MEROMORPHIC FUNCTIONS AND THEIR kth DERIVATIVE SHARE ONLY ONE SMALL FUNCTION CM

Amer H. H. Al-Khaladim

Abstract

It is shown that if a non-constant meromorphic function f and its derivative $f^{(k)}$ share one meromorphic small function $\beta \not \equiv 0, \infty$ CM (counting multiplicities), then either $T\left(r, f^{(k)}\right)=O\left(\bar{N}\left(r, \frac{1}{f^{(k)}}\right)\right)$ or $f-\beta=\left(1-\frac{p_{k-1}}{\beta}\right)\left(f^{(k)}-\beta\right)$, where p_{k-1} is a polynomial of degree at most $k-1$ and $1-\frac{p_{k-1}}{\beta} \not \equiv 0$. This result answers Brück's question and improves Al-Khaladi's result.

AMS Mathematics Subject Classification (2010): 30D35
Key words and phrases: small function, uniqueness theorem, Nevanlinna theory, share CM

1. Introduction and main results

In this paper, by meromorphic function we always mean a function which is meromorphic in the whole complex plane. We use the notation of the Nevanlinna theory of meromorphic functions (see [5], [$[\mathbb{Z}]$). By $S(r, f)$ we denote any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of r with finite linear measure. Then the meromorphic function β is called a small function of f if $T(r, \beta)=S(r, f)$. We say that two non-constant meromorphic functions f and g share a small function β CM (counting multiplicities) if $f-\beta$ and $g-\beta$ have the same zeros with the same multiplicities. Let k be a positive integer, and let b be a small function of f or ∞, we denote by $N_{k)}\left(r, \frac{1}{f-b}\right)$ the counting function of b-points of f with multiplicity $\leq k$ and by $N_{(k+1}\left(r, \frac{1}{f-b}\right)$ the counting function of b-points of f with multiplicity $>k$. In the same way we define $\bar{N}_{k)}\left(r, \frac{1}{f-b}\right)$ and $\bar{N}_{(k+1}\left(r, \frac{1}{f-b}\right)$ where in counting the b-points of f we ignore the multiplicities (see $[\boxed{Z}]$). Finally we denote by $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ the counting function of the zeros of $f^{(k+1)}$ that are not zeros of $f^{(k)}$, where these zeros are counted according to their multiplicity while $\bar{N}_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ counts these zeros only once.

Now we move to the problems of uniqueness of an entire function and its derivative that share some values. Rubel-Yang (see [6]) proved that if the entire function f and f^{\prime} share two distinct finite values CM then $f \equiv f^{\prime}$. In general, this result is false if f and f^{\prime} share only one value. This may be seen in the examples given in [4]. Now the following question may be raised (see [4]). What conclusion can be made, if f and f^{\prime} share only one value? In 1998, Zhang [9] answered this question and proved the following:

[^0]Theorem A. Let f be a non-constant meromorphic function. If f and f^{\prime} share the value $1 C M$, then either $f-1=c\left(f^{\prime}-1\right)$, where c is a nonzero constant, or

$$
T\left(r, f^{\prime}\right) \leq 2 N\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}(r, f)+S(r, f)
$$

In 2010 Al -Khaladi [2] improved and generalized this result and proved the following:
Theorem B. Let f be a non-constant meromorphic function and let $\beta \not \equiv 0, \infty$ be a meromorphic small function of f. If f and $f^{(k)}$ share $\beta C M$, then either

$$
\begin{equation*}
f-\beta=\left(1-\frac{p_{k-1}}{\beta}\right)\left(f^{(k)}-\beta\right) \tag{1.1}
\end{equation*}
$$

where p_{k-1} is a polynomial of degree at most $k-1$ and $1-\frac{p_{k-1}}{\beta} \not \equiv 0$, or

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \leq(k+1) \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+(k+1) \bar{N}(r, f)+S(r, f) \tag{1.2}
\end{equation*}
$$

The aim of this paper is to show that the term involving $\bar{N}(r, f)$ in ($\mathbb{L 2}$) can be dropped completely if one allows a large factor of $\bar{N}\left(r, 1 / f^{(k)}\right)$. Note that in general situation one can omit $\bar{N}(r, f)$ be adding $\varepsilon T(r, f)$ ([7]). In fact, we shall prove the following theorem:
Theorem 1.1. Let f be a non-constant meromorphic function and let $\beta \not \equiv 0, \infty$ be a meromorphic small function of f. If f and $f^{(k)}$ share $\beta C M$, then either (ㄴ.】) holds, or

$$
T\left(r, f^{(k)}\right) \leq \begin{cases}\frac{(k+1)^{2}(k+2)}{k-1} \bar{N}\left(r, 1 / f^{(k)}\right)+S\left(r, f^{(k)}\right) & \text { if } k \geq 2 \tag{1.3}\\ 12 \bar{N}\left(r, 1 / f^{\prime}\right)+S\left(r, f^{\prime}\right) & \text { if } k=1 \text { and } \beta^{\prime} \not \equiv 0 \\ 36 \bar{N}\left(r, 1 / f^{\prime}\right)+S\left(r, f^{\prime}\right) & \text { if } k=1 \text { and } \beta^{\prime} \equiv 0\end{cases}
$$

From Theorem IL.l, we immediately deduce the following corollary:
Corollary 1.2. Let f be a non-constant meromorphic function and let $\beta \not \equiv$ $0, \infty$ be a meromorphic small function of f. If f and $f^{(k)}$ share $\beta C M$, and if $\bar{N}\left(r, 1 / f^{(k)}\right)=S(r, f)$, then ([్ర) holds.

