SOLVABILITY OF CERTAIN SEQUENCE SPACES EQUATIONS WITH OPERATORS

Bruno de Malafosse¹

Abstract. In this paper we deal with special sequence space equations (SSE) with operators, which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_a(T)$ and $\chi_{f(x)}(T)$ where f map U^+ to itself and χ is any of the symbols s, s^0 , or $s^{(c)}$. Among other things under some conditions we solve (SSE) with operators $\chi_a(C(\lambda) D_{\tau}) + \chi_x(C(\mu) D_{\tau}) = \chi_b$, and $\chi_a(C(\lambda) C(\mu)) + \chi_x(C(\lambda \sigma) C(\mu)) = \chi_b$ where $\chi \in \{s, s^0\}$, and $\chi_a(C(\lambda) D_{\tau}) + s_x^0(C(\mu) D_{\tau}) = \chi_b$ where χ is either of the symbols s, or $s^{(c)}$ and $C(\nu) D_{\tau}$ is a factorable matrix.

AMS Mathematics Subject Classification (2010): 40C05, 46A45

Key words and phrases: matrix transformations, BK space, multiplier of sets of sequences, sequence space inclusion equations, sequence space equations with operators

1. Introduction

In [21] Wilansky introduced sets of the form $a^{-1} * \chi$, where $a = (a_n)_{n \ge 1}$ is a sequence satisfying $a_n \neq 0$ for all n, and χ is any set of sequences. Recall that $x = (x_n)_{n \ge 1}$ belongs to $a^{-1} * \chi$ if $(a_n x_n)_{n \ge 1}$ belongs to χ . In this way, for any strictly positive sequence a, are defined the sets s_a^0 , $s_a^{(c)}$ and s_a by $a^{-1} * \chi$ where χ is either of the sets c_0 , c, and ℓ_{∞} respectively. In [5, 8] the sum $s_a + s_b$ and the product $s_a * s_b$ of the sets s_a and s_b were defined, and characterizations of matrix transformations mapping in the sets $s_a + s_b^0 (\Delta^q)$ and $s_a + s_b^{(c)} (\Delta^q)$ were given, where Δ is the operator of the first difference. In [16] de Malafosse and Malkowsky gave among other things properties of the matrix of weighted means considered as operator in the set s_a . Characterizations of matrix transformations mapping in $s_{\alpha}^0 ((\Delta - \lambda I)^h) + s_{\beta}^{(c)} ((\Delta - \mu I)^l)$ with λ , μ , $h, l \in \mathbb{C}$ can be found in [9]. There are many other results using the sets s_a^0 , $s_a^{(c)}$ and s_a , let us cite for instance applications to the following topics, σ -core, [7], solvability of infinite tridiagonal systems, [6], measure of noncompactness, [18], Hardy theorem, [20] and statistical convergence, [19].

In this paper our aim is to solve special sequence spaces equations (SSE), which are determined by an identity whose each term is a sum or a sum of products of sets of the form $\chi_a(T)$ and $\chi_{f(x)}(T)$ where f maps U^+ to itself, and χ is any of the symbols s, s^0 , or $s^{(c)}$, the sequence x is the unknown and T is

 $^{^1\}mathrm{LMAH}$ Université du Havre, I.U.T Le Havre BP 4006 76610, Le Havre, France, e-mail: bdemalaf@wanadoo.fr

a given triangle. The resolution of such (SSE) consists in determining the set of all sequences x satisfying the identity, see for instance [13, 11, 15, 12, 17, 14, 10].

This paper is organized as follows. In Section 2 we recall some results on the sum and the product of sets of the form χ_a , where χ is either of the symbols s, or s^0 . In Section 3 we solve the sequence spaces equations $\chi_a(C(\lambda) D_{\tau}) + \chi_x(C(\mu) D_{\tau}) = \chi_b$ and $\chi_a(\overline{N}_q) + \chi_x(\overline{N}_p D_{q/p}) = \chi_b$ for $\chi \in \{s, s^0\}$, where \overline{N}_q is the operator of weighted means in some cases and we solve another type of (SSE) defined by $\chi_a(C(\lambda) D_{\tau}) + s_x^0(C(\mu) D_{\tau}) = s_b^0$ where χ is either of the symbols s, or $s^{(c)}$. In Section 4 we deal with (SSE) with operators represented by products of triangles of the form $\chi_a(C(\lambda) C(\mu)) + \chi_x(C(\lambda\sigma) C(\mu)) = \chi_b$ where $C(\nu) D_{\tau}$ is a factorable matrix for $\chi \in \{s, s^0\}$.

2. Sum and product of sequence spaces of the

form χ_a , where χ is either of the symbols s, s^0

2.1. The sets χ_a , where χ is either of the symbols s, s^0 , or $s^{(c)}$ for $a \in U^+$

We write s, ℓ_{∞} , c and c_0 for the sets of all complex, bounded, convergent and convergent to naught sequences, respectively. For a given infinite matrix $\Lambda = (\lambda_{nm})_{n,m\geq 1}$ we define the operators Λ_n , for any integer $n \geq 1$, by $\Lambda_n(\xi) = \sum_{m=1}^{\infty} \lambda_{nm} \xi_m$, where $\xi = (\xi_m)_{m\geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator Λ defined by $\Lambda \xi = (\Lambda_n(\xi))_{n\geq 1}$ mapping a sequence space into another sequence space.

A Banach space E of complex sequences with the norm $||||_E$ is a BK space if each projection $P_n: E \to \mathbb{C}$ defined by $P_n \xi = \xi_n$ is continuous. A BK space E is said to have AK if every sequence $\xi \in E$ has a unique representation $\xi = \sum_{n=1}^{\infty} \xi_n e^{(n)}$ where $e^{(n)}$ is the sequence with 1 in the *n*-th position, and 0 otherwise.

