}, s_{a}\right)=\left(s_{a}^{(c)}, s_{a}\right)=\left(s_{a}, s_{a}\right)$.

2.2. Sum of sets of the form χ_{a} where χ is either

 of the symbols s^{0}, or s.In this subsection we recall some properties of the sum $E+F$ of sets of the form s_{a}^{0}, or s_{a}.

Let $E, F \subset s$ be two linear vector spaces. We write $E+F$ for the set of all sequences $\xi=\zeta+\zeta^{\prime}$ where $\zeta \in E$ and $\zeta^{\prime} \in F$. In the next result we use the notation $[\max (a, b)]_{n}=\max \left(a_{n}, b_{n}\right)$. We prove the following results.

Proposition 1. Let $a, b \in U^{+}$and assume χ is either of the symbols s^{0}, or s. Then we have
(i) $\chi_{a} \subset \chi_{b}$ if and only if there is $K>0$ such that $a_{n} \leq K b_{n}$ for all n.
(ii) $\chi_{a}=\chi_{b}$ if and only if $s_{a}=s_{b}$, that is, there are $K_{1}, K_{2}>0$ such that

$$
K_{1} \leq \frac{b_{n}}{a_{n}} \leq K_{2} \text { for all } n
$$

(iii) $\chi_{a}+\chi_{b}=\chi_{a+b}=\chi_{\max (a, b)}$.
(iv) $\chi_{a}+\chi_{b}=\chi_{a}$ if and only if $b / a \in \ell_{\infty}$.

Proof. The case $\chi=s$ was shown in [5 , Proposition 1, p. 244], and [8 , Theorem 4, p. 293]. The case $\chi=s^{0}$ can be shown similarly, since we have $s_{a}=s_{b}$ if and only if $s_{a}^{0}=s_{b}^{0}$.

Notice that $\chi_{a} \subset \chi_{b}$ is equivalent to $a \in s_{b}$.

2.3. Solvability of the equation $\chi_{a}+\chi_{x}=\chi_{b}$ where χ is either of the symbols s^{0}, or s.

In the following we determine the set of all sequences $x=\left(x_{n}\right)_{n \geq 1} \in U^{+}$ such that $y_{n}=b_{n} O(1)(n \rightarrow \infty)$ if and only if there are $u, v \in s$ such that $y=u+v$ and $u_{n}=a_{n} O(1)$ and $v_{n}=x_{n} O(1)(n \rightarrow \infty)$ for all $y \in s$. Similarly we determine the sequences $x \in U^{+}$such that $y_{n}=b_{n} o(1)$ if and only if there are $u, v \in s$ such that $y=u+v$ and $u_{n}=a_{n} o(1)$ and $v_{n}=x_{n} o(1)(n \rightarrow \infty)$.

Theorem 2. Let $a, b \in U^{+}$, and consider the equation

$$
\begin{equation*}
\chi_{a}+\chi_{x}=\chi_{b} \tag{1}
\end{equation*}
$$

where χ is either of the symbols s^{0}, or s and $x=\left(x_{n}\right)_{n \geq 1} \in U^{+}$is the unknown. Then
(i) if $a / b \in c_{0}$, then equation (ㅍ) holds if and only if there are $K_{1}, K_{2}>0$ depending on x, such that $K_{1} b_{n} \leq x_{n} \leq K_{2} b_{n}$ for all n, that is $s_{x}=s_{b}$.
(ii) If $a / b, b / a \in \ell_{\infty}$, then equation (기) holds if and only if there is $K>0$ depending on x such that $0<x_{n} \leq K b_{n}$ for all n; that is, $x \in s_{b}$.
(iii) If $a / b \notin \ell_{\infty}$, then equation (II) has no solution in U^{+}.

Proof. The case of equation (\mathbb{T}) where $\chi=s$ was shown in [IT]. For equation
 form $s_{a+x}=s_{b}$ which is turn in $s_{a+x}^{0}=s_{b}^{0}$ and $s_{a}^{0}+s_{x}^{0}=s_{b}^{0}$. This concludes the proof.

In the following corollary we write $\operatorname{cl}(u), u>0$, for the set of all sequences ξ such that $K u^{n} \leq \xi_{n} \leq K^{\prime} u^{n}$ for all n and for some $K, K^{\prime}>0$. This set is an equivalence class for the relation $\xi \mathcal{R} \xi^{\prime}$ if $s_{\xi}=s_{\xi^{\prime}}$ with $\xi^{\prime}=\left(u^{n}\right)_{n}$. The following (SSE) is completely solved.

Corollary 3. Let $r, u>0$. The set Λ_{χ} of all $x \in U^{+}$that satisfy the equation

$$
\begin{equation*}
\chi_{r}+\chi_{x}=\chi_{u} \text { where } \chi \in\left\{s^{0}, s\right\} \tag{2}
\end{equation*}
$$

is defined by

$$
\Lambda_{\chi}= \begin{cases}c l(u) & \text { for } r<u \\ s_{u} \bigcap U^{+} & \text {for } r=u \\ \varnothing & \text { for } r>u\end{cases}
$$

2.4. Product of sequence spaces of the form χ_{a} for $\chi \in\left\{s^{0}, s\right\}$.

In this subsection we will deal with some properties of the product $E * F$ of particular subsets E and F of s. For any sequences $\xi \in E$ and $\eta \in F$ we put $\xi \xi^{\prime}=\left(\xi_{n} \xi_{n}^{\prime}\right)_{n \geq 1}$. Most of the following results were shown in [5].