2. Some lemmas

For the proof of our theorem we need the following lemmas:
Lemma 2.1. Let f^{\prime} be a non-constant meromorphic function and let

$$
\begin{equation*}
W=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}-2\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime} \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
T(r, W) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S\left(r, f^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Proof. From Nevanlinna's fundamental estimate of the logarithmic derivative we obtain

$$
m(r, W) \leq 3 m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+S\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+O(1)=S\left(r, f^{\prime}\right)+S\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)
$$

Since

$$
\begin{aligned}
T\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right) & =N\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right) \leq \bar{N}\left(r, f^{\prime}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right) \\
& \leq 2 T\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right)
\end{aligned}
$$

this means that

$$
\begin{equation*}
m(r, W)=S\left(r, f^{\prime}\right) \tag{2.3}
\end{equation*}
$$

If z_{∞} is a simple pole of f, then by an elementary calculation, we deduce from (2.1) that W is holomorphic at z_{∞}. We can also conclude from ([2.1) that the poles of f with multiplicity $p \geq 2$ are poles of W with multiplicity 2 at most. And the zeros of f^{\prime} with multiplicity $s \geq 1$ are poles of W with multiplicity 2 . Thus

$$
N(r, W) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)
$$

Together with (2.3) we find (2.2).
Our next lemma give extension of Lemma 2.5 in [T].
Lemma 2.2. Let f^{\prime} be a non-constant meromorphic function, and let β be a small function of f^{\prime} such that $\beta \not \equiv 0, \infty$. Then
$T\left(r, f^{\prime}\right) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+N_{1)}\left(r, \frac{1}{f^{\prime}-\beta}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-\beta}\right)+2 \bar{N}_{(2}(r, f)+S\left(r, f^{\prime}\right)$.
Proof. We set $F=f^{\prime} / \beta$. Then it is clear that

$$
\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}=\left(\frac{F^{\prime}}{F}\right)^{2}+2 \frac{\beta^{\prime}}{\beta}\left(\frac{F^{\prime}}{F}\right)+\left(\frac{\beta^{\prime}}{\beta}\right)^{2}
$$

and

$$
\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}=\left(\frac{F^{\prime}}{F}\right)^{\prime}+\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}=\frac{F^{\prime \prime}}{F}-\left(\frac{F^{\prime}}{F}\right)^{2}+\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}
$$

Substituting these two equations into (2.1) gives

$$
\begin{equation*}
W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2}=\frac{F^{\prime}}{F}\left(3 \frac{F^{\prime}}{F}-2 \frac{F^{\prime \prime}}{F^{\prime}}+2 \frac{\beta^{\prime}}{\beta}\right) \tag{2.5}
\end{equation*}
$$

We distinguish the following two cases:
Case 1. If

$$
\begin{equation*}
W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2} \equiv 0 \tag{2.6}
\end{equation*}
$$

Then (2.5) becomes

$$
3 \frac{F^{\prime}}{F}-2 \frac{F^{\prime \prime}}{F^{\prime}}+2 \frac{\beta^{\prime}}{\beta} \equiv 0
$$

By integration once,

$$
\begin{equation*}
F^{3} \beta^{2}=c F^{\prime 2} \tag{2.7}
\end{equation*}
$$

where c is a nonzero constant. From ([2.]) we obtain

$$
\begin{aligned}
3 m(r, F) & \leq m\left(r,{F^{\prime 2}}^{2}\right)+S\left(r, f^{\prime}\right) \leq 2 m\left(r, F^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& \leq 2 m\left(r, \frac{F^{\prime}}{F}\right)+2 m(r, F)+S\left(r, f^{\prime}\right)=2 m(r, F)+S\left(r, f^{\prime}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
m\left(r, f^{\prime}\right)=S\left(r, f^{\prime}\right) \tag{2.8}
\end{equation*}
$$

We can also conclude from (2.7) that

$$
3 N(r, F)=2 N\left(r, F^{\prime}\right)+S\left(r, f^{\prime}\right)=2(N(r, F)+\bar{N}(r, F))+S\left(r, f^{\prime}\right)
$$

That is,

$$
N(r, F)=2 \bar{N}(r, F)+S\left(r, f^{\prime}\right)
$$

This implies that

$$
N\left(r, f^{\prime}\right)=2 \bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right)
$$

Hence

$$
N(r, f)+\bar{N}(r, f)=2 \bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right)
$$

which, in view of $\bar{N}(r, f)=\bar{N}\left(r, f^{\prime}\right)$, leads to $N_{(2}(r, f)=S\left(r, f^{\prime}\right)$. Combining this with (2.8) we have

$$
\begin{equation*}
T\left(r, f^{\prime}\right)=2 N_{1)}(r, f)+S\left(r, f^{\prime}\right) \tag{2.9}
\end{equation*}
$$

