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MEROMORPHIC FUNCTIONS AND THEIR
kth DERIVATIVE SHARE ONLY ONE

SMALL FUNCTION CM

Amer H. H. Al-Khaladi1

Abstract. It is shown that if a non-constant meromorphic function f
and its derivative f (k) share one meromorphic small function β ̸≡ 0,∞
CM (counting multiplicities), then either T (r, f (k)) = O(N̄(r, 1

f(k) )) or

f − β = (1 − pk−1

β
)(f (k) − β), where pk−1 is a polynomial of degree at

most k − 1 and 1− pk−1

β
̸≡ 0. This result answers Brück’s question and

improves Al-Khaladi’s result.
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1. Introduction and main results

In this paper, by meromorphic function we always mean a function which is
meromorphic in the whole complex plane. We use the notation of the Nevan-
linna theory of meromorphic functions (see [5], [8]). By S(r, f) we denote any
quantity satisfying S(r, f) = o(T (r, f)) as r → ∞, possibly outside a set of r
with finite linear measure. Then the meromorphic function β is called a small
function of f if T (r, β) = S(r, f). We say that two non-constant meromorphic
functions f and g share a small function β CM (counting multiplicities) if f−β
and g−β have the same zeros with the same multiplicities. Let k be a positive
integer, and let b be a small function of f or ∞, we denote by Nk)(r,

1
f−b ) the

counting function of b-points of f with multiplicity ≤ k and by N(k+1(r,
1

f−b )
the counting function of b-points of f with multiplicity > k. In the same way we
define N̄k)(r,

1
f−b ) and N̄(k+1(r,

1
f−b ) where in counting the b-points of f we ig-

nore the multiplicities (see [8]). Finally we denote by N0(r,
1

f(k+1) ) the counting

function of the zeros of f (k+1) that are not zeros of f (k), where these zeros are
counted according to their multiplicity while N̄0(r,

1
f(k+1) ) counts these zeros

only once.
Now we move to the problems of uniqueness of an entire function and its

derivative that share some values. Rubel-Yang (see [6]) proved that if the entire
function f and f ′ share two distinct finite values CM then f ≡ f ′. In general,
this result is false if f and f ′ share only one value. This may be seen in the
examples given in [4]. Now the following question may be raised (see [4]). What
conclusion can be made, if f and f ′ share only one value? In 1998, Zhang [9]
answered this question and proved the following:
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Theorem A. Let f be a non-constant meromorphic function. If f and f ′ share
the value 1 CM, then either f − 1 = c(f ′ − 1), where c is a nonzero constant,
or

T (r, f ′) ≤ 2N
(
r,

1

f ′

)
+ 2N̄(r, f) + S(r, f).

In 2010 Al-Khaladi [2] improved and generalized this result and proved the
following:

Theorem B. Let f be a non-constant meromorphic function and let β ̸≡ 0,∞
be a meromorphic small function of f . If f and f (k) share β CM, then either

(1.1) f − β =
(
1− pk−1

β

)
(f (k) − β),

where pk−1 is a polynomial of degree at most k − 1 and 1− pk−1

β ̸≡ 0, or

(1.2) T (r, f (k)) ≤ (k + 1)N̄
(
r,

1

f (k)

)
+ (k + 1)N̄(r, f) + S(r, f).

The aim of this paper is to show that the term involving N̄(r, f) in (1.2)
can be dropped completely if one allows a large factor of N̄(r, 1/f (k)). Note
that in general situation one can omit N̄(r, f) be adding εT (r, f) ([7]). In fact,
we shall prove the following theorem:

Theorem 1.1. Let f be a non-constant meromorphic function and let β ̸≡ 0,∞
be a meromorphic small function of f . If f and f (k) share β CM, then either
(1.1) holds, or

(1.3)

T (r, f (k)) ≤


(k+1)2(k+2)

k−1 N̄(r, 1/f (k)) + S(r, f (k)) if k ≥ 2

12N̄(r, 1/f ′) + S(r, f ′) if k = 1 and β′ ̸≡ 0

36N̄(r, 1/f ′) + S(r, f ′) if k = 1 and β′ ≡ 0

From Theorem 1.1, we immediately deduce the following corollary:

Corollary 1.2. Let f be a non-constant meromorphic function and let β ̸≡
0,∞ be a meromorphic small function of f . If f and f (k) share β CM, and if
N̄(r, 1/f (k)) = S(r, f), then (1.1) holds.