For any sets of sequences E and F, we write $E * F$ for the set of all sequences $\xi \xi^{\prime}$ such that $\xi \in E$ and $\xi^{\prime} \in F$. We immediately have the following results where $\mathcal{S}_{\chi}, \chi \in\left\{s^{0}, s\right\}$, is constituted of all the sets of the form χ_{a} with $a \in U^{+}$.

Proposition 4. The set \mathcal{S}_{χ}, where $\chi \in\left\{s^{0}, s\right\}$ with multiplication $*$ is a commutative group with χ_{1} as the unit element.

Proof. First it can easily be seen that $\chi_{a} * \chi_{b}=\chi_{a b}$. We deduce the map $\psi: U^{+} \mapsto \mathcal{S}_{\chi}$ defined by $\psi(a)=\chi_{a}$ is a surjective homomorphism and since U^{+}with the multiplication of sequences is a group it is the same for \mathcal{S}_{χ}. Then the unit element of \mathcal{S}_{χ} is $\psi(e)=\chi_{1}$.

Remark 5. Note that the inverse of χ_{a} is $\chi_{1 / a}$ with $\chi \in\left\{s^{0}, s\right\}$.
As a direct consequence of Proposition $]^{\square}$ we deduce the following corollary.
Corollary 6. Let $a, b, c \in U^{+}$and let $\chi \in\left\{s^{0}, s\right\}$. Then
(i) $\chi_{a} * \chi_{b}=\chi_{a b}$.
(ii) $\chi_{a} * \chi_{b}=\chi_{a} * \chi_{c}$ if and only if $\chi_{b}=\chi_{c}$.
(iii) The sequence $x=\left(x_{n}\right)_{n \geq 1} \in U^{+}$satisfies the equation $\chi_{a} * \chi_{x}=\chi_{b}$ if and only if $K_{1} b_{n} / a_{n} \leq x_{n} \leq \bar{K}_{2} b_{n} / a_{n}$ for all n and for some $K_{1}, K_{2}>0$ depending on x.

Throughout this paper the unknown of each sequence spaces equation is a sequence $x \in U^{+}$.

3. The (SSE) with operators represented by factorable matrices

In this section we deal with the resolution of (SSE) of the form $\chi_{a}\left(C(\lambda) D_{\tau}\right)$ $+\chi_{x}\left(C(\mu) D_{\tau}\right)=\chi_{b}$ and $\chi_{a}\left(\bar{N}_{q}\right)+\chi_{x}\left(\bar{N}_{p} D_{q / p}\right)=\chi_{b}$ for $\chi \in\left\{s, s^{0}\right\}$ where \bar{N}_{q} is the operator of weighted means in some cases. Then we solve the (SSE) $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{0}\left(C(\mu) D_{\tau}\right)=s_{b}^{0}$, where χ is either of the symbols s, or $s^{(c)}$.
3.1. The operators $C(\eta), \Delta(\eta)$ and the sets $\widehat{\Gamma}, \Gamma$ and $\widehat{C_{1}}$

The infinite matrix $T=\left(t_{n m}\right)_{n, m \geq 1}$ is said to be a triangle if $t_{n m}=0$ for $m>n$ and $t_{n n} \neq 0$ for all n. Now let U be the set of all sequences $\left(u_{n}\right)_{n \geq 1} \in s$, with $u_{n} \neq 0$ for all n. The infinite matrix $C(\eta)=\left(c_{n m}\right)_{n, m \geq 1}$, for $\eta \xlongequal[=]{=}\left(\eta_{n}\right)_{n \geq 1} \in U$, is defined by

$$
c_{n m}=\left\{\begin{array}{cc}
\frac{1}{\eta_{n}} & \text { if } m \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

It can be shown that the matrix $\Delta(\eta)=\left(d_{n m}\right)_{n, m \geq 1}$ with

$$
d_{n m}= \begin{cases}\eta_{n} & \text { if } m=n \\ -\eta_{n-1} & \text { if } m=n-1 \text { and } n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the inverse of $C(\eta)$, that is $C(\eta)(\Delta(\eta) \xi)=\Delta(\eta)(C(\eta) \xi)$ for all $\xi \in s$. If $\eta=e$ we get the well known operator of the first difference represented by $\Delta(e)=\Delta$. We then have $\Delta \xi_{n}=\xi_{n}-\xi_{n-1}$ for all $n \geq 1$, with the convention $\xi_{0}=0$. It is usually written $\Sigma=C(e)$. Note that $\Delta=\Sigma^{-1}$ and $\Delta, \Sigma \in S_{R}$ for any $R>1$.