Now suppose z_{∞} is a simple pole of f and $\beta\left(z_{\infty}\right) \neq 0, \infty$ (otherwise the counting function of those simple poles of f which are the zeros or poles of β equal to $\left.S\left(r, f^{\prime}\right)\right)$. Therefore the Laurent expansion of f about z_{∞} is

$$
\begin{equation*}
f(z)=a_{-1}\left(z-z_{\infty}\right)^{-1}+O(1) \tag{2.10}
\end{equation*}
$$

where a_{-1} be the residue of f at z_{∞}. It is easy to see from ([2.]IU) and ([2.7) that

$$
4 c+a_{-1} \beta+4 c \frac{\beta^{\prime}}{\beta}\left(z-z_{\infty}\right)+O\left(z-z_{\infty}\right)^{2} \equiv 0
$$

from which it follows that $\beta^{\prime}\left(z_{\infty}\right)=0$. From this, if $\beta^{\prime} \not \equiv 0$, then from ($\left.2 . \underline{1}\right)$ we find that

$$
T\left(r, f^{\prime}\right)=2 N_{1)}(r, f)+S\left(r, f^{\prime}\right) \leq 2 N\left(r, \frac{1}{\beta^{\prime}}\right)+S\left(r, f^{\prime}\right)=S\left(r, f^{\prime}\right)
$$

This is impossible. Therefore, we get $\beta^{\prime} \equiv 0$. This and (2.6) imply that $W \equiv 0$. It follows from this and (ㄹ..]) that

$$
2\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{-2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}=1
$$

By integrating twice we obtain $f^{\prime}(z)=A /(z+B)^{2}$, where $A \neq 0$ and B are constants. From this we see that

$$
\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-\beta}\right)+\bar{N}_{(2}(r, f)=0
$$

and

$$
T\left(r, f^{\prime}\right)=N_{1)}\left(r, \frac{1}{f^{\prime}-\beta}\right)+S\left(r, f^{\prime}\right)
$$

In particular, ([2.4) holds.
Case 2. If

$$
W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2} \not \equiv 0
$$

Then (2.5) may now be put in the form

$$
\frac{1}{F-1}=\left(\frac{F^{\prime}}{F-1}-\frac{F^{\prime}}{F}\right)\left(\frac{3 \frac{F^{\prime}}{F}-2 \frac{F^{\prime \prime}}{F^{\prime}}+2 \frac{\beta^{\prime}}{\beta}}{W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2}}\right) .
$$

It follows from the fundamental estimate that

$$
\begin{equation*}
m\left(r, \frac{1}{F-1}\right) \leq m\left(r, \frac{1}{W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2}}\right)+S\left(r, f^{\prime}\right) \tag{2.11}
\end{equation*}
$$

If z_{0} is a zero of $F-1$ with multiplicity $q \geq 3$ and $\beta\left(z_{0}\right) \in \mathbb{C} \cup\{\infty\}$, then z_{0} is a simple pole of $\frac{\beta^{\prime}}{\beta}$ at most, z_{0} is a zero of $\frac{F^{\prime}}{F}$ with multiplicity $q-1$ and z_{0} is a zero of $\frac{F^{\prime \prime}}{F}$ with multiplicity $q-2$. Hence z_{0} is a zero of $3\left(\frac{F^{\prime}}{F}\right)^{2}-2 \frac{F^{\prime \prime}}{F}+2 \frac{\beta^{\prime}}{\beta}\left(\frac{F^{\prime}}{F}\right)$ with multiplicity at least $q-2$. It is implied from (2.5) that z_{0} is a zero of $W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2}$ with multiplicity $q-2$ at least. Thus,

$$
N_{(3}\left(r, \frac{1}{F-1}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right) \leq N\left(r, \frac{1}{W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2}}\right) .
$$

Combining this, (

$$
\begin{aligned}
& m\left(r, \frac{1}{F-1}\right)+N_{(3}\left(r, \frac{1}{F-1}\right) \\
& \quad \leq T\left(r, \frac{1}{W+2\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}-\left(\frac{\beta^{\prime}}{\beta}\right)^{2}}\right) \\
& \quad+2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right)+S\left(r, f^{\prime}\right) \\
& \quad \leq T(r, W)+2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right)+S\left(r, f^{\prime}\right) \\
& \quad \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f) \\
& \quad+2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right)+S\left(r, f^{\prime}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
T(r, F) & =m\left(r, \frac{1}{F-1}\right)+N\left(r, \frac{1}{F-1}\right)+O(1) \\
& =m\left(r, \frac{1}{F-1}\right)+N_{2)}\left(r, \frac{1}{F-1}\right)+N_{(3}\left(r, \frac{1}{F-1}\right)+O(1)
\end{aligned}
$$

and

$$
\begin{aligned}
N_{2)} & \left(r, \frac{1}{F-1}\right)+2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right) \\
= & N_{1)}\left(r, \frac{1}{F-1}\right)+N_{=2}\left(r, \frac{1}{F-1}\right) \\
+ & 2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right) \\
= & N_{1)}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{=2}\left(r, \frac{1}{F-1}\right) \\
+ & 2 \bar{N}_{(3}\left(r, \frac{1}{F-1}\right) \\
= & N_{1)}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{F-1}\right)
\end{aligned}
$$

where $N_{=2}\left(r, \frac{1}{F-1}\right)\left(\bar{N}_{=2}\left(r, \frac{1}{F-1}\right)\right)$ denotes the counting function (reduced counting function) of zeros of $F-1$ with multiplicity $=2$, it follows from ($\mathbb{Z , L 2}$) readily that
$T(r, F) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+N_{1)}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{(2}(r, f)+S\left(r, f^{\prime}\right)$
From this and $F=f^{\prime} / \beta$ we arrive at the conclusion (2.4).