Let a be a nonzero sequence. Using Wilansky's notations we write 1/a * E for the set of all $\xi = (\xi_n)_{n \ge 1}$ such that $(a_n \xi_n)_{n \ge 1} \in E$. Let U^+ be the set of all real sequences ξ with $\xi_n > 0$ for all n. If $\xi \in s$ we define D_{ξ} as the diagonal matrix defined by $[D_{\xi}]_{nn} = \xi_n$ for all n, we have $D_a * E = (1/a)^{-1} * E$ and it can be easily shown $\Lambda \in (D_a * E, D_b * F)$ if and only if $D_{1/b}\Lambda D_a \in (E, F)$ where $E, F \subset s$. Recall that for $a \in U^+$ we have $s_a = D_a * \ell_{\infty}, s_a^0 = D_a * c_0$ and $s_a^{(c)} = D_a * c$. Each of the previous sets is a BK space normed by $\|\xi\|_{s_a}$, where $\|\xi\|_{s_a} = \sup_n (|\xi_n|/a_n) < \infty$. So we can define s_a as the set of all sequences ξ such that $(\xi_n/a_n)_n \in \ell_{\infty}, s_a^0$ as the set of all sequences ξ such that $\xi_n/a_n \to 0$ $(n \to \infty)$ and $s_a^{(c)}$ as the set of all sequences ξ such that $\xi_n/a_n \to l$ $(n \to \infty)$ for some $l \in \mathbb{C}$, (cf. [3, 4]). If $a = (r^n)_{n \ge 1}$, we write $\chi_a = \chi_r$ where χ is any of the symbols s, s^0 , or $s^{(c)}$ to simplify. When r = 1, we obtain $s_1 = \ell_{\infty}, s_1^0 = c_0$ and $s_e^{(c)} = s_1^{(c)} = c$. When Λ maps E into F we write $\Lambda \in (E, F)$, see [2]. So we have $\Lambda \xi \in F$ for all $\xi \in E$, $(\Lambda \xi \in F$ means that for each $n \ge 1$ the series defined by $\Lambda_n(\xi) = \sum_{m=1}^{\infty} \lambda_{nm} \xi_m$ is convergent and $(\Lambda_n(\xi))_{n \ge 1} \in F)$. The set S_a of all infinite matrices $\Lambda = (\lambda_{nm})_{n,m \ge 1}$ such that

$$\begin{split} \|\Lambda\|_{S_a} &= \sup_{n\geq 1} \left(a_n^{-1}\sum_{m=1}^{\infty} |\lambda_{nm}| \, a_m\right) < \infty \text{ is a Banach algebra with identity} \\ \text{normed by } \|\Lambda\|_{S_a} \text{. Recall that if } \Lambda \in (s_a, s_a), \text{ then } \|\Lambda\xi\|_{s_a} \leq \|\Lambda\|_{S_a} \, \|\xi\|_{s_a} \text{ for all } \xi \in s_a. \text{ It is well-known that } S_a = \left(s_a^0, s_a\right) = \left(s_a^{(c)}, s_a\right) = (s_a, s_a). \end{split}$$

2.2. Sum of sets of the form χ_a where χ is either of the symbols s^0 , or s.

In this subsection we recall some properties of the sum E + F of sets of the form s_a^0 , or s_a .

Let $E, F \subset s$ be two linear vector spaces. We write E + F for the set of all sequences $\xi = \zeta + \zeta'$ where $\zeta \in E$ and $\zeta' \in F$. In the next result we use the notation $[\max(a, b)]_n = \max(a_n, b_n)$. We prove the following results.

Proposition 1. Let $a, b \in U^+$ and assume χ is either of the symbols s^0 , or s. Then we have

(i) $\chi_a \subset \chi_b$ if and only if there is K > 0 such that $a_n \leq Kb_n$ for all n.

(ii) $\chi_a = \chi_b$ if and only if $s_a = s_b$, that is, there are K_1 , $K_2 > 0$ such that

$$K_1 \leq \frac{b_n}{a_n} \leq K_2 \text{ for all } n.$$

 $\begin{array}{l} (iii) \ \chi_a + \chi_b = \chi_{a+b} = \chi_{\max(a,b)}.\\ (iv) \ \chi_a + \chi_b = \chi_a \ if \ and \ only \ if \ b/a \in \ell_\infty. \end{array}$

Proof. The case $\chi = s$ was shown in [5, Proposition 1, p. 244], and [8, Theorem 4, p. 293]. The case $\chi = s^0$ can be shown similarly, since we have $s_a = s_b$ if and only if $s_a^0 = s_b^0$.

Notice that $\chi_a \subset \chi_b$ is equivalent to $a \in s_b$.

2.3. Solvability of the equation $\chi_a + \chi_x = \chi_b$ where χ is either of the symbols s^0 , or s.

In the following we determine the set of all sequences $x = (x_n)_{n\geq 1} \in U^+$ such that $y_n = b_n O(1)$ $(n \to \infty)$ if and only if there are $u, v \in s$ such that y = u + v and $u_n = a_n O(1)$ and $v_n = x_n O(1)$ $(n \to \infty)$ for all $y \in s$. Similarly we determine the sequences $x \in U^+$ such that $y_n = b_n o(1)$ if and only if there are $u, v \in s$ such that y = u + v and $u_n = a_n o(1)$ and $v_n = x_n o(1)$ $(n \to \infty)$.