Consider the sets

$$
\begin{gathered}
\widehat{C_{1}}=\left\{\xi \in U^{+}: \quad[C(\xi) \xi]_{n}=\frac{1}{\xi_{n}} \sum_{m=1}^{n} \xi_{m}=O(1)\right\} \\
\widehat{\Gamma}=\left\{\xi \in U^{+}: \lim _{n \rightarrow \infty}\left(\frac{\xi_{n-1}}{\xi_{n}}\right)<1\right\}, \Gamma=\left\{\xi \in U^{+}: \limsup _{n \rightarrow \infty}\left(\frac{\xi_{n-1}}{\xi_{n}}\right)<1\right\}
\end{gathered}
$$

and
$G_{1}=\left\{\xi \in U^{+}\right.$: there exist $C>0$ and $\gamma>1$ such that $\xi_{n} \geq C \gamma^{n}$ for all $\left.n\right\}$.
By [4, Proposition 2.1, p. 1786] and [[6], Proposition 2.2 p. 88], we obtain the next lemma.
Lemma 7. $\widehat{\Gamma} \subset \Gamma \subset \widehat{C_{1}} \subset G_{1}$.
We also need the following results.
Lemma 8. [8, Proposition 9, p. 300] Let $a, b \in U^{+}$. Then
(i) the following statements are equivalent
($\alpha) \chi_{a}(\Delta)=\chi_{b}$ where χ is any of the symbols s, or s^{0},
(β) $a \in \widehat{C_{1}}$ and $s_{a}=s_{b}$.
(ii) $a \in \widehat{\Gamma}$ if and only if $s_{a}^{(c)}(\Delta)=s_{a}^{(c)}$.
rom the preceding results we deduce the following:

3．2．Application to the equation $\chi_{a}\left(C(\lambda) D_{\tau}\right)+\chi_{x}\left(C(\mu) D_{\tau}\right)=\chi_{b}$ where x is the unknown
Let $a, b, \lambda, \mu, \tau \in U^{+}$and consider the equation

$$
\begin{equation*}
\chi_{a}\left(C(\lambda) D_{\tau}\right)+\chi_{x}\left(C(\mu) D_{\tau}\right)=\chi_{b}, \text { where } \chi=s^{0}, \text { or } s \tag{3}
\end{equation*}
$$

and $x \in U^{+}$is the unknown．The operator represented by $C(\lambda) D_{\tau}=D_{1 / \lambda} \Sigma D_{\tau}$ is called a factorable matrix．For $\chi=s^{0}$ solving the（SSE）（B）consists of determining all sequences $x \in U^{+}$such that the condition $y_{n} / b_{n} \rightarrow 0(n \rightarrow \infty)$ holds if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
\frac{\tau_{1} u_{1}+\ldots+\tau_{n} u_{n}}{\lambda_{n} a_{n}} \rightarrow 0 \text { and } \frac{\tau_{1} v_{1}+\ldots+\tau_{n} v_{n}}{\mu_{n} x_{n}} \rightarrow 0(n \rightarrow \infty) \text { for all } y \in s
$$

We then have the following result．
Theorem 9．Let $a, b, \lambda, \mu, \tau \in U^{+}$．Then
（i）If $b \tau \notin \widehat{C_{1}}$ ，then equation（圆）where x is the unknown has no solutions．
（ii）If $b \tau \in \widehat{C_{1}}$ we then have
（a）if $a \lambda / b \tau \in c_{0}$ ，then equation（囼）is equivalent to $s_{x}=s_{b \tau / \mu}$ ，that is $K_{1} b_{n} \tau_{n} / \mu_{n} \leq x_{n} \leq K_{2} b_{n} \tau_{n} / \mu_{n}$ for all n and for some $K_{1}, K_{2}>0$ ．
（b）if $a \lambda / b \tau, b \tau / a \lambda \in \ell_{\infty}$ ，then the solutions of（3）are all sequences that satisfy $x \in s_{b \tau / \mu}$ ，that is，$x_{n} \leq K b_{n} \tau_{n} / \mu_{n}$ for all n and for some $K>0$ ．
（c）If $a \lambda / b \tau \notin \ell_{\infty}$ ，then（国）has no solution．
Proof．We have $\left[C(\lambda) D_{\tau}\right]^{-1}=D_{1 / \tau} \Delta(\lambda)$ and $\left[C(\mu) D_{\tau}\right]^{-1}=D_{1 / \tau} \Delta(\mu)$ then

$$
\chi_{a}\left(C(\lambda) D_{\tau}\right)=\left[C(\lambda) D_{\tau}\right]_{a}^{-1} \chi_{a}=D_{1 / \tau} \Delta(\lambda) \chi_{a}
$$

and $\chi_{x}\left(C(\mu) D_{\tau}\right)=D_{1 / \tau} \Delta(\mu) \chi_{x}$ and equation（3）is equivalent to

$$
D_{1 / \tau} \Delta(\lambda) \chi_{a}+D_{1 / \tau} \Delta(\mu) \chi_{x}=\chi_{b}
$$

that is $D_{1 / \tau} \Delta\left(\chi_{a \lambda}+\chi_{\mu x}\right)=\chi_{b}$ ．Since $\Delta(\lambda)=\Delta D_{\lambda}$ and $\Delta(\mu)=\Delta D_{\mu}$ we deduce

$$
\begin{equation*}
\chi_{a \lambda}+\chi_{\mu x}=\chi_{b}\left(D_{1 / \tau} \Delta\right)=\chi_{b \tau}(\Delta) \tag{4}
\end{equation*}
$$

Then（\＃）is equivalent to $\chi_{a \lambda+\mu x}=\chi_{b \tau}(\Delta)$ itself equivalent to $\chi_{a \lambda+\mu x}=\chi_{b \tau}$ and $b \tau \in \widehat{C_{1}}$ by Lemma ．So if $b \tau \notin \widehat{C_{1}}$ equation（BI）has no solution and if $b \tau \in \widehat{C_{1}}$ it is enough to apply Theorem \mathbb{D} to the equation $\chi_{a \lambda}+\chi_{\mu x}=\chi_{b \tau}$.