Lemma 2.3 ([T]). Let k be a positive integer, and let f be a non-constant meromorphic function. Then either

$$
\begin{equation*}
f(z)=\frac{-(k+1)^{k+1}}{c k!\left[z+c_{1}(k+1)\right]}+p_{k-1}(z) \tag{2.13}
\end{equation*}
$$

where $c \neq 0, c_{1}$ are constants and p_{k-1} is a polynomial of degree at most $k-1$, or

$$
\begin{equation*}
k N_{1)}(r, f) \leq \bar{N}_{(2}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \tag{2.14}
\end{equation*}
$$

Lemma 2.4. Let $k \geq 2$ be a positive integer, and let f be a non-constant meromorphic function. Then either ([2.]3) holds, or

$$
\begin{equation*}
N_{1)}(r, f) \leq \frac{2}{k-1} \bar{N}_{(2}(r, f)+\frac{2}{k-1} \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) . \tag{2.15}
\end{equation*}
$$

Proof. It is clear that

$$
\begin{aligned}
\bar{N}_{0}\left(r, \frac{1}{f^{(k+1)}}\right) & \leq N\left(r, \frac{1}{f^{(k+1)} / f^{(k)}}\right) \leq T\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+O(1) \\
& =N\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+m\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+O(1) \\
& =N\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+\bar{N}(r, f)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+N_{1)}(r, f)+\bar{N}_{(2}(r, f)+S(r, f)
\end{aligned}
$$

Combining this with (2.54) we obtain (2.15).
Lemma 2.5. Let $k \geq 2$ be a positive integer, let f be a non-constant meromorphic function and let $\beta \not \equiv 0, \infty$ be a meromorphic small function of f. If f and $f^{(k)}$ share $\beta C M$, then only ([2.15) holds.

Proof. Assume that (넌) is not true. Then from Lemma 2.4 we have ([.]3). It follows that

$$
T\left(r, f^{(k)}\right)=(k+1) T(r, z)+O(1)=(k+1) \log r+O(1),
$$

from which we deduce β is a constant. Thus from (L.J3) we find $f-\beta$ has at most k of zeros, while $f^{(k)}-\beta$ has exactly $k+1$ of zeros. So f and $f^{(k)}$ can not share β CM which contradicts the condition of Lemma 2.5.

Lemma 2.6. Let k be a positive integer, let f be a non-constant meromorphic function and let $\beta \not \equiv 0, \infty$ be a meromorphic small function of f. If f and $f^{(k)}$ share β CM, then only (ㄹ.T4) holds.

Proof. By using the same methods as those in proof of Lemma [2.5, we obtain only (2.14).

3. Proof of Theorem I. 1

Since f and f^{\prime} share β CM, every $S(r, f)$ is also $S\left(r, f^{\prime}\right)$ and vice versa. Suppose that ([.]) is not true. In view of

$$
T\left(r, f^{(k)}\right)=m\left(r, f^{(k)}\right)+N\left(r, f^{(k)}\right)=m\left(r, f^{(k)}\right)+N(r, f)+k \bar{N}(r, f),
$$

from this and Theorem B we obtain that

$$
m\left(r, f^{(k)}\right)+N_{(2}(r, f)-\bar{N}_{(2}(r, f) \leq(k+1) \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
$$

Hence

$$
\begin{equation*}
\bar{N}_{(2}(r, f) \leq(k+1) \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \tag{3.1}
\end{equation*}
$$

We discuss the following three cases:
Case I. $k \geq 2$. Then from Lemma 2.5 and (3.CI) we obtain

$$
N_{1)}(r, f) \leq \frac{2(k+2)}{(k-1)} \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
$$

It follows from this, ([.2) and (ㄹ.ा) that

$$
\begin{aligned}
T\left(r, f^{(k)}\right) & \leq(k+1)\left[\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+N_{1)}(r, f)+\bar{N}_{(2}(r, f)\right]+S(r, f) \\
& \leq \frac{(k+2)(k+1)^{2}}{(k-1)} \bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S\left(r, f^{(k)}\right)
\end{aligned}
$$

This is (【.3) when $k \geq 2$.
Case II. $k=1$ and $\beta^{\prime} \not \equiv 0$. Suppose z_{1} is a zero of $f-\beta$. Then

$$
\begin{equation*}
f(z)-\beta(z)=a_{n}\left(z-z_{1}\right)^{n}+\ldots, \quad a_{n} \neq 0 . \tag{3.2}
\end{equation*}
$$

Since f and f^{\prime} share $\beta \mathrm{CM}$,

$$
\begin{equation*}
f^{\prime}(z)-\beta(z)=b_{n}\left(z-z_{1}\right)^{n}+\ldots, \quad b_{n} \neq 0 . \tag{3.3}
\end{equation*}
$$

Differentiating (3.2) once we obtain

$$
\begin{equation*}
f^{\prime}(z)-\beta^{\prime}(z)=n a_{n}\left(z-z_{1}\right)^{n-1}+\ldots . \tag{3.4}
\end{equation*}
$$

Eliminating $f^{\prime}(z)$ between (3.3) and (3.4) leads to

$$
\begin{equation*}
\beta^{\prime}(z)-\beta(z)=-n a_{n}\left(z-z_{1}\right)^{n-1}+\ldots \tag{3.5}
\end{equation*}
$$