Theorem 2. Let $a, b \in U^+$, and consider the equation

(1)
$$\chi_a + \chi_x = \chi_b$$

where χ is either of the symbols s^0 , or s and $x = (x_n)_{n \ge 1} \in U^+$ is the unknown. Then

(i) if $a/b \in c_0$, then equation (1) holds if and only if there are K_1 , $K_2 > 0$ depending on x, such that $K_1b_n \leq x_n \leq K_2b_n$ for all n, that is $s_x = s_b$.

(ii) If a/b, $b/a \in \ell_{\infty}$, then equation (1) holds if and only if there is K > 0 depending on x such that $0 < x_n \leq Kb_n$ for all n; that is, $x \in s_b$.

(iii) If $a/b \notin \ell_{\infty}$, then equation (1) has no solution in U^+ .

Proof. The case of equation (1) where $\chi = s$ was shown in [1]. For equation (1) with $\chi = s^0$ it is enough to note that $s_a + s_x = s_b$ can be written in the form $s_{a+x} = s_b$ which is turn in $s_{a+x}^0 = s_b^0$ and $s_a^0 + s_x^0 = s_b^0$. This concludes the proof.

In the following corollary we write cl(u), u > 0, for the set of all sequences ξ such that $Ku^n \leq \xi_n \leq K'u^n$ for all n and for some K, K' > 0. This set is an equivalence class for the relation $\xi \mathcal{R}\xi'$ if $s_{\xi} = s_{\xi'}$ with $\xi' = (u^n)_n$. The following (SSE) is completely solved.

Corollary 3. Let r, u > 0. The set Λ_{χ} of all $x \in U^+$ that satisfy the equation

(2)
$$\chi_r + \chi_x = \chi_u \text{ where } \chi \in \{s^0, s\}$$

is defined by

$$\Lambda_{\chi} = \begin{cases} cl(u) & for \ r < u, \\ s_u \bigcap U^+ & for \ r = u, \\ \varnothing & for \ r > u. \end{cases}$$

2.4. Product of sequence spaces of the form χ_a for $\chi \in \{s^0, s\}$.

In this subsection we will deal with some properties of the *product* E * F of particular subsets E and F of s. For any sequences $\xi \in E$ and $\eta \in F$ we put $\xi\xi' = (\xi_n \xi'_n)_{n\geq 1}$. Most of the following results were shown in [5].

For any sets of sequences E and F, we write E * F for the set of all sequences $\xi\xi'$ such that $\xi \in E$ and $\xi' \in F$. We immediately have the following results where $S_{\chi}, \chi \in \{s^0, s\}$, is constituted of all the sets of the form χ_a with $a \in U^+$.

Proposition 4. The set S_{χ} , where $\chi \in \{s^0, s\}$ with multiplication * is a commutative group with χ_1 as the unit element.

Proof. First it can easily be seen that $\chi_a * \chi_b = \chi_{ab}$. We deduce the map $\psi : U^+ \mapsto S_{\chi}$ defined by $\psi(a) = \chi_a$ is a surjective homomorphism and since U^+ with the multiplication of sequences is a group it is the same for S_{χ} . Then the unit element of S_{χ} is $\psi(e) = \chi_1$.

Remark 5. Note that the inverse of χ_a is $\chi_{1/a}$ with $\chi \in \{s^0, s\}$.

As a direct consequence of Proposition 4 we deduce the following corollary.

Corollary 6. Let $a, b, c \in U^+$ and let $\chi \in \{s^0, s\}$. Then

(i) $\chi_a * \chi_b = \chi_{ab}$.

(ii) $\chi_a * \chi_b = \chi_a * \chi_c$ if and only if $\chi_b = \chi_c$.

(iii) The sequence $x = (x_n)_{n \ge 1} \in U^+$ satisfies the equation $\chi_a * \chi_x = \chi_b$ if and only if $K_1 b_n / a_n \le x_n \le \overline{K_2} b_n / a_n$ for all n and for some $K_1, K_2 > 0$ depending on x.

Throughout this paper the unknown of each sequence spaces equation is a sequence $x \in U^+$.

3. The (SSE) with operators represented by factorable matrices

In this section we deal with the resolution of (SSE) of the form $\chi_a(C(\lambda) D_{\tau})$ + $\chi_x (C(\mu) D_\tau) = \chi_b$ and $\chi_a (\overline{N}_q) + \chi_x (\overline{N}_p D_{q/p}) = \chi_b$ for $\chi \in \{s, s^0\}$ where \overline{N}_q is the operator of weighted means in some cases. Then we solve the (SSE) $\chi_a(C(\lambda)D_{\tau}) + s_x^0(C(\mu)D_{\tau}) = s_b^0$, where χ is either of the symbols s, or $s^{(c)}$.

The operators $C(\eta)$, $\Delta(\eta)$ and the sets $\widehat{\Gamma}$, Γ and $\widehat{C_1}$ 3.1.

The infinite matrix $T = (t_{nm})_{n,m\geq 1}$ is said to be a triangle if $t_{nm} = 0$ for m > n and $t_{nn} \neq 0$ for all n. Now let U be the set of all sequences $(u_n)_{n\geq 1} \in s$, with $u_n \neq 0$ for all *n*. The infinite matrix $C(\eta) = (c_{nm})_{n,m\geq 1}$, for $\eta = (\eta_n)_{n \ge 1} \in U$, is defined by

$$c_{nm} = \begin{cases} \frac{1}{\eta_n} & \text{if } m \le n, \\ 0 & \text{otherwise} \end{cases}$$

It can be shown that the matrix $\Delta(\eta) = (d_{nm})_{n,m>1}$ with

$$d_{nm} = \begin{cases} \eta_n & \text{if } m = n, \\ -\eta_{n-1} & \text{if } m = n-1 \text{ and } n \ge 2, \\ 0 & \text{otherwise,} \end{cases}$$

is the inverse of $C(\eta)$, that is $C(\eta)(\Delta(\eta)\xi) = \Delta(\eta)(C(\eta)\xi)$ for all $\xi \in s$. If $\eta = e$ we get the well known operator of the first difference represented by $\Delta(e) = \Delta$. We then have $\Delta \xi_n = \xi_n - \xi_{n-1}$ for all $n \ge 1$, with the convention $\xi_0 = 0$. It is usually written $\Sigma = C(e)$. Note that $\Delta = \Sigma^{-1}$ and $\Delta, \Sigma \in S_R$ for any R > 1.