2. Some lemmas

For the proof of our theorem we need the following lemmas:

Lemma 2.1. Let f ′ be a non-constant meromorphic function and let

(2.1) W =
(f ′′

f ′

)2

− 2
(f ′′

f ′

)′
.

Then

(2.2) T (r,W ) ≤ 2N̄
(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f ′).
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Proof. From Nevanlinna’s fundamental estimate of the logarithmic derivative
we obtain

m(r,W ) ≤ 3m
(
r,
f ′′

f ′

)
+ S

(
r,
f ′′

f ′

)
+O(1) = S(r, f ′) + S

(
r,
f ′′

f ′

)
.

Since

T
(
r,
f ′′

f ′

)
= N

(
r,
f ′′

f ′

)
+m

(
r,
f ′′

f ′

)
≤ N̄(r, f ′) + N̄

(
r,

1

f ′

)
+ S(r, f ′)

≤ 2T (r, f ′) + S(r, f ′),

this means that

(2.3) m(r,W ) = S(r, f ′).

If z∞ is a simple pole of f , then by an elementary calculation, we deduce
from (2.1) that W is holomorphic at z∞. We can also conclude from (2.1)
that the poles of f with multiplicity p ≥ 2 are poles of W with multiplicity
2 at most. And the zeros of f ′ with multiplicity s ≥ 1 are poles of W with
multiplicity 2. Thus

N(r,W ) ≤ 2N̄
(
r,

1

f ′

)
+ 2N̄(2(r, f).

Together with (2.3) we find (2.2).

Our next lemma give extension of Lemma 2.5 in [1].

Lemma 2.2. Let f ′ be a non-constant meromorphic function, and let β be a
small function of f ′ such that β ̸≡ 0,∞. Then
(2.4)

T (r, f ′) ≤ 2N̄
(
r,

1

f ′

)
+N1)

(
r,

1

f ′ − β

)
+2N̄(2

(
r,

1

f ′ − β

)
+2N̄(2(r, f)+S(r, f ′).

Proof. We set F = f ′/β. Then it is clear that(f ′′

f ′

)2

=
(F ′

F

)2

+ 2
β′

β

(F ′

F

)
+
(β′

β

)2

and (f ′′

f ′

)′
=

(F ′

F

)′
+
(β′

β

)′
=

F ′′

F
−
(F ′

F

)2

+
(β′

β

)′

Substituting these two equations into (2.1) gives

(2.5) W + 2
(β′

β

)′
−
(β′

β

)2

=
F ′

F

(
3
F ′

F
− 2

F ′′

F ′ + 2
β′

β

)
.

We distinguish the following two cases:
Case 1. If

(2.6) W + 2
(β′

β

)′
−

(β′

β

)2

≡ 0.
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Then (2.5) becomes

3
F ′

F
− 2

F ′′

F ′ + 2
β′

β
≡ 0

By integration once,

(2.7) F 3β2 = cF ′2,

where c is a nonzero constant. From (2.7) we obtain

3m(r, F ) ≤ m(r, F ′2) + S(r, f ′) ≤ 2m(r, F ′) + S(r, f ′)

≤ 2m
(
r,
F ′

F

)
+ 2m(r, F ) + S(r, f ′) = 2m(r, F ) + S(r, f ′),

so that

(2.8) m(r, f ′) = S(r, f ′).

We can also conclude from (2.7) that

3N(r, F ) = 2N(r, F ′) + S(r, f ′) = 2
(
N(r, F ) + N̄(r, F )

)
+ S(r, f ′).

That is,
N(r, F ) = 2N̄(r, F ) + S(r, f ′).