We can state the following corollaries．
Corollary 10．Consider the equation

$$
\begin{equation*}
\chi_{1}\left(C(\lambda) D_{\tau}\right)+\chi_{x}\left(C(\mu) D_{\tau}\right)=\chi_{1} \text { with } \chi=s^{0}, \text { or } s . \tag{5}
\end{equation*}
$$

（i）If $\tau \notin \widehat{C_{1}}$ ，then（㔷）has no solutions．
（ii）If $\tau \in \widehat{C_{1}}$ ，then
（a）if $\lambda \in s_{\tau}^{0}$ ，then（1可）is equivalent to $s_{x}=s_{\tau / \mu}$ ；
（b）if $\lambda \in s_{\tau}, \tau \in s_{\lambda}$ ，then the solutions of（SSE）（5）are all sequences that satisfy $x \in s_{\tau / \mu}$ ；
（c）if $\lambda \notin s_{\tau}$ ，then（四）has no solution．

Proof．It is enough to take $a=b=e$ in Theorem 团．
In the following remark where $C(\lambda)=C\left((n)_{n}\right)$ is the Cesàro operator denoted by C_{1} ，the（ SSE ）is completely solved．
Remark 11．Consider the（SSE）

$$
\begin{equation*}
\chi_{1}\left(C_{1} D_{\tau}\right)+\chi_{x}\left(C_{1} D_{\tau}\right)=\chi_{1} \text { with } \chi=s^{0}, \text { or } s . \tag{6}
\end{equation*}
$$

If $\tau \notin \widehat{C_{1}}$ then（6）has no solution．If $\tau \in \widehat{C_{1}}$ the solutions of（四）are all the sequences that satisfy $s_{x}=s_{\left(\tau_{n} / n\right)_{n}}$ ．This means that there are $K_{1}, K_{2}>0$ such that $K_{1} \tau_{n} / n \leq x_{n} \leq K_{2} \tau_{n} / n$ for all n ．Indeed，we have $\lambda_{n}=n$ and since $\tau \in \widehat{C_{1}}$ implies that there is $\gamma>1$ such that $\tau_{n} \geq K \gamma^{n}$ for all n and for some $K>0$ ，we deduce that $n / \tau_{n} \rightarrow 0(n \rightarrow \infty)$ ．So it is enough to apply Corollary ［10（ii）．

To state the next result，consider the equation

$$
\begin{equation*}
\chi_{a}(C(\lambda))+\chi_{x}(C(\mu))=\chi_{b} \text { with } \chi=s^{0}, \text { or } s . \tag{7}
\end{equation*}
$$

Corollary 12．Let $a, b, \lambda, \mu \in U^{+}$．Then
（i）If $b \notin \widehat{C_{1}}$ ，then equation（1才）has no solution．
（ii）If $b \in \widehat{C_{1}}$ ，then 3 cases are possible，
（a）if $a \lambda / b \in c_{0}$ then the solutions $x \in U^{+}$of equation（（ \boldsymbol{T} ）are all sequences that satisfy $s_{x}=s_{b / \mu}$ ；
（b）if there are $k_{1}, k_{2}>0$ such that $k_{1} \leq a_{n} \lambda_{n} / b_{n} \leq k_{2}$ for all n ，then equation（（T）is equivalent to $x \in s_{b / \mu}$ ；
（c）if $a \lambda / b \notin \ell_{\infty}$ ，then equation（7）has no solution．
Proof．This result follows from Theorem 9 with $\tau=e$ ．
When $a=e$ we obtain the next corollary where the（SSE）is totally solved．
Corollary 13．The equation $\chi_{1}\left(C_{1}\right)+\chi_{x}\left(C_{1}\right)=\chi_{b}$ with $\chi=s^{0}$ ，or s ，has no solution if $b \notin \widehat{C_{1}}$ and if $b \in \widehat{C_{1}}$ the solutions are determined by $K_{1} b_{n} / n \leq$ $x_{n} \leq K_{2} b_{n} / n$ for all n and for some $K_{1}, K_{2}>0$ ．

Proof．This result follows from Corollary \mathbb{Z} with $a=e, \lambda_{n}=\mu_{n}=n$ for all n ． Indeed，the condition $b \in \widehat{C_{1}}$ implies that there is $\gamma>1$ such that $b_{n} \geq K \gamma^{n}$ for all n ．Then we have $a_{n} \lambda_{n} / b_{n} \leq K n \gamma^{-n}=o(1)(n \rightarrow \infty)$ ．