Consider the sets

$$\widehat{C}_1 = \left\{ \xi \in U^+ : \quad [C\left(\xi\right)\xi]_n = \frac{1}{\xi_n} \sum_{m=1}^n \xi_m = O\left(1\right) \right\},$$
$$\widehat{\Gamma} = \left\{ \xi \in U^+ : \lim_{n \to \infty} \left(\frac{\xi_{n-1}}{\xi_n}\right) < 1 \right\}, \Gamma = \left\{ \xi \in U^+ : \limsup_{n \to \infty} \left(\frac{\xi_{n-1}}{\xi_n}\right) < 1 \right\}$$
and

а

 $G_1 = \{\xi \in U^+ : \text{there exist } C > 0 \text{ and } \gamma > 1 \text{ such that } \xi_n \ge C\gamma^n \text{ for all } n\}.$

By [4, Proposition 2.1, p. 1786] and [16, Proposition 2.2 p. 88], we obtain the next lemma.

Lemma 7. $\widehat{\Gamma} \subset \Gamma \subset \widehat{C_1} \subset G_1$.

We also need the following results.

Lemma 8. [8, Proposition 9, p. 300] Let $a, b \in U^+$. Then (i) the following statements are equivalent (α) $\chi_a(\Delta) = \chi_b$ where χ is any of the symbols s, or s^0 , $(\beta) \ a \in \widehat{C_1} \ and \ s_a = s_b.$ (ii) $a \in \widehat{\Gamma}$ if and only if $s_a^{(c)}(\Delta) = s_a^{(c)}$.

rom the preceding results we deduce the following:

3.2. Application to the equation $\chi_a(C(\lambda)D_{\tau}) + \chi_x(C(\mu)D_{\tau}) = \chi_b$ where x is the unknown

Let $a, b, \lambda, \mu, \tau \in U^+$ and consider the equation

(3)
$$\chi_a \left(C \left(\lambda \right) D_\tau \right) + \chi_x \left(C \left(\mu \right) D_\tau \right) = \chi_b, \text{ where } \chi = s^0, \text{ or } s$$

and $x \in U^+$ is the unknown. The operator represented by $C(\lambda) D_{\tau} = D_{1/\lambda} \Sigma D_{\tau}$ is called a factorable matrix. For $\chi = s^0$ solving the (SSE) (3) consists of determining all sequences $x \in U^+$ such that the condition $y_n/b_n \to 0$ $(n \to \infty)$ holds if and only if there are $u, v \in s$ such that y = u + v and

$$\frac{\tau_1 u_1 + \ldots + \tau_n u_n}{\lambda_n a_n} \to 0 \text{ and } \frac{\tau_1 v_1 + \ldots + \tau_n v_n}{\mu_n x_n} \to 0 \ (n \to \infty) \text{ for all } y \in s.$$

We then have the following result.

Theorem 9. Let $a, b, \lambda, \mu, \tau \in U^+$. Then

(i) If $b\tau \notin \widehat{C_1}$, then equation (3) where x is the unknown has no solutions. (ii) If $b\tau \in \widehat{C_1}$ we then have

(a) if $a\lambda/b\tau \in c_0$, then equation (3) is equivalent to $s_x = s_{b\tau/\mu}$, that is $K_1 b_n \tau_n/\mu_n \leq x_n \leq K_2 b_n \tau_n/\mu_n$ for all n and for some $K_1, K_2 > 0$.

(b) if $a\lambda/b\tau$, $b\tau/a\lambda \in \ell_{\infty}$, then the solutions of (3) are all sequences that satisfy $x \in s_{b\tau/\mu}$, that is, $x_n \leq K b_n \tau_n/\mu_n$ for all n and for some K > 0.

(c) If $a\lambda/b\tau \notin \ell_{\infty}$, then (3) has no solution.

Proof. We have $[C(\lambda) D_{\tau}]^{-1} = D_{1/\tau} \Delta(\lambda)$ and $[C(\mu) D_{\tau}]^{-1} = D_{1/\tau} \Delta(\mu)$ then

$$\chi_a \left(C \left(\lambda \right) D_\tau \right) = \left[C \left(\lambda \right) D_\tau \right]_a^{-1} \chi_a = D_{1/\tau} \Delta \left(\lambda \right) \chi_a$$

and $\chi_{x}\left(C\left(\mu\right)D_{\tau}\right) = D_{1/\tau}\Delta\left(\mu\right)\chi_{x}$ and equation (3) is equivalent to

$$D_{1/\tau}\Delta\left(\lambda\right)\chi_{a}+D_{1/\tau}\Delta\left(\mu\right)\chi_{x}=\chi_{b},$$

that is $D_{1/\tau}\Delta(\chi_{a\lambda} + \chi_{\mu x}) = \chi_b$. Since $\Delta(\lambda) = \Delta D_\lambda$ and $\Delta(\mu) = \Delta D_\mu$ we deduce

(4)
$$\chi_{a\lambda} + \chi_{\mu x} = \chi_b \left(D_{1/\tau} \Delta \right) = \chi_{b\tau} \left(\Delta \right).$$

Then (4) is equivalent to $\chi_{a\lambda+\mu x} = \chi_{b\tau}(\Delta)$ itself equivalent to $\chi_{a\lambda+\mu x} = \chi_{b\tau}$ and $b\tau \in \widehat{C_1}$ by Lemma 8. So if $b\tau \notin \widehat{C_1}$ equation (3) has no solution and if $b\tau \in \widehat{C_1}$ it is enough to apply Theorem 1 to the equation $\chi_{a\lambda} + \chi_{\mu x} = \chi_{b\tau}$. \Box

We can state the following corollaries.