This implies that
N(r, f ′) = 2N̄(r, f ′) + S(r, f ′).

Hence
N(r, f) + N̄(r, f) = 2N̄(r, f ′) + S(r, f ′),

which, in view of N̄(r, f) = N̄(r, f ′), leads to N(2(r, f) = S(r, f ′). Combining
this with (2.8) we have

(2.9) T (r, f ′) = 2N1)(r, f) + S(r, f ′).

Now suppose z∞ is a simple pole of f and β(z∞) ̸= 0,∞ (otherwise the counting
function of those simple poles of f which are the zeros or poles of β equal to
S(r, f ′)). Therefore the Laurent expansion of f about z∞ is

(2.10) f(z) = a−1(z − z∞)−1 +O(1),

where a−1 be the residue of f at z∞. It is easy to see from (2.10) and (2.7)
that

4c+ a−1β + 4c
β′

β
(z − z∞) +O(z − z∞)2 ≡ 0,

from which it follows that β′(z∞) = 0. From this, if β′ ̸≡ 0, then from (2.9) we
find that

T (r, f ′) = 2N1)(r, f) + S(r, f ′) ≤ 2N(r,
1

β′ ) + S(r, f ′) = S(r, f ′).
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This is impossible. Therefore, we get β′ ≡ 0. This and (2.6) imply that W ≡ 0.
It follows from this and (2.1) that

2
(f ′′

f ′

)−2(f ′′

f ′

)′
= 1.

By integrating twice we obtain f ′(z) = A/(z +B)2, where A ̸= 0 and B are
constants. From this we see that

N̄
(
r,

1

f ′

)
+ N̄(2

(
r,

1

f ′ − β

)
+ N̄(2(r, f) = 0

and

T (r, f ′) = N1)

(
r,

1

f ′ − β

)
+ S(r, f ′).

In particular, (2.4) holds.
Case 2. If

W + 2
(β′

β

)′
−

(β′

β

)2

̸≡ 0.

Then (2.5) may now be put in the form

1

F − 1
=

( F ′

F − 1
− F ′

F

)( 3F ′

F − 2F ′′

F ′ + 2β′

β

W + 2(β
′

β )′ − (β
′

β )2

)
.

It follows from the fundamental estimate that

(2.11) m
(
r,

1

F − 1

)
≤ m

(
r,

1

W + 2(β
′

β )′ − (β
′

β )2

)
+ S(r, f ′).

If z0 is a zero of F −1 with multiplicity q ≥ 3 and β(z0) ∈ C∪{∞}, then z0
is a simple pole of β′

β at most, z0 is a zero of F ′

F with multiplicity q−1 and z0 is

a zero of F ′′

F with multiplicity q−2. Hence z0 is a zero of 3(F
′

F )2−2F ′′

F +2β′

β (F
′

F )

with multiplicity at least q − 2. It is implied from (2.5) that z0 is a zero of

W + 2(β
′

β )′ − (β
′

β )2 with multiplicity q − 2 at least. Thus,

N(3

(
r,

1

F − 1

)
− 2N̄(3

(
r,

1

F − 1

)
≤ N

(
r,

1

W + 2(β
′

β )′ − (β
′

β )2

)
.

Combining this, (2.11) and Lemma 2.1 yields

m
(
r,

1

F − 1

)
+N(3

(
r,

1

F − 1

)
≤ T

(
r,

1

W + 2(β
′

β )′ − (β
′

β )2

)
+ 2N̄(3

(
r,

1

F − 1

)
+ S(r, f ′)

≤ T (r,W ) + 2N̄(3

(
r,

1

F − 1

)
+ S(r, f ′)

≤ 2N̄
(
r,

1

f ′

)
+ 2N̄(2(r, f)

+ 2N̄(3

(
r,

1

F − 1

)
+ S(r, f ′).(2.12)
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Since

T (r, F ) = m
(
r,

1

F − 1

)
+N

(
r,

1

F − 1

)
+O(1)

= m
(
r,

1

F − 1

)
+N2)