If $\beta^{\prime} \equiv \beta$, then from (3.5) we find $a_{n}=0$, a contradiction. Therefore we must have $\beta^{\prime} \not \equiv \beta$. Further,

$$
\begin{equation*}
N_{(2}\left(r, \frac{1}{f-\beta}\right)=N_{(2}\left(r, \frac{1}{f^{\prime}-\beta}\right) \leq 2 N\left(r, \frac{1}{\beta^{\prime}-\beta}\right)=S(r, f) \tag{3.6}
\end{equation*}
$$

We set

$$
\begin{equation*}
H=\frac{\left(f^{\prime} / \beta\right)^{\prime}(f-\beta)}{f^{\prime}\left(f^{\prime}-\beta\right)}=\frac{f-\beta}{\beta^{2}}\left[\frac{\left(f^{\prime} / \beta\right)^{\prime}}{\left(f^{\prime} / \beta\right)-1}-\frac{\left(f^{\prime} / \beta\right)^{\prime}}{f^{\prime} / \beta}\right] \tag{3.7}
\end{equation*}
$$

Then it is clear that

$$
\begin{equation*}
m(r, H) \leq m(r, f)+S(r, f) \tag{3.8}
\end{equation*}
$$

From (5.7) we see that if z_{∞} is a pole of f with multiplicity $p \geq 1$ and $\beta\left(z_{\infty}\right) \neq$ $0, \infty$ (otherwise the counting function of those poles of f which are the zeros or poles of β is equal to $S(r, f)$),

$$
\begin{equation*}
H\left(z_{\infty}\right)=\frac{1}{\beta\left(z_{\infty}\right)}\left(\frac{p+1}{p}\right) \tag{3.9}
\end{equation*}
$$

It follows from (5.2), (3.3) and (3.4) that if z_{1} is a simple zero of $f-\beta$ and $\beta\left(z_{1}\right) \neq 0, \infty$ (otherwise the counting function of those simple zero of $f-\beta$ which are the zeros or poles of β is equal to $S(r, f)$), then

$$
\begin{equation*}
H\left(z_{1}\right)=\left(\frac{\beta-\beta^{\prime}}{\beta^{2}}\right)\left(z_{1}\right) \tag{3.10}
\end{equation*}
$$

Thus the pole of H can only occur at zeros of f^{\prime}. However, the zeros of f^{\prime} with multiplicity $s \geq 1$ are poles of H with multiplicity 1 . Therefore from this, (3.8), (5.4), (3.10) and (3.6) we get

$$
\begin{equation*}
T(r, H) \leq m(r, f)+N(r, H) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+m(r, f)+S(r, f) \tag{3.11}
\end{equation*}
$$

We consider the following two subcases:
Case II.1. $H \equiv \frac{\beta-\beta^{\prime}}{\beta^{2}}$. From this and (उ..प) (when $p=1$) we know that if z_{∞} is a simple pole of f and $\beta\left(z_{\infty}\right) \neq 0, \infty$ (otherwise the counting function of those simple poles of f which are the zeros or poles of β equal to $S(r, f)$), then $\left(\beta+\beta^{\prime}\right)\left(z_{\infty}\right)=0$. If $\beta+\beta^{\prime} \not \equiv 0$,

$$
\begin{equation*}
N_{1)}(r, f) \leq N\left(r, \frac{1}{\beta+\beta^{\prime}}\right)+S(r, f)=S(r, f) \tag{3.12}
\end{equation*}
$$

Therefore ([.2), (B.LZ) and (B.I) give that

$$
T\left(r, f^{\prime}\right) \leq 6 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right)
$$

In particular, ($\mathbb{\square} 3)$ holds when $k=1$ and $\beta^{\prime} \not \equiv 0$.
If $\beta+\beta^{\prime} \equiv 0$, from this, $H \equiv \frac{\beta-\beta^{\prime}}{\beta^{2}}$ and ([3.7) we find that

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f^{\prime}}+1=2\left(\frac{f^{\prime}-\beta}{f-\beta}\right) \tag{3.13}
\end{equation*}
$$

From this and $\beta+\beta^{\prime} \equiv 0$ we see that

$$
2\left(\frac{f^{\prime}-\beta^{\prime}}{f-\beta}-\frac{f^{\prime \prime}-\beta^{\prime}}{f^{\prime}-\beta}\right)+\frac{f^{\prime \prime}}{f^{\prime}}=1
$$

Integrating both sides we obtain

$$
\begin{equation*}
\left(\frac{f^{\prime}-\beta}{f-\beta}\right)^{2}=c \beta f^{\prime} \tag{3.14}
\end{equation*}
$$

where c is a nonzero constant. Eliminating $\left(f^{\prime}-\beta\right) /(f-\beta)$ between (3.J3) and (3.14) leads to

$$
\begin{equation*}
\left(\frac{f^{\prime \prime}}{f^{\prime}}+1\right)^{2}=4 c \beta f^{\prime} \tag{3.15}
\end{equation*}
$$

Differentiating both sides of (B.|.5) with respect to z and then using $\beta+\beta^{\prime} \equiv 0$ we obtain

$$
2\left(\frac{f^{\prime \prime}}{f^{\prime}}+1\right)\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}=4 c \beta^{\prime} f^{\prime}+4 c \beta f^{\prime \prime}=-4 c \beta f^{\prime}+4 c \beta f^{\prime \prime}=4 c \beta f^{\prime}\left(\frac{f^{\prime \prime}}{f^{\prime}}-1\right)
$$

and eliminating $4 c \beta f^{\prime}$ between this and (3.5) gives

$$
2\left(\frac{f^{\prime \prime}}{f^{\prime}}+1\right)\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}=\left(\frac{f^{\prime \prime}}{f^{\prime}}+1\right)^{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}-1\right)
$$