Corollary 10. Consider the equation

(5)
$$\chi_1(C(\lambda) D_{\tau}) + \chi_x(C(\mu) D_{\tau}) = \chi_1 \text{ with } \chi = s^0, \text{ or } s.$$

(i) If $\tau \notin \widehat{C_1}$, then (5) has no solutions.

(ii) If $\tau \in \widehat{C_1}$, then

(a) if $\lambda \in s_{\tau}^{0}$, then (5) is equivalent to $s_{x} = s_{\tau/\mu}$;

(b) if $\lambda \in s_{\tau}$, $\tau \in s_{\lambda}$, then the solutions of (SSE) (5) are all sequences that satisfy $x \in s_{\tau/\mu}$;

(c) if $\lambda \notin s_{\tau}$, then (5) has no solution.

Proof. It is enough to take a = b = e in Theorem 9.

In the following remark where $C(\lambda) = C((n)_n)$ is the Cesàro operator denoted by C_1 , the (SSE) is completely solved.

Remark 11. Consider the (SSE)

(6)
$$\chi_1(C_1D_{\tau}) + \chi_x(C_1D_{\tau}) = \chi_1 \text{ with } \chi = s^0, \text{ or } s.$$

If $\tau \notin \widehat{C_1}$ then (6) has no solution. If $\tau \in \widehat{C_1}$ the solutions of (6) are all the sequences that satisfy $s_x = s_{(\tau_n/n)_n}$. This means that there are $K_1, K_2 > 0$ such that $K_1\tau_n/n \leq x_n \leq K_2\tau_n/n$ for all n. Indeed, we have $\lambda_n = n$ and since $\tau \in \widehat{C_1}$ implies that there is $\gamma > 1$ such that $\tau_n \geq K\gamma^n$ for all n and for some K > 0, we deduce that $n/\tau_n \to 0$ $(n \to \infty)$. So it is enough to apply Corollary 10 (ii).

To state the next result, consider the equation

(7)
$$\chi_a(C(\lambda)) + \chi_x(C(\mu)) = \chi_b \text{ with } \chi = s^0, \text{ or } s.$$

Corollary 12. Let $a, b, \lambda, \mu \in U^+$. Then

(i) If $b \notin \widehat{C_1}$, then equation (7) has no solution.

(ii) If $b \in C_1$, then 3 cases are possible,

(a) if $a\lambda/b \in c_0$ then the solutions $x \in U^+$ of equation (7) are all sequences that satisfy $s_x = s_{b/\mu}$;

(b) if there are k_1 , $k_2 > 0$ such that $k_1 \leq a_n \lambda_n / b_n \leq k_2$ for all n, then equation (7) is equivalent to $x \in s_{b/\mu}$;

(c) if $a\lambda/b \notin \ell_{\infty}$, then equation (7) has no solution.

Proof. This result follows from Theorem 9 with $\tau = e$.

When a = e we obtain the next corollary where the (SSE) is totally solved.

Corollary 13. The equation $\chi_1(C_1) + \chi_x(C_1) = \chi_b$ with $\chi = s^0$, or s, has no solution if $b \notin \widehat{C_1}$ and if $b \in \widehat{C_1}$ the solutions are determined by $K_1 b_n/n \le x_n \le K_2 b_n/n$ for all n and for some $K_1, K_2 > 0$.

Proof. This result follows from Corollary 12 with a = e, $\lambda_n = \mu_n = n$ for all n. Indeed, the condition $b \in \widehat{C}_1$ implies that there is $\gamma > 1$ such that $b_n \ge K\gamma^n$ for all n. Then we have $a_n\lambda_n/b_n \le Kn\gamma^{-n} = o(1)$ $(n \to \infty)$.

Now state the next result where we put $\lambda_0 = (n)_{n \ge 1}$. Here the (SSE) is also totally solved.

Corollary 14. Let r_1 , $r_2 > 0$ and consider the equation

(8)
$$\chi_{r_1}(C_1 D_{\lambda_0}) + \chi_x(C_1 D_{\lambda_0}) = \chi_{r_2} \text{ with } \chi = s^0, \text{ or } s.$$

(i) If $r_2 \leq 1$, then equation (8) has no solution. (ii) If $r_2 > 1$, then (a) if $r_1 < r_2$, then equation (8) is equivalent to $s_x = s_{r_2}$; (b) if $r_1 = r_2$, then equation (8) is equivalent to $x \in s_{r_2}$; (c) if $r_1 > r_2$, then equation (8) has no solution. *Proof.* i) If $r_2 \leq 1$, then we have $(r_2^n)_{n\geq 1} \notin \widehat{C_1}$, since by Lemma 7 we have $\widehat{C_1} \subset G_1$ and by Corollary 12 equation (8) has no solutions. ii) Case when $r_2 > 1$. (a) First we have

$$\lim_{n \to \infty} \left(\frac{n-1}{n} \frac{r_2^{n-1}}{r_2^n} \right) = \frac{1}{r_2} < 1$$

and since $\widehat{\Gamma} \subset \widehat{C_1}$ we deduce $(nr_2^n)_{n \ge 1} \in \widehat{C_1}$. So by Theorem 9 we have

$$\frac{a_n\lambda_n}{b_n\tau_n} = \frac{nr_1^n}{nr_2^n} = \left(\frac{r_1}{r_2}\right)^n = o\left(1\right) \quad (n \to \infty)$$

and $s_x = s_{r_2}$. The cases (b) and (c) can be shown similarly.