(
r,

1

F − 1

)
+N(3

(
r,

1

F − 1

)
+O(1)

and

N2)

(
r,

1

F − 1

)
+ 2N̄(3

(
r,

1

F − 1

)
= N1)

(
r,

1

F − 1

)
+N=2

(
r,

1

F − 1

)
+ 2N̄(3

(
r,

1

F − 1

)
= N1)

(
r,

1

F − 1

)
+ 2N̄=2

(
r,

1

F − 1

)
+ 2N̄(3

(
r,

1

F − 1

)
= N1)

(
r,

1

F − 1

)
+ 2N̄(2

(
r,

1

F − 1

)
whereN=2(r,

1
F−1 ) (N̄=2(r,

1
F−1 )) denotes the counting function (reduced count-

ing function) of zeros of F−1 with multiplicity = 2, it follows from (2.12) readily
that

T (r, F ) ≤ 2N̄
(
r,

1

f ′

)
+N1)

(
r,

1

F − 1

)
+2N̄(2

(
r,

1

F − 1

)
+2N̄(2(r, f)+S(r, f ′)

From this and F = f ′/β we arrive at the conclusion (2.4).

Lemma 2.3 ([1]). Let k be a positive integer, and let f be a non-constant
meromorphic function. Then either

(2.13) f(z) =
−(k + 1)k+1

ck![z + c1(k + 1)]
+ pk−1(z),

where c ̸= 0, c1 are constants and pk−1 is a polynomial of degree at most k−1,
or

(2.14) kN1)(r, f) ≤ N̄(2(r, f) + N̄
(
r,

1

f (k)

)
+ N̄0

(
r,

1

f (k+1)

)
+ S(r, f).

Lemma 2.4. Let k ≥ 2 be a positive integer, and let f be a non-constant
meromorphic function. Then either (2.13) holds, or

(2.15) N1)(r, f) ≤
2

k − 1
N̄(2(r, f) +

2

k − 1
N̄
(
r,

1

f (k)

)
+ S(r, f).
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Proof. It is clear that

N̄0

(
r,

1

f (k+1)

)
≤ N

(
r,

1

f (k+1)/f (k)

)
≤ T

(
r,
f (k+1)

f (k)

)
+O(1)

= N
(
r,
f (k+1)

f (k)

)
+m

(
r,
f (k+1)

f (k)

)
+O(1)

= N
(
r,
f (k+1)

f (k)

)
+ S(r, f)

≤ N̄
(
r,

1

f (k)

)
+ N̄(r, f) + S(r, f)

= N̄
(
r,

1

f (k)

)
+N1)(r, f) + N̄(2(r, f) + S(r, f)

Combining this with (2.14) we obtain (2.15). �

Lemma 2.5. Let k ≥ 2 be a positive integer, let f be a non-constant mero-
morphic function and let β ̸≡ 0,∞ be a meromorphic small function of f . If f
and f (k) share β CM, then only (2.15) holds.

Proof. Assume that (2.15) is not true. Then from Lemma 2.4 we have (2.13).
It follows that

T (r, f (k)) = (k + 1)T (r, z) +O(1) = (k + 1)logr +O(1),

from which we deduce β is a constant. Thus from (2.13) we find f − β has at
most k of zeros, while f (k) − β has exactly k + 1 of zeros. So f and f (k) can
not share β CM which contradicts the condition of Lemma 2.5.

Lemma 2.6. Let k be a positive integer, let f be a non-constant meromorphic
function and let β ̸≡ 0,∞ be a meromorphic small function of f . If f and f (k)

share β CM, then only (2.14) holds.

Proof. By using the same methods as those in proof of Lemma 2.5, we obtain
only (2.14).

3. Proof of Theorem 1.1

Since f and f ′ share β CM, every S(r, f) is also S(r, f ′) and vice versa.
Suppose that (1.1) is not true. In view of

T (r, f (k)) = m(r, f (k)) +N(r, f (k)) = m(r, f (k)) +N(r, f) + kN̄(r, f),

from this and Theorem B we obtain that

m(r, f (k)) +N(2(r, f)− N̄(2(r, f) ≤ (k + 1)N̄
(
r,

1

f (k)

)
+ S(r, f).