Now state the next result where we put $\lambda_{0}=(n)_{n \geq 1}$ ．Here the（SSE）is also totally solved．

Corollary 14．Let $r_{1}, r_{2}>0$ and consider the equation

$$
\begin{equation*}
\chi_{r_{1}}\left(C_{1} D_{\lambda_{0}}\right)+\chi_{x}\left(C_{1} D_{\lambda_{0}}\right)=\chi_{r_{2}} \text { with } \chi=s^{0}, \text { or } s . \tag{8}
\end{equation*}
$$

（i）If $r_{2} \leq 1$ ，then equation（（ظ）has no solution．
（ii）If $r_{2}>1$ ，then
（a）if $r_{1}<r_{2}$ ，then equation（（8）is equivalent to $s_{x}=s_{r_{2}}$ ；
（b）if $r_{1}=r_{2}$ ，then equation（（⿴）is equivalent to $x \in s_{r_{2}}$ ；
（c）if $r_{1}>r_{2}$ ，then equation（囚）has no solution．

Proof．i）If $r_{2} \leq 1$ ，then we have $\left(r_{2}^{n}\right)_{n \geq 1} \notin \widehat{C_{1}}$ ，since by Lemma 7 we have $\widehat{C_{1}} \subset G_{1}$ and by Corollary［D equation（（\＄）has no solutions．ii）Case when $r_{2}>1$ ．（a）First we have

$$
\lim _{n \rightarrow \infty}\left(\frac{n-1}{n} \frac{r_{2}^{n-1}}{r_{2}^{n}}\right)=\frac{1}{r_{2}}<1
$$

and since $\widehat{\Gamma} \subset \widehat{C_{1}}$ we deduce $\left(n r_{2}^{n}\right)_{n \geq 1} \in \widehat{C_{1}}$ ．So by Theorem we have

$$
\frac{a_{n} \lambda_{n}}{b_{n} \tau_{n}}=\frac{n r_{1}^{n}}{n r_{2}^{n}}=\left(\frac{r_{1}}{r_{2}}\right)^{n}=o(1) \quad(n \rightarrow \infty)
$$

and $s_{x}=s_{r_{2}}$ ．The cases（b）and（c）can be shown similarly．

3．3．The（SSE）with operators of the weighted means

In this subsection we use the operator of weighted means \bar{N}_{q} defined by the triangle $\left[\bar{N}_{q}\right]_{n m}=q_{m} / Q_{n}$ for $m \leq n$ ，where $Q_{n}=\sum_{m=1}^{n} q_{m}$ ，for all n ，with $q \in U^{+}$．

Consider now the equation

$$
\begin{equation*}
\chi_{a}\left(\bar{N}_{q}\right)+\chi_{x}\left(\bar{N}_{p} D_{q / p}\right)=\chi_{b} \text { where } \chi=s^{0}, \text { or } s \tag{9}
\end{equation*}
$$

for $p, q \in U^{+}$．The question in the case when $\chi=s$ is：what are the sequences $x \in U^{+}$such that $y_{n}=O\left(b_{n}\right)(n \rightarrow \infty)$ if and only if there are $u, v \in s$ such that $y=u+v$ and
$\frac{q_{1} u_{1}+\ldots+q_{n} u_{n}}{Q_{n}}=O\left(a_{n}\right)$ and $\frac{q_{1} v_{1}+\ldots+q_{n} v_{n}}{P_{n}}=O\left(x_{n}\right) \quad(n \rightarrow \infty)$ for all y ？
Since we have $\bar{N}_{q}=D_{1 / Q} \Sigma D_{q}=C(Q) D_{q}$ ，it is enough to take $Q=\lambda, \mu=P$ and $\tau=q$ in Theorem $\mathbf{9}$ ．We then have
Corollary 15．Let $a, b, p, q \in U^{+}$．Then
（i）If $b q \notin \widehat{C_{1}}$ ，then（四）has no solution；
（ii）if $b q \in \widehat{C_{1}}$ ，then
（a）$a Q / b q \in c_{0}$ implies that（SSE）（四）is equivalent to $s_{x}=s_{b q / P}$ ．
（b）If there are $k_{1}, k_{2}>0$ such that $k_{1} \leq a_{n} Q_{n} / b_{n} q_{n} \leq k_{2}$ for all n ，the solutions of（四）are all the sequences that satisfy $x \in s_{b q / P}$（that is，$x_{n} \leq$ $K b_{n} q_{n} / P_{n}$ for all $\left.n\right)$ ．
（c）If $a Q / b q \notin \ell_{\infty}$ ，then（四）has no solution．
This result leads to the following application．
Example 16．Let $R>0$ and let S be the set of all sequences $x \in U^{+}$that satisfy the statement：$y_{n} / R^{n} \rightarrow 0(n \rightarrow \infty)$ if and only if there are u, v such that $y=u+v$ and

$$
\frac{1}{2^{n}-1} \sum_{m=1}^{n} 2^{m} u_{m} \rightarrow 0 \text { and } \frac{1}{n x_{n}} \sum_{m=1}^{n} 2^{m} v_{m} \rightarrow 0(n \rightarrow \infty) \text { for all } y \in s
$$