3.3. The (SSE) with operators of the weighted means

In this subsection we use the operator of weighted means \overline{N}_q defined by the triangle $[\overline{N}_q]_{nm} = q_m/Q_n$ for $m \leq n$, where $Q_n = \sum_{m=1}^n q_m$, for all n, with $q \in U^+$.

Consider now the equation

(9)
$$\chi_a\left(\overline{N}_q\right) + \chi_x\left(\overline{N}_p D_{q/p}\right) = \chi_b \text{ where } \chi = s^0, \text{ or } s^0$$

for $p, q \in U^+$. The question in the case when $\chi = s$ is: what are the sequences $x \in U^+$ such that $y_n = O(b_n) \ (n \to \infty)$ if and only if there are $u, v \in s$ such that y = u + v and

$$\frac{q_1u_1 + \ldots + q_nu_n}{Q_n} = O\left(a_n\right) \text{ and } \frac{q_1v_1 + \ldots + q_nv_n}{P_n} = O\left(x_n\right) \ (n \to \infty) \text{ for all } y \in \mathbb{R}$$

Since we have $\overline{N}_q = D_{1/Q} \Sigma D_q = C(Q) D_q$, it is enough to take $Q = \lambda$, $\mu = P$ and $\tau = q$ in Theorem 9. We then have

Corollary 15. Let $a, b, p, q \in U^+$. Then

(i) If $bq \notin \widehat{C}_1$, then (9) has no solution;

- (ii) if $bq \in \widehat{C_1}$, then
- (a) $aQ/bq \in c_0$ implies that (SSE) (9) is equivalent to $s_x = s_{bq/P}$.

(b) If there are k_1 , $k_2 > 0$ such that $k_1 \leq a_n Q_n / b_n q_n \leq k_2$ for all n, the solutions of (9) are all the sequences that satisfy $x \in s_{bq/P}$ (that is, $x_n \leq K b_n q_n / P_n$ for all n).

(c) If $aQ/bq \notin \ell_{\infty}$, then (9) has no solution.

This result leads to the following application.

Example 16. Let R > 0 and let S be the set of all sequences $x \in U^+$ that satisfy the statement: $y_n/R^n \to 0 \ (n \to \infty)$ if and only if there are u, v such that y = u + v and

$$\frac{1}{2^n - 1} \sum_{m=1}^n 2^m u_m \to 0 \text{ and } \frac{1}{nx_n} \sum_{m=1}^n 2^m v_m \to 0 \ (n \to \infty) \text{ for all } y \in s.$$

It can be shown that the set S is empty if R < 1; if R = 1, it is equal to $s_{(1/n)_n}$ and if R > 1 it is determined by $K_1(2R)^n / n \le x_n \le K_2(2R)^n / n$ for all n.

To end this section consider a new type of (SSE) using the sets $s_a^{(c)}$.

3.4. On the (SSE) $\chi_a(C(\lambda) D_{\tau}) + s_x^0(C(\mu) D_{\tau}) = s_b^0$ where χ is either s, or $s^{(c)}$

Consider now another type of (SSE) with factorable matrices using the set $s_a^{(c)}$ and that are totally solved. Here we determine the set of all the sequences $x \in U^+$ such that the condition $y_n/b_n \to 0$ $(n \to \infty)$ holds if and only if there are $u, v \in s$ such that y = u + v and

$$\frac{\tau_1 u_1 + \ldots + \tau_n u_n}{\lambda_n a_n} \to l \text{ and } \frac{\tau_1 v_1 + \ldots + \tau_n v_n}{\mu_n x_n} \to 0 \ (n \to \infty)$$

for all $y \in s$ and for some scalar l. We state the next lemma, which is a direct consequence of [17, Theorem 4.4, p. 7].

Lemma 17. Let $a, b \in U^+$ and consider the (SSE)

(10)
$$\chi_a + s_x^0 = s_b^0$$
, where χ is either s, or $s^{(c)}$.

(i) if $a/b \in c_0$, then the solutions of (10) are all the sequences that satisfy $s_x = s_b$.

(ii) if $a/b \notin c_0$, then (10) has no solution.

From Lemma 17 and Theorem 9 we deduce the resolution of the (SSE)

(11)
$$\chi_a(C(\lambda) D_{\tau}) + s_x^0(C(\mu) D_{\tau}) = s_b^0 \text{ where } \chi \text{ is either } s, \text{ or } s^{(c)}.$$

Theorem 18. Let $a, b, \lambda, \mu, \tau \in U^+$. Then (i) if $b\tau \notin \widehat{C_1}$, then (SSE) (11) has no solution. (ii) If $b\tau \in \widehat{C_1}$, then two cases are possible, (a) if $a\lambda/b\tau \in c_0$, then the solutions of (11) are all the sequences that satisfy $s_x = s_{b\tau/\mu};$ (b) if $a\lambda/b\tau \notin c_0$, then (11) has no solution.