Hence

(3.1) N̄(2(r, f) ≤ (k + 1)N̄
(
r,

1

f (k)

)
+ S(r, f).
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We discuss the following three cases:
Case I. k ≥ 2. Then from Lemma 2.5 and (3.1) we obtain

N1)(r, f) ≤
2(k + 2)

(k − 1)
N̄
(
r,

1

f (k)

)
+ S(r, f).

It follows from this, (1.2) and (3.1) that

T (r, f (k)) ≤ (k + 1)
[
N̄
(
r,

1

f (k)

)
+N1)(r, f) + N̄(2(r, f)

]
+ S(r, f)

≤ (k + 2)(k + 1)2

(k − 1)
N̄
(
r,

1

f (k)

)
+ S(r, f (k)).

This is (1.3) when k ≥ 2.
Case II. k = 1 and β′ ̸≡ 0. Suppose z1 is a zero of f − β. Then

(3.2) f(z)− β(z) = an(z − z1)
n + . . . , an ̸= 0.

Since f and f ′ share β CM,

(3.3) f ′(z)− β(z) = bn(z − z1)
n + . . . , bn ̸= 0.

Differentiating (3.2) once we obtain

(3.4) f ′(z)− β′(z) = nan(z − z1)
n−1 + . . . .

Eliminating f ′(z) between (3.3) and (3.4) leads to

(3.5) β′(z)− β(z) = −nan(z − z1)
n−1 + . . . .

If β′ ≡ β, then from (3.5) we find an = 0, a contradiction. Therefore we must
have β′ ̸≡ β. Further,

(3.6) N(2

(
r,

1

f − β

)
= N(2

(
r,

1

f ′ − β

)
≤ 2N

(
r,

1

β′ − β

)
= S(r, f).

We set

(3.7) H =
(f ′/β)′(f − β)

f ′(f ′ − β)
=

f − β

β2

[ (f ′/β)′

(f ′/β)− 1
− (f ′/β)′

f ′/β

]
.

Then it is clear that

(3.8) m(r,H) ≤ m(r, f) + S(r, f).

From (3.7) we see that if z∞ is a pole of f with multiplicity p ≥ 1 and β(z∞) ̸=
0,∞ (otherwise the counting function of those poles of f which are the zeros
or poles of β is equal to S(r, f)),

(3.9) H(z∞) =
1

β(z∞)

(p+ 1

p

)
.
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It follows from (3.2), (3.3) and (3.4) that if z1 is a simple zero of f − β and
β(z1) ̸= 0,∞ (otherwise the counting function of those simple zero of f − β
which are the zeros or poles of β is equal to S(r, f)), then

(3.10) H(z1) =
(β − β′

β2

)
(z1).

Thus the pole of H can only occur at zeros of f ′. However, the zeros of f ′

with multiplicity s ≥ 1 are poles of H with multiplicity 1. Therefore from this,
(3.8), (3.9), (3.10) and (3.6) we get

(3.11) T (r,H) ≤ m(r, f) +N(r,H) ≤ N̄
(
r,

1

f ′

)
+m(r, f) + S(r, f).

We consider the following two subcases:

Case II.1. H ≡ β−β′

β2 . From this and (3.9) (when p = 1) we know that if

z∞ is a simple pole of f and β(z∞) ̸= 0,∞ (otherwise the counting function of
those simple poles of f which are the zeros or poles of β equal to S(r, f)), then
(β + β′)(z∞) = 0. If β + β′ ̸≡ 0,

(3.12) N1)(r, f) ≤ N
(
r,

1

β + β′

)
+ S(r, f) = S(r, f).

Therefore (1.2), (3.12) and (3.1) give that

T (r, f ′) ≤ 6N̄
(
r,

1

f ′

)
+ S(r, f ′).

In particular, (1.3) holds when k = 1 and β′ ̸≡ 0.