It can be shown that the set S is empty if $R<1$ ；if $R=1$ ，it is equal to $s_{(1 / n)_{n}}$ and if $R>1$ it is determined by $K_{1}(2 R)^{n} / n \leq x_{n} \leq K_{2}(2 R)^{n} / n$ for all n ．

To end this section consider a new type of（SSE）using the sets $s_{a}^{(c)}$ ．
3.4. On the (SSE) $\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{0}\left(C(\mu) D_{\tau}\right)=s_{b}^{0}$ where χ is either s, or $s^{(c)}$

Consider now another type of (SSE) with factorable matrices using the set $s_{a}^{(c)}$ and that are totally solved. Here we determine the set of all the sequences $x \in U^{+}$such that the condition $y_{n} / b_{n} \rightarrow 0(n \rightarrow \infty)$ holds if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
\frac{\tau_{1} u_{1}+\ldots+\tau_{n} u_{n}}{\lambda_{n} a_{n}} \rightarrow l \text { and } \frac{\tau_{1} v_{1}+\ldots+\tau_{n} v_{n}}{\mu_{n} x_{n}} \rightarrow 0(n \rightarrow \infty)
$$

for all $y \in s$ and for some scalar l. We state the next lemma, which is a direct consequence of [[7], Theorem 4.4, p. 7].

Lemma 17. Let $a, b \in U^{+}$and consider the (SSE)

$$
\begin{equation*}
\chi_{a}+s_{x}^{0}=s_{b}^{0}, \text { where } \chi \text { is either } s \text {, or } s^{(c)} \tag{10}
\end{equation*}
$$

(i) if $a / b \in c_{0}$, then the solutions of (110) are all the sequences that satisfy $s_{x}=s_{b}$.
(ii) if $a / b \notin c_{0}$, then (1ㅍ) has no solution.

From Lemma $\sqrt{\square}$ and Theorem we deduce the resolution of the (SSE)

$$
\begin{equation*}
\chi_{a}\left(C(\lambda) D_{\tau}\right)+s_{x}^{0}\left(C(\mu) D_{\tau}\right)=s_{b}^{0} \text { where } \chi \text { is either } s, \text { or } s^{(c)} \tag{11}
\end{equation*}
$$

Theorem 18. Let $a, b, \lambda, \mu, \tau \in U^{+}$. Then
(i) if $b \tau \notin \widehat{C_{1}}$, then (SSE) ([Ш]) has no solution.
(ii) If $b \tau \in \widehat{C_{1}}$, then two cases are possible,
(a) if $a \lambda / b \tau \in c_{0}$, then the solutions of (III) are all the sequences that satisfy $s_{x}=s_{b \tau / \mu} ;$
(b) if $a \lambda / b \tau \notin c_{0}$, then (III) has no solution.

Proof. Let χ be any of the symbols s, or $s^{(c)}$. Show that if x satisfies ([1]), then $\chi_{a \lambda}+s_{\mu x}^{0}=s_{b \tau}^{0}$ and $b \tau \in \widehat{C_{1}}$. Reasoning as in the proof of Theorem प, we have that (떼) is equivalent to

$$
\begin{equation*}
\chi_{a \lambda}+s_{\mu x}^{0}=s_{b}^{0}\left(D_{1 / \tau} \Delta\right)=s_{b \tau}^{0}(\Delta) \tag{12}
\end{equation*}
$$

and since we have $s_{a \lambda}^{0} \subset \chi_{a \lambda} \subset s_{a \lambda}$ and $s_{\mu x}^{0} \subset s_{\mu x}$, we deduce

$$
s_{a \lambda+\mu x}^{0}=s_{a \lambda}^{0}+s_{\mu x}^{0} \subset \chi_{a \lambda}+s_{\mu x}^{0} \subset s_{a \lambda}+s_{\mu x}=s_{a \lambda+\mu x} .
$$

Then

$$
s_{a \lambda+\mu x}^{0} \subset s_{b \tau}^{0}(\Delta) \subset s_{a \lambda+\mu x}
$$

The first inclusion is equivalent to $I \in\left(s_{a \lambda+\mu x}^{0}, s_{b \tau}^{0}(\Delta)\right)$ and to $D_{1 / b \tau} \Delta D_{a \lambda+\mu x} \in$ $\left(c_{0}, c_{0}\right)$. Since $\left(c_{0}, c_{0}\right) \subset\left(c_{0}, s_{1}\right)=S_{1}$, we deduce

$$
\frac{a_{n} \lambda_{n}+\mu_{n} x_{n}}{b_{n} \tau_{n}} \leq K \text { for all } n
$$

The second inclusion yields $\Delta^{-1}=\Sigma \in\left(s_{b \tau}^{0}, s_{a \lambda+\mu x}\right)$, that is $D_{1 /(a \lambda+\mu x)} \Sigma D_{b \tau} \in$ $\left(c_{0}, \ell_{\infty}\right)=S_{1}$ and

$$
\frac{b_{1} \tau_{1}+\ldots+b_{n} \tau_{n}}{a_{n} \lambda_{n}+\mu_{n} x_{n}} \leq K^{\prime} \text { for all } n
$$