Proof. Let χ be any of the symbols s, or $s^{(c)}$. Show that if x satisfies (11), then $\chi_{a\lambda} + s^0_{\mu x} = s^0_{b\tau}$ and $b\tau \in \widehat{C}_1$. Reasoning as in the proof of Theorem 9, we have that (11) is equivalent to

(12)
$$\chi_{a\lambda} + s^0_{\mu x} = s^0_b \left(D_{1/\tau} \Delta \right) = s^0_{b\tau} \left(\Delta \right),$$

and since we have $s_{a\lambda}^0 \subset \chi_{a\lambda} \subset s_{a\lambda}$ and $s_{\mu x}^0 \subset s_{\mu x}$, we deduce

$$s^0_{a\lambda+\mu x} = s^0_{a\lambda} + s^0_{\mu x} \subset \chi_{a\lambda} + s^0_{\mu x} \subset s_{a\lambda} + s_{\mu x} = s_{a\lambda+\mu x}$$

Then

$$s^{0}_{a\lambda+\mu x} \subset s^{0}_{b\tau}\left(\Delta\right) \subset s_{a\lambda+\mu x}$$

The first inclusion is equivalent to $I \in \left(s_{a\lambda+\mu x}^{0}, s_{b\tau}^{0}(\Delta)\right)$ and to $D_{1/b\tau}\Delta D_{a\lambda+\mu x} \in (c_{0}, c_{0})$. Since $(c_{0}, c_{0}) \subset (c_{0}, s_{1}) = S_{1}$, we deduce

$$\frac{a_n\lambda_n + \mu_n x_n}{b_n \tau_n} \le K \text{ for all } n.$$

The second inclusion yields $\Delta^{-1} = \Sigma \in (s_{b\tau}^0, s_{a\lambda+\mu x})$, that is $D_{1/(a\lambda+\mu x)}\Sigma D_{b\tau} \in (c_0, \ell_{\infty}) = S_1$ and

$$\frac{b_1\tau_1 + \dots + b_n\tau_n}{a_n\lambda_n + \mu_n x_n} \le K' \text{ for all } n.$$

We deduce

$$\frac{b_1\tau_1 + \dots + b_n\tau_n}{b_n\tau_n} = \frac{b_1\tau_1 + \dots + b_n\tau_n}{a_n\lambda_n + \mu_nx_n} \frac{a_n\lambda_n + \mu_nx_n}{b_n\tau_n} \le KK' \text{ for all } n.$$

We conclude $b\tau \in \widehat{C}_1$ and by (12) and Lemma 8 we have $\chi_{a\lambda} + s^0_{\mu x} = s^0_{b\tau}$.

Conversely if $\chi_{a\lambda} + s^0_{\mu x} = s^0_{b\tau}$ and $b\tau \in \widehat{C}_1$, then (12) and (11) hold. We conclude the proof using Lemma 17.

Remark 19. Note that the (SSE) in (11) has solutions if and only if $b\tau \in \widehat{C}_1$ and $a\lambda/b\tau \in c_0$.

4. On the equation $\chi_{a}\left(C\left(\lambda\right)C\left(\mu\right)\right) + \chi_{x}\left(C\left(\lambda\sigma\right)C\left(\mu\right)\right) = \chi_{b}$

In this section for $a, b, \lambda, \mu, \sigma \in U^+$ we consider an equation that generalizes (SSE) (3) and defined for $b \in \widehat{C_1}$ by

(13)
$$\chi_a \left(C \left(\lambda \right) C \left(\mu \right) \right) + \chi_x \left(C \left(\lambda \sigma \right) C \left(\mu \right) \right) = \chi_b,$$

where χ is any of the symbols s, or s^0 . For $\chi = s^0$ the resolution of equation (13) consists in determining the set of all $x \in U^+$ such that for every $y \in s$ the condition $y_n/b_n \to 0 \ (n \to \infty)$ holds if and only if there are $u, v \in s$ such that y = u + v and (14)

$$\frac{1}{\lambda_n a_n} \sum_{m=1}^n \left(\frac{1}{\mu_m} \sum_{k=1}^m u_k \right) \to 0 \text{ and } \frac{1}{\lambda_n \sigma_n x_n} \sum_{m=1}^n \left(\frac{1}{\mu_m} \sum_{k=1}^m v_k \right) \to 0 \ (n \to \infty).$$

To solve equation (13) we state the following proposition.

Proposition 20. Assume that $b \in \widehat{C}_1$. Then

(i) if $b/\mu \notin \widehat{C}_1$, then equation (13) has no solution.

- (ii) Let $b/\mu \in \widehat{C_1}$. Then
- (a) if $a\lambda\mu/b \in c_0$, then equation (13) holds if and only if $s_x = s_{b/\lambda\sigma\mu}$;
- (b) if $a\lambda\mu/b$, $b/a\lambda\mu \in \ell_{\infty}$, then equation (13) holds if and only if $x \in s_{b/\lambda\sigma\mu}$; (c) if $a\lambda\mu/b \notin \ell_{\infty}$, then equation (13) has no solution.

Proof. Equation (13) is equivalent to $\Delta(\mu) (\Delta(\lambda) \chi_a + \Delta(\lambda \sigma) \chi_x) = \chi_b$, that is

(15)
$$\Delta(\lambda) \chi_a + \Delta(\lambda\sigma) \chi_x = \chi_b(\Delta(\mu)) = D_{1/\mu} \chi_b(\Delta)$$

and since $b \in \widehat{C}_1$, we have $D_{1/\mu}\chi_b(\Delta) = D_{1/\mu}\chi_b = \chi_{b/\mu}$. So equation (15) is equivalent to $\chi_{a\lambda} + \chi_{\lambda\sigma x} = \chi_{b/\mu}(\Delta)$. Then by Lemma 8 equation (15) is equivalent to $b/\mu \in \widehat{C}_1$ and $\chi_{a\lambda} + \chi_{\lambda\sigma x} = \chi_{b/\mu}$. We conclude by Theorem 1 and Corollary 6 that if $a\lambda\mu/b \in c_0$ equation, $\chi_{a\lambda} + \chi_{\lambda\sigma x} = \chi_{b/\mu}$ is equivalent to $s_x = s_{b/\lambda\sigma\mu}$. The cases (b) and (c) follow immediately from Theorem 1.