If β + β′ ≡ 0, from this, H ≡ β−β′

β2 and (3.7) we find that

(3.13)
f ′′

f ′ + 1 = 2
(f ′ − β

f − β

)
.

From this and β + β′ ≡ 0 we see that

2
(f ′ − β′

f − β
− f ′′ − β′

f ′ − β

)
+

f ′′

f ′ = 1.

Integrating both sides we obtain

(3.14)
(f ′ − β

f − β

)2

= cβf ′,

where c is a nonzero constant. Eliminating (f ′−β)/(f−β) between (3.13) and
(3.14) leads to

(3.15)
(f ′′

f ′ + 1
)2

= 4cβf ′.
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Differentiating both sides of (3.15) with respect to z and then using β+β′ ≡ 0
we obtain

2
(f ′′

f ′ + 1
)(f ′′

f ′

)′
= 4cβ′f ′ + 4cβf ′′ = −4cβf ′ + 4cβf ′′ = 4cβf ′

(f ′′

f ′ − 1
)
,

and eliminating 4cβf ′ between this and (3.15) gives

2
(f ′′

f ′ + 1
)(f ′′

f ′

)′
=

(f ′′

f ′ + 1
)2(f ′′

f ′ − 1
)
.

Since, by (3.15), f ′′

f ′ + 1 ̸≡ 0, therefore

2
(f ′′

f ′

)′
=

(f ′′

f ′ + 1
)(f ′′

f ′ − 1
)
=

(f ′′

f ′

)2

− 1.

From this and (2.1) we find that

W =
(f ′′

f ′

)2

− 2
(f ′′

f ′

)′
≡ 1.

Together with (2.1) we have (f ′′/f ′)2 − 2(f ′′/f ′)′ − 1 = 0, which may also be
written in the form

(f ′′/f ′)′

(f ′′/f ′)− 1
− (f ′′/f ′)′

(f ′′/f ′) + 1
= 1.

By integrating once and then using β + β′ ≡ 0 we conclude T (r, f ′) = S(r, f ′)
which is a contradiction.

Case II.2. H ̸≡ β−β′

β2 . Then by (3.10) and (3.11) we find that

N1)

(
r,

1

f − β

)
≤ N

(
r,

1

H − β−β′

β2

)
≤ T (r,H) + S(r, f)

≤ N̄
(
r,

1

f ′

)
+m(r, f) + S(r, f).

Combining this with (3.6) we obtain

(3.16) N
(
r,

1

f − β

)
≤ N̄

(
r,

1

f ′

)
+m(r, f) + S(r, f).

Since f and f ′ share β CM, every small function of f is small function of f ′ and
vice versa. Now applying Lemma 2.2 to β′ and then using the first fundamental
theorem we deduce that

(3.17) m
(
r,

1

f ′ − β′

)
≤ 2N̄

(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f).

Since, by Milloux theory [5], we find that

m
(
r,

1

f − β

)
≤ m

(
r,
f ′ − β′

f − β

)
+m

(
r,

1

f ′ − β′

)
≤ m

(
r,

1

f ′ − β′

)
+ S(r, f).
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From this, (3.17), (3.16) and the first fundamental theorem we see that

T (r, f) ≤ m(r, f) + 3N̄
(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f).

This implies that

N1)(r, f) ≤ 3N̄
(
r,

1

f ′

)
+ S(r, f).

Thus we find from this, (1.2) and (3.1) that

T (r, f ′) ≤ 12N̄
(
r,

1

f ′

)
+ S(r, f ′).

This is (1.3) when k = 1 and β′ ̸≡ 0.

Case III. k = 1 and β′ ≡ 0. Without loss of generality, we suppose β = 1,
otherwise we make the transformation (1/β)f . As in [3] we set

(3.18) F = 2
( f ′

f − 1
− f ′′

f ′ − 1

)
+

f ′′

f ′ .