We deduce

$$
\frac{b_{1} \tau_{1}+\ldots+b_{n} \tau_{n}}{b_{n} \tau_{n}}=\frac{b_{1} \tau_{1}+\ldots+b_{n} \tau_{n}}{a_{n} \lambda_{n}+\mu_{n} x_{n}} \frac{a_{n} \lambda_{n}+\mu_{n} x_{n}}{b_{n} \tau_{n}} \leq K K^{\prime} \text { for all } n
$$

We conclude $b \tau \in \widehat{C_{1}}$ and by ([2) and Lemma $\mathbb{\boxtimes}$ we have $\chi_{a \lambda}+s_{\mu x}^{0}=s_{b \tau}^{0}$.
Conversely if $\chi_{a \lambda}+s_{\mu x}^{0}=s_{b \tau}^{0}$ and $b \tau \in \widehat{C_{1}}$, then ([్ర) and ([I) hold. We conclude the proof using Lemma $\mathbb{\square}$.
Remark 19. Note that the (SSE) in ([リ]) has solutions if and only if $b \tau \in \widehat{C_{1}}$ and $a \lambda / b \tau \in c_{0}$.

4. On the equation $\chi_{a}(C(\lambda) C(\mu))+\chi_{x}(C(\lambda \sigma) C(\mu))=\chi_{b}$

In this section for $a, b, \lambda, \mu, \sigma \in U^{+}$we consider an equation that generalizes (SSE) (3) and defined for $b \in \widehat{C_{1}}$ by

$$
\begin{equation*}
\chi_{a}(C(\lambda) C(\mu))+\chi_{x}(C(\lambda \sigma) C(\mu))=\chi_{b} \tag{13}
\end{equation*}
$$

where χ is any of the symbols s, or s^{0}. For $\chi=s^{0}$ the resolution of equation ([]3) consists in determining the set of all $x \in U^{+}$such that for every $y \in s$ the condition $y_{n} / b_{n} \rightarrow 0(n \rightarrow \infty)$ holds if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
\begin{equation*}
\frac{1}{\lambda_{n} a_{n}} \sum_{m=1}^{n}\left(\frac{1}{\mu_{m}} \sum_{k=1}^{m} u_{k}\right) \rightarrow 0 \text { and } \frac{1}{\lambda_{n} \sigma_{n} x_{n}} \sum_{m=1}^{n}\left(\frac{1}{\mu_{m}} \sum_{k=1}^{m} v_{k}\right) \rightarrow 0(n \rightarrow \infty) . \tag{14}
\end{equation*}
$$

To solve equation ([]3) we state the following proposition.
Proposition 20. Assume that $b \in \widehat{C_{1}}$. Then
(i) if $b / \mu \notin \widehat{C_{1}}$, then equation (ITB) has no solution.
(ii) Let $b / \mu \in \widehat{C_{1}}$. Then
(a) if $a \lambda \mu / b \in c_{0}$, then equation (13.3) holds if and only if $s_{x}=s_{b / \lambda \sigma \mu}$;
(b) if $a \lambda \mu / b, b / a \lambda \mu \in \ell_{\infty}$, then equation (1‥3) holds if and only if $x \in s_{b / \lambda \sigma \mu}$;
(c) if $a \lambda \mu / b \notin \ell_{\infty}$, then equation (17.3) has no solution.

Proof. Equation ([3]) is equivalent to $\Delta(\mu)\left(\Delta(\lambda) \chi_{a}+\Delta(\lambda \sigma) \chi_{x}\right)=\chi_{b}$, that is

$$
\begin{equation*}
\Delta(\lambda) \chi_{a}+\Delta(\lambda \sigma) \chi_{x}=\chi_{b}(\Delta(\mu))=D_{1 / \mu} \chi_{b}(\Delta) \tag{15}
\end{equation*}
$$

and since $b \in \widehat{C_{1}}$, we have $D_{1 / \mu} \chi_{b}(\Delta)=D_{1 / \mu} \chi_{b}=\chi_{b / \mu}$. So equation ([5) is equivalent to $\chi_{a \lambda}+\chi_{\lambda \sigma x}=\chi_{b / \mu}(\Delta)$. Then by Lemma \boxtimes equation (■®) is equivalent to $b / \mu \in \widehat{C_{1}}$ and $\chi_{a \lambda}+\chi_{\lambda \sigma x}=\chi_{b / \mu}$. We conclude by Theorem \mathbb{D} and Corollary $\left[\right.$ that if $a \lambda \mu / b \in c_{0}$ equation, $\chi_{a \lambda}+\chi_{\lambda \sigma x}=\chi_{b / \mu}$ is equivalent to $s_{x}=s_{b / \lambda \sigma \mu}$. The cases (b) and (c) follow immediately from Theorem 四.