Since, by (B..5), $\frac{f^{\prime \prime}}{f^{\prime}}+1 \not \equiv 0$, therefore

$$
2\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}=\left(\frac{f^{\prime \prime}}{f^{\prime}}+1\right)\left(\frac{f^{\prime \prime}}{f^{\prime}}-1\right)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}-1
$$

From this and (2. $\mathbf{(2)}$) we find that

$$
W=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}-2\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime} \equiv 1
$$

Together with (ㅈ..I) we have $\left(f^{\prime \prime} / f^{\prime}\right)^{2}-2\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-1=0$, which may also be written in the form

$$
\frac{\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}}{\left(f^{\prime \prime} / f^{\prime}\right)-1}-\frac{\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}}{\left(f^{\prime \prime} / f^{\prime}\right)+1}=1
$$

By integrating once and then using $\beta+\beta^{\prime} \equiv 0$ we conclude $T\left(r, f^{\prime}\right)=S\left(r, f^{\prime}\right)$ which is a contradiction.

$$
\begin{aligned}
N_{1)}\left(r, \frac{1}{f-\beta}\right) & \leq N\left(r, \frac{1}{H-\frac{\beta-\beta^{\prime}}{\beta^{\prime}}}\right) \leq T(r, H)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+m(r, f)+S(r, f)
\end{aligned}
$$

Combining this with (3.6) we obtain

$$
\begin{equation*}
N\left(r, \frac{1}{f-\beta}\right) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+m(r, f)+S(r, f) \tag{3.16}
\end{equation*}
$$

Since f and f^{\prime} share β CM, every small function of f is small function of f^{\prime} and vice versa. Now applying Lemma 2.2 to β^{\prime} and then using the first fundamental theorem we deduce that

$$
\begin{equation*}
m\left(r, \frac{1}{f^{\prime}-\beta^{\prime}}\right) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S(r, f) \tag{3.17}
\end{equation*}
$$

Since, by Milloux theory [5], we find that

$$
m\left(r, \frac{1}{f-\beta}\right) \leq m\left(r, \frac{f^{\prime}-\beta^{\prime}}{f-\beta}\right)+m\left(r, \frac{1}{f^{\prime}-\beta^{\prime}}\right) \leq m\left(r, \frac{1}{f^{\prime}-\beta^{\prime}}\right)+S(r, f)
$$

From this, (3.17), (3.16) and the first fundamental theorem we see that

$$
T(r, f) \leq m(r, f)+3 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S(r, f)
$$

This implies that

$$
N_{1)}(r, f) \leq 3 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)
$$

$$
T\left(r, f^{\prime}\right) \leq 12 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right)
$$

This is $(\mathbb{L} .3)$ when $k=1$ and $\beta^{\prime} \not \equiv 0$.
Case III. $k=1$ and $\beta^{\prime} \equiv 0$. Without loss of generality, we suppose $\beta=1$, otherwise we make the transformation $(1 / \beta) f$. As in [3] we set

$$
\begin{equation*}
F=2\left(\frac{f^{\prime}}{f-1}-\frac{f^{\prime \prime}}{f^{\prime}-1}\right)+\frac{f^{\prime \prime}}{f^{\prime}} \tag{3.18}
\end{equation*}
$$

From the fundamental estimate of the logarithmic derivative, $m(r, F)=S(r, f)$. If z_{∞} is a simple pole of f, then from ($5.8 /$) we see that F can be continued holomorphically at z_{∞}. Since f and f^{\prime} share 1 CM, we can also find from (3.18) that F can be continued holomorphically at the zeros of $f-1$ or $f^{\prime}-1$. Thus,

$$
\begin{equation*}
T(r, F)=N(r, F)+m(r, F) \leq \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}_{(2}(r, f)+S(r, f) \tag{3.19}
\end{equation*}
$$

Let z_{2} be a zero of $f^{\prime \prime}$ which is not a zero of f^{\prime}. Since f and f^{\prime} share 1 CM , $N_{(2}\left(r, \frac{1}{f-1}\right)=N_{(2}\left(r, \frac{1}{f^{\prime}-1}\right)=0$. Hence $f^{\prime}\left(z_{2}\right) \neq 1$ and $f\left(z_{2}\right) \neq 1$. From ([.]. we see that

$$
F\left(z_{2}\right)=\frac{2 f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)-1} .
$$

Differentiating ([.]8) and then using $f^{\prime \prime}\left(z_{2}\right)=0$, we arrive at

$$
F^{\prime}\left(z_{2}\right)=-2\left(\left(\frac{f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)-1}\right)^{2}+\frac{f^{\prime \prime \prime}\left(z_{2}\right)}{f^{\prime}\left(z_{2}\right)-1}\right)+\frac{f^{\prime \prime \prime}\left(z_{2}\right)}{f^{\prime}\left(z_{2}\right)} .
$$

Combining these two equations we obtain

$$
-2 F^{\prime}\left(z_{2}\right)=F^{2}\left(z_{2}\right)+\frac{4 f^{\prime \prime \prime}\left(z_{2}\right)}{f^{\prime}\left(z_{2}\right)-1}-\frac{2 f^{\prime \prime \prime}\left(z_{2}\right)}{f^{\prime}\left(z_{2}\right)} .
$$