From the fundamental estimate of the logarithmic derivative,m(r, F ) = S(r, f).
If z∞ is a simple pole of f , then from (3.18) we see that F can be continued
holomorphically at z∞. Since f and f ′ share 1 CM, we can also find from (3.18)
that F can be continued holomorphically at the zeros of f − 1 or f ′ − 1. Thus,

(3.19) T (r, F ) = N(r, F ) +m(r, F ) ≤ N̄
(
r,

1

f ′

)
+ N̄(2(r, f) + S(r, f).

Let z2 be a zero of f ′′ which is not a zero of f ′. Since f and f ′ share 1 CM,
N(2(r,

1
f−1 ) = N(2(r,

1
f ′−1 ) = 0. Hence f ′(z2) ̸= 1 and f(z2) ̸= 1. From (3.18)

we see that

F (z2) =
2f ′(z2)

f(z2)− 1
.

Differentiating (3.18) and then using f ′′(z2) = 0, we arrive at

F ′(z2) = −2
(( f ′(z2)

f(z2)− 1

)2

+
f ′′′(z2)

f ′(z2)− 1

)
+

f ′′′(z2)

f ′(z2)
.

Combining these two equations we obtain

−2F ′(z2) = F 2(z2) +
4f ′′′(z2)

f ′(z2)− 1
− 2f ′′′(z2)

f ′(z2)
.

On the other hand, by (2.1) we find that

W (z2) = −2f ′′′(z2)

f ′(z2)
.

Substituting this into the last equation gives

(3.20) f ′(z2)
(
F 2(z2) + 2F ′(z2)−W (z2)

)
= F 2(z2) + 2F ′(z2) +W (z2).
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If F 2(z2) + 2F ′(z2)−W (z2) = 0, from (3.20) we get W (z2) = 0. If W ≡ 0, we
may deduce from (2.1) that f and f ′ can not share β CM which contradicts
the condition of Theorem 1.1. Therefore, we have W ̸≡ 0. Consequently, from
(2.2) and (3.1),

N̄0

(
r,

1

f ′′

)
≤ N

(
r,

1

W

)
≤ T (r,W ) +O(1)

≤ 2N̄
(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f)

≤ 6N̄
(
r,

1

f ′

)
+ S(r, f).(3.21)

From Lemma 2.6, (3.1), (3.21) and (1.2) we obtain

T (r, f ′) ≤ 24N̄
(
r,

1

f ′

)
+ S(r, f ′) ≤ 36N̄

(
r,

1

f ′

)
+ S(r, f ′).

This is (1.3) when k = 1 and β′ ≡ 0.

In the following, we assume F 2(z2)+2F ′(z2)−W (z2) ̸= 0. We write (3.20)
as

(3.22) f ′(z2) =
F 2(z2) + 2F ′(z2) +W (z2)

F 2(z2) + 2F ′(z2)−W (z2)
.

Suppose z1 is a zero of f −1. Since f and f ′ share 1 CM, the Taylor expansion
of f about z1 is

f(z)− 1 = (z − z1) + a2(z − z1)
2 + a3(z − z1)

3 + . . . , a2 ̸= 0.

It follows from (3.18) and (2.1) that

F (z1) = 4a2 −
3a3
a2

and W (z1) = 12(a22 − a3).

That is,

2f ′′2(z1)−F (z1)f
′′(z1)− f ′′′(z1) = 0 and 3f ′′2(z1)− 2f ′′′(z1)−W (z1) = 0,

and eliminating f ′′2(z1) from the last equations we obtain

(3.23) f ′′′(z1)− 3F (z1)f
′′(z1) + 2W (z1) = 0.

Now we consider the following function

(3.24) Ω =
f ′′′ − 3Ff ′′ + 2Wf ′

f ′(f ′ − 1)
.

If we now eliminate f ′′′ between (3.24) and (2.1) we obtain

(3.25) 2Ωf ′2(f ′ − 1) = 3f ′′2 + 3Wf ′2 − 6Ff ′f ′′,
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which, in view of (3.22), leads to

4Ω(z2) = 3
(
F 2(z2) + 2F ′(z2)−W (z2)

)
.