Example 21. The set of all $x \in U^+$ such that $y_n/2^n = O(1)$ $(n \to \infty)$ holds if and only if there are $u, v \in s$ such that y = u + v and (16)

$$\frac{1}{n}\sum_{m=1}^{n}\left(\frac{1}{m}\sum_{k=1}^{m}u_{k}\right) = O(1) \text{ and } \frac{1}{x_{n}}\sum_{m=1}^{n}\left(\frac{1}{m}\sum_{k=1}^{m}v_{k}\right) = \frac{1}{n}O(1) \quad (n \to \infty)$$

for all y is given by

(17)
$$K_1 2^n \le x_n \le K_2 2^n \text{ for all } n.$$

Indeed, the previous statement is equivalent to the equation

(18)
$$\ell_{\infty} \left(C_1^2 \right) + s_x \left(C \left((1/n)_n \right) C_1 \right) = s_2.$$

We have $b = (2^n)_{n \ge 1} \in \widehat{C_1}$, $b/\mu = (2^n/n)_{n \ge 1} \in \widehat{C_1}$ and $a_n \lambda_n \mu_n / b_n = n^2 2^{-n} \to 0 \ (n \to \infty)$. So we obtain (17). Furthermore for each x satisfying (17), we have

$$(\ell_{\infty}(C_1^2) + s_x(C((1/n)_n)C_1), s_{\alpha}) = (s_2, s_{\alpha}) \text{ for } \alpha \in U^+.$$

So $A \in \left(\ell_{\infty}\left(C_{1}^{2}\right) + s_{x}\left(C\left((1/n)_{n}\right)C_{1}\right), s_{\alpha}\right)$ if and only if

$$\sup_{n} \left(\alpha_n^{-1} \sum_{m=1}^{\infty} |a_{nm}| \, 2^m \right) < \infty.$$

References

- Farés A., de Malafosse, B., Sequence spaces equations and application to matrix transformations Int. Math. Forum 3. 19 (2008), 911-927.
- Maddox, I.J., Infinite matrices of operators. Berlin, Heidelberg and New York: Springer-Verlag, 1980.
- [3] de Malafosse, B., Contribution à l'étude des systèmes infinis. Thèse de Doctorat de 3^è cycle, Univ. Paul Sabatier, Toulouse III, 1980.
- [4] de Malafosse, B., On some BK space. Int. J. Math. Math. Sci. 28 (2003), 1783-1801.
- [5] de Malafosse, B., Sum and product of certain BK spaces and matrix transformations between these spaces. Acta Math. Hung. 104 (3), (2004), 241-263.
- [6] de Malafosse, B., The Banach algebra B (X), where X is a BK space and applications. Mat. Vesnik, 57 (2005), 41-60.
- [7] de Malafosse, B., Space $S_{\alpha,\beta}$ and σ -core. Studia Math. 172 (2006), 229-241.
- [8] de Malafosse, B., Sum of sequence spaces and matrix transformations. Acta Math. Hung. 113 (3) (2006), 289-313.
- [9] de Malafosse, B., Sum of sequence spaces and matrix transformations mapping in $s^{0}_{\alpha} \left(\left(\Delta \lambda I \right)^{h} \right) + s^{(c)}_{\beta} \left(\left(\Delta \mu I \right)^{l} \right)$. Acta math. Hung., 122 (2008), 217-230.
- [10] de Malafosse, B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik 54, 1 (2012), 39-52.

- [11] de Malafosse, B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form B(r, s). Commun. Math. Anal. 13, 1 (2012), 35-53.
- [12] de Malafosse B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. 46, 2 (2013), 299-314.
- [13] de Malafosse, B., Solvability of sequence spaces equations using entire and analytic sequences and applications. J. Ind. Math. Soc. 81 N°1-2, (2014), 97-114.
- [14] de Malafosse, B., Malkowsky, E., On the solvability of certain (SSIE) with operators of the form B(r, s). Math. J. Okayama. Univ. 56 (2014), 179-198.
- [15] de Malafosse, B., Malkowsky, E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesàro method. Antartica J. Math. 10 (6) (2013), 589-609.
- [16] de Malafosse, B., Malkowsky, E., Matrix transformations in the sets $\chi(\overline{N}_p\overline{N}_q)$ where χ is in the form s_{ξ} , or $s_{\xi}^{(c)}$, or $s_{\xi}^{(c)}$. Filomat 17 (2003), 85-106.
- [17] de Malafosse, B., Rakočević V., Matrix transformations and sequence spaces equations. Banach J. Math. Anal. 7 (2) (2013), 1-14.
- [18] de Malafosse, B., Rakočević, V., Applications of measure of noncompactness in operators on the spaces s_{α} , s_{α}^{0} , $s_{\alpha}^{(c)}$ and l_{α}^{p} . J. Math. Anal. Appl. 323 (2006), 131-145.
- [19] de Malafosse, B., Rakočević, V., Matrix Transformations and Statistical convergence. Linear Algebra Appl. 420 (2007), 377-387.
- [20] de Malafosse, B., Rakočević V., A generalization of a Hardy theorem. Linear Algebra Appl. 421 (2007), 306-314.
- [21] Wilansky, A., Summability through Functional Analysis. North-Holland Mathematics Studies 85, 1984.

Received by the editors August 18, 2011