Example 21. The set of all $x \in U^{+}$such that $y_{n} / 2^{n}=O(1)(n \rightarrow \infty)$ holds if and only if there are $u, v \in s$ such that $y=u+v$ and

$$
\begin{equation*}
\frac{1}{n} \sum_{m=1}^{n}\left(\frac{1}{m} \sum_{k=1}^{m} u_{k}\right)=O(1) \text { and } \frac{1}{x_{n}} \sum_{m=1}^{n}\left(\frac{1}{m} \sum_{k=1}^{m} v_{k}\right)=\frac{1}{n} O(1) \quad(n \rightarrow \infty) \tag{16}
\end{equation*}
$$

for all y is given by

$$
\begin{equation*}
K_{1} 2^{n} \leq x_{n} \leq K_{2} 2^{n} \text { for all } n \tag{17}
\end{equation*}
$$

Indeed, the previous statement is equivalent to the equation

$$
\begin{equation*}
\ell_{\infty}\left(C_{1}^{2}\right)+s_{x}\left(C\left((1 / n)_{n}\right) C_{1}\right)=s_{2} . \tag{18}
\end{equation*}
$$

We have $b=\left(2^{n}\right)_{n \geq 1} \in \widehat{C_{1}}, b / \mu=\left(2^{n} / n\right)_{n \geq 1} \in \widehat{C_{1}}$ and $a_{n} \lambda_{n} \mu_{n} / b_{n}=n^{2} 2^{-n} \rightarrow$ $0(n \rightarrow \infty)$. So we obtain ([7). Furthermore for each x satisfying ([చ]), we have

$$
\left(\ell_{\infty}\left(C_{1}^{2}\right)+s_{x}\left(C\left((1 / n)_{n}\right) C_{1}\right), s_{\alpha}\right)=\left(s_{2}, s_{\alpha}\right) \text { for } \alpha \in U^{+}
$$

So $A \in\left(\ell_{\infty}\left(C_{1}^{2}\right)+s_{x}\left(C\left((1 / n)_{n}\right) C_{1}\right), s_{\alpha}\right)$ if and only if

$$
\sup _{n}\left(\alpha_{n}^{-1} \sum_{m=1}^{\infty}\left|a_{n m}\right| 2^{m}\right)<\infty
$$

References

[1] Farés A., de Malafosse, B., Sequence spaces equations and application to matrix transformations Int. Math. Forum 3. 19 (2008), 911-927.
[2] Maddox, I.J., Infinite matrices of operators. Berlin, Heidelberg and New York: Springer-Verlag, 1980.
[3] de Malafosse, B., Contribution à l'étude des systèmes infinis. Thèse de Doctorat de $3^{\text {è }}$ cycle, Univ. Paul Sabatier, Toulouse III, 1980.
[4] de Malafosse, B., On some BK space. Int. J. Math. Math. Sci. 28 (2003), 17831801.
[5] de Malafosse, B., Sum and product of certain BK spaces and matrix transformations between these spaces. Acta Math. Hung. 104 (3), (2004), 241-263.
[6] de Malafosse, B., The Banach algebra $B(X)$, where X is a BK space and applications. Mat. Vesnik, 57 (2005), 41-60.
[7] de Malafosse, B., Space $S_{\alpha, \beta}$ and σ-core. Studia Math. 172 (2006), 229-241.
[8] de Malafosse, B., Sum of sequence spaces and matrix transformations. Acta Math. Hung. 113 (3) (2006), 289-313.
[9] de Malafosse, B., Sum of sequence spaces and matrix transformations mapping in $s_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+s_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$. Acta math. Hung., 122 (2008), 217-230.
[10] de Malafosse, B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik 54, 1 (2012), 39-52.
[11] de Malafosse, B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form $B(r, s)$. Commun. Math. Anal. 13, 1 (2012), 35-53.
[12] de Malafosse B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. 46, 2 (2013), 299-314.
[13] de Malafosse, B., Solvability of sequence spaces equations using entire and analytic sequences and applications. J. Ind. Math. Soc. $81 \mathrm{~N}^{\circ} 1-2$, (2014), 97-114.
[14] de Malafosse, B., Malkowsky, E., On the solvability of certain (SSIE) with operators of the form $B(r, s)$. Math. J. Okayama. Univ. 56 (2014), 179-198.
[15] de Malafosse, B., Malkowsky, E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesàro method. Antartica J. Math. 10 (6) (2013), 589-609.
[16] de Malafosse, B., Malkowsky, E., Matrix transformations in the sets $\chi\left(\bar{N}_{p} \bar{N}_{q}\right)$ where χ is in the form s_{ξ}, or s_{ξ}°, or $s_{\xi}^{(c)}$. Filomat 17 (2003), 85-106.
[17] de Malafosse, B., Rakočević V., Matrix transformations and sequence spaces equations. Banach J. Math. Anal. 7 (2) (2013), 1-14.
[18] de Malafosse, B., Rakočević, V., Applications of measure of noncompactness in operators on the spaces $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}$ and l_{α}^{p}. J. Math. Anal. Appl. 323 (2006), 131-145.
[19] de Malafosse, B., Rakočević, V., Matrix Transformations and Statistical convergence. Linear Algebra Appl. 420 (2007), 377-387.
[20] de Malafosse, B., Rakočević V., A generalization of a Hardy theorem. Linear Algebra Appl. 421 (2007), 306-314.
[21] Wilansky, A., Summability through Functional Analysis. North-Holland Mathematics Studies 85, 1984.

Received by the editors August 18, 2011

[^0]: ${ }^{1}$ LMAH Université du Havre, I.U.T Le Havre BP 4006 76610, Le Havre, France, e-mail: bdemalat (a) wanadoo.tr