On the other hand, by (ㄹ.ा) we find that

$$
W\left(z_{2}\right)=-\frac{2 f^{\prime \prime \prime}\left(z_{2}\right)}{f^{\prime}\left(z_{2}\right)} .
$$

Substituting this into the last equation gives

$$
\begin{equation*}
f^{\prime}\left(z_{2}\right)\left(F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)-W\left(z_{2}\right)\right)=F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)+W\left(z_{2}\right) \tag{3.20}
\end{equation*}
$$

If $F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)-W\left(z_{2}\right)=0$, from (3.201) we get $W\left(z_{2}\right)=0$. If $W \equiv 0$, we
 the condition of Theorem \mathbb{L}. Therefore, we have $W \not \equiv 0$. Consequently, from (2.2) and (B.1),

$$
\begin{align*}
\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right) & \leq N\left(r, \frac{1}{W}\right) \leq T(r, W)+O(1) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S(r, f) \\
& \leq 6 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{3.21}
\end{align*}
$$

From Lemma [2.6], ([.]), (3.2]) and ([.2) we obtain

$$
T\left(r, f^{\prime}\right) \leq 24 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right) \leq 36 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right)
$$

This is $(\mathbb{L}, 3)$ when $k=1$ and $\beta^{\prime} \equiv 0$.
In the following, we assume $F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)-W\left(z_{2}\right) \neq 0$. We write (B .2 D) as

$$
\begin{equation*}
f^{\prime}\left(z_{2}\right)=\frac{F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)+W\left(z_{2}\right)}{F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)-W\left(z_{2}\right)} \tag{3.22}
\end{equation*}
$$

Suppose z_{1} is a zero of $f-1$. Since f and f^{\prime} share 1 CM , the Taylor expansion of f about z_{1} is

$$
f(z)-1=\left(z-z_{1}\right)+a_{2}\left(z-z_{1}\right)^{2}+a_{3}\left(z-z_{1}\right)^{3}+\ldots, a_{2} \neq 0
$$

It follows from (3.18) and (2. $\mathbf{2 . 1}$) that

$$
F\left(z_{1}\right)=4 a_{2}-\frac{3 a_{3}}{a_{2}} \quad \text { and } \quad W\left(z_{1}\right)=12\left(a_{2}^{2}-a_{3}\right)
$$

That is,
$2 f^{\prime \prime 2}\left(z_{1}\right)-F\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)-f^{\prime \prime \prime}\left(z_{1}\right)=0 \quad$ and $\quad 3 f^{\prime \prime 2}\left(z_{1}\right)-2 f^{\prime \prime \prime}\left(z_{1}\right)-W\left(z_{1}\right)=0$, and eliminating $f^{\prime \prime 2}\left(z_{1}\right)$ from the last equations we obtain

$$
\begin{equation*}
f^{\prime \prime \prime}\left(z_{1}\right)-3 F\left(z_{1}\right) f^{\prime \prime}\left(z_{1}\right)+2 W\left(z_{1}\right)=0 \tag{3.23}
\end{equation*}
$$

Now we consider the following function

$$
\begin{equation*}
\Omega=\frac{f^{\prime \prime \prime}-3 F f^{\prime \prime}+2 W f^{\prime}}{f^{\prime}\left(f^{\prime}-1\right)} \tag{3.24}
\end{equation*}
$$

If we now eliminate $f^{\prime \prime \prime}$ between (3:24) and (2., I) we obtain

$$
\begin{equation*}
2 \Omega f^{\prime 2}\left(f^{\prime}-1\right)=3 f^{\prime \prime 2}+3 W f^{\prime 2}-6 F f^{\prime} f^{\prime \prime} \tag{3.25}
\end{equation*}
$$

which, in view of (5.227), leads to

$$
4 \Omega\left(z_{2}\right)=3\left(F^{2}\left(z_{2}\right)+2 F^{\prime}\left(z_{2}\right)-W\left(z_{2}\right)\right)
$$

If $4 \Omega \not \equiv 3\left(F^{2}+2 F^{\prime}-W\right)$, then

$$
\begin{align*}
\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right) & \leq N\left(r, \frac{1}{4 \Omega-3\left(F^{2}+2 F^{\prime}-W\right)}\right) \\
& \leq T\left(r, 4 \Omega-3\left(F^{2}+2 F^{\prime}-W\right)\right)+O(1) \\
& \leq m(r, \Omega)+N\left(r, 4 \Omega-3\left(F^{2}+2 F^{\prime}-W\right)\right)+S(r, f) \\
& \leq m\left(r, \frac{1}{f^{\prime}-1}\right)+2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S(r, f) \tag{3.26}
\end{align*}
$$

By Lemma [2.2,

$$
m\left(r, \frac{1}{f^{\prime}-1}\right) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+2 \bar{N}_{(2}(r, f)+S(r, f)
$$

Combining this with (3.26) we find that

$$
\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right) \leq 4 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+4 \bar{N}_{(2}(r, f)+S(r, f)
$$

$$
T\left(r, f^{\prime}\right) \leq 36 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right)
$$