If 4Ω ̸≡ 3(F 2 + 2F ′ −W ), then

N̄0

(
r,

1

f ′′

)
≤ N

(
r,

1

4Ω− 3(F 2 + 2F ′ −W )

)
≤ T (r, 4Ω− 3(F 2 + 2F ′ −W )) +O(1)

≤ m(r,Ω) +N
(
r, 4Ω− 3(F 2 + 2F ′ −W )

)
+ S(r, f)

≤ m
(
r,

1

f ′ − 1

)
+ 2N̄

(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f).(3.26)

By Lemma 2.2,

m
(
r,

1

f ′ − 1

)
≤ 2N̄

(
r,

1

f ′

)
+ 2N̄(2(r, f) + S(r, f).

Combining this with (3.26) we find that

N̄0

(
r,

1

f ′′

)
≤ 4N̄

(
r,

1

f ′

)
+ 4N̄(2(r, f) + S(r, f),

which together with Lemma 2.6, (3.1) and (1.2) implies that

T (r, f ′) ≤ 36N̄
(
r,

1

f ′

)
+ S(r, f ′).

This is the third part of (1.3).

If 4Ω ≡ 3(F 2 + 2F ′ −W ), then from (3.25) we have

(3.27) (F 2 + 2F ′ −W )f ′2(f ′ − 1) = 2f ′′2 + 2Wf ′2 − 4Ff ′f ′′.

Differentiating this and then using f ′′(z2) = 0, (2.1) and (3.22) we get( (F 2 + 2F ′ −W )′

F 2 + 2F ′ −W

)
(z2) =

(W ′

W
+ F

)
(z2).

If (F 2+2F ′−W )′

F 2+2F ′−W ̸≡ W ′

W +F , then from (2.1), (3.18), (2.2) and ((3.19)) we deduce
that

N̄0

(
r,

1

f ′′

)
≤ N

(
r,

1
(F 2+2F ′−W )′

F 2+2F ′−W − W ′

W − F

)
≤ T

(
r,
(F 2 + 2F ′ −W )′

F 2 + 2F ′ −W
− W ′

W
− F

)
+O(1)

= N
(
r,
(F 2 + 2F ′ −W )′

F 2 + 2F ′ −W
− W ′

W
− F

)
+ S(r, f)

≤ N̄
(
r,

1

W

)
+ N̄(r,W ) + N̄

(
r,

1

F 2 + 2F ′ −W

)
+ S(r, f)

≤ 2T (r,W ) +N(r, F 2 + 2F ′ −W ) + S(r, f)

≤ 4N̄
(
r,

1

f ′

)
+ 4N̄(2(r, f) + S(r, f).
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Together with Lemma 2.6, (1.2) and (3.1) we get

T (r, f ′) ≤ 36N̄
(
r,

1

f ′

)
+ S(r, f ′).

This is (1.3) when k = 1 and β′ ≡ 0.

If (F 2+2F ′−W )′

F 2+2F ′−W ≡ W ′

W + F , then by integrating once,

F 2 + 2F ′ −W = cf ′W
( f − 1

f ′ − 1

)2

,

from which it follows that N̄(r, 1/f ′) = 0 and

m
(
r,

1

f − 1

)
≤ m

(
r,

1

f ′ − 1

)
+ N̄(2(r, f) + S(r, f).

From this and Lemma 2.2 we see that

m
(
r,

1

f − 1

)
≤ 3N̄(2(r, f) + S(r, f).

On the other hand, it is clear that the formulas from (3.2) into (3.16) remain
true if we replace β by 1. Thus, we have

N
(
r,

1

f − 1

)
≤ m(r, f) + S(r, f).

Combining these two inequalities we obtain

T (r, f) ≤ m(r, f) + 3N̄(2(r, f) + S(r, f).

We may conclude that

N1)(r, f) ≤ N̄(2(r, f) + S(r, f).

Together with (1.2) and (3.1) we see that

T (r, f ′) ≤ 10N̄
(
r,

1

f ′

)
+ S(r, f ′).

The proof is complete. �
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