This is the third part of $(\mathbb{L} 3)$.
If $4 \Omega \equiv 3\left(F^{2}+2 F^{\prime}-W\right)$, then from ([.2.5) we have

$$
\begin{equation*}
\left(F^{2}+2 F^{\prime}-W\right) f^{\prime 2}\left(f^{\prime}-1\right)=2 f^{\prime \prime 2}+2 W f^{\prime 2}-4 F f^{\prime} f^{\prime \prime} \tag{3.27}
\end{equation*}
$$

Differentiating this and then using $f^{\prime \prime}\left(z_{2}\right)=0$, (L. I) and (B.2Z) we get

$$
\left(\frac{\left(F^{2}+2 F^{\prime}-W\right)^{\prime}}{F^{2}+2 F^{\prime}-W}\right)\left(z_{2}\right)=\left(\frac{W^{\prime}}{W}+F\right)\left(z_{2}\right)
$$

 that

$$
\begin{aligned}
\bar{N}_{0}\left(r, \frac{1}{f^{\prime \prime}}\right) & \leq N\left(r, \frac{1}{\frac{\left(F^{2}+2 F^{\prime}-W\right)^{\prime}}{F^{2}+2 F^{\prime}-W}-\frac{W^{\prime}}{W}-F}\right) \\
& \leq T\left(r, \frac{\left(F^{2}+2 F^{\prime}-W\right)^{\prime}}{F^{2}+2 F^{\prime}-W}-\frac{W^{\prime}}{W}-F\right)+O(1) \\
& =N\left(r, \frac{\left(F^{2}+2 F^{\prime}-W\right)^{\prime}}{F^{2}+2 F^{\prime}-W}-\frac{W^{\prime}}{W}-F\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{W}\right)+\bar{N}(r, W)+\bar{N}\left(r, \frac{1}{F^{2}+2 F^{\prime}-W}\right)+S(r, f) \\
& \leq 2 T(r, W)+N\left(r, F^{2}+2 F^{\prime}-W\right)+S(r, f) \\
& \leq 4 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+4 \bar{N}_{(2}(r, f)+S(r, f)
\end{aligned}
$$

Together with Lemma [2.6], ([.2) and (5. $\mathbf{l l}_{\text {) }}$) we get

$$
T\left(r, f^{\prime}\right) \leq 36 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right)
$$

This is ([..3) when $k=1$ and $\beta^{\prime} \equiv 0$.
If $\frac{\left(F^{2}+2 F^{\prime}-W\right)^{\prime}}{F^{2}+2 F^{\prime}-W} \equiv \frac{W^{\prime}}{W}+F$, then by integrating once,

$$
F^{2}+2 F^{\prime}-W=c f^{\prime} W\left(\frac{f-1}{f^{\prime}-1}\right)^{2}
$$

from which it follows that $\bar{N}\left(r, 1 / f^{\prime}\right)=0$ and

$$
m\left(r, \frac{1}{f-1}\right) \leq m\left(r, \frac{1}{f^{\prime}-1}\right)+\bar{N}_{(2}(r, f)+S(r, f)
$$

From this and Lemma $\angle Z$ we see that

$$
m\left(r, \frac{1}{f-1}\right) \leq 3 \bar{N}_{(2}(r, f)+S(r, f)
$$

On the other hand, it is clear that the formulas from (उ.2) into (3.6]) remain true if we replace β by 1 . Thus, we have

$$
N\left(r, \frac{1}{f-1}\right) \leq m(r, f)+S(r, f)
$$

Combining these two inequalities we obtain

$$
T(r, f) \leq m(r, f)+3 \bar{N}_{(2}(r, f)+S(r, f)
$$

We may conclude that

$$
N_{1)}(r, f) \leq \bar{N}_{(2}(r, f)+S(r, f)
$$

Together with ([.2) and (B. \mathbb{L}) we see that

$$
T\left(r, f^{\prime}\right) \leq 10 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S\left(r, f^{\prime}\right)
$$

The proof is complete.

Acknowledgement

I am grateful to the referee for valuable suggestion and comments.

References

[1] Al-Khaladi, A.H.H., Meromorphic functions that share one small function with their kth derivative. Analysis 31 (2011), 341-354.
[2] Al-Khaladi, A.H.H., On meromorphic functions that share one small function with their kth derivative. Result. Math. 57 (2010), 313-318.
[3] Al-Khaladi, A.H.H., On meromorphic functions that share one value with their derivative. Analysis 25 (2005), 131-140.
[4] Brück, R., On entire functions which share one value CM with their first derivative. Result. Math. 30 (1996), 21-24.
[5] Hayman, W.K., Meromorphic functions. Oxford: Clarendon Press 1964.
[6] Rubel L.A., Yang, C.C., Values shared by an entire function and its derivative. In: Lecture Notes in Mathematics. Vol. 599, pp. 101-103. Berlin, New York: Springer Verlag 1977.
[7] Yamanoi, K., Zeros of higher derivatives of meromorphic functions in the complex plane. Proc. London Math. Soc. 106 (2013), 703-780.
[8] Yang, C.C., Yi, H.X., Uniqueness theory of meromorphic functions. Kluwer: Academic Publishers 2004.
[9] Zhang, Q.C., The uniqueness of meromorphic functions with their derivatives. Kodai Math. J. 21 (1998), 179-184.

Received by the editors August 1, 2012

[^0]: ${ }^{1}$ Department of Mathematics, College of Basic Education, Tikrit University, P. O. Box 42, Tikrit, Iraq, e-mail: ameralkhaladi@yahoo.com

