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HOLOMORPH OF GENERALIZED BOL LOOPS
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Abstract. The notions of the holomorph of a generalized Bol loop
and generalized flexible-Bol loop are characterized. With the aid of two
self-mappings on the holomorph of a loop, it is shown that: the loop
is a generalized Bol loop if and only if its holomorph is a generalized
Bol loop; the loop is a generalized flexible-Bol loop if and only if its
holomorph is a generalized flexible-Bol loop. Furthermore, elements of
the Bryant Schneider group of a generalized Bol loop are characterized in
terms of pseudo-automorphism, and the automorphisms gotten are used
to build the holomorph of the generalized Bol loop.
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1. Introduction

The birth of Bol loops can be traced back to Gerrit Bol [9] in 1937 when he
established the relationship between Bol loops and Moufang loops, the latter of
which was discovered by Ruth Moufang [26]. Thereafter, a theory of Bol loops
evolved through the Ph.D. thesis of Robinson [30] in 1964 where he studied the
algebraic properties of Bol loops, Moufang loops and Bruck loops, isotopy of
Bol loop and some other notions on Bol loops. Some later results on Bol loops
and Bruck loops can be found in [4, 5], [8–11], [13], [33, 34] and [38]

In the 1980s, the study and construction of finite Bol loops caught the at-
tention of many researchers among whom are Burn [13–15], Solarin and Sharma
[39–41] and others like Chein and Goodaire [17–19], Foguel at. al. [22], Kinyon
and Phillips [24, 25] in the present millennium. One of the most important
results in the theory of Bol loops is the solution of the open problem on the
existence of a simple Bol loop which was finally laid to rest by Nagy [27–29].

In 1978, Sharma and Sabinin [35, 36] introduced and studied the algebraic
properties of the notion of half-Bol loops(left B-loops). Thereafter, Adeniran
[2], Adeniran and Akinleye [4], Adeniran and Solarin [6] studied the algebraic
properties of generalized Bol loops. Also, Ajmal [7] introduced and studied
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the algebraic properties of generalized Bol loops and their relationship with
M-loops (cf. identity (2.9)).

Interestingly, the papers [3], [10], [12], [21], [23], [30, 31] are devoted to
study the holomorphs of Bol loops, conjugacy closed loops, inverse property
loops, A-loops, extra loops, weak inverse property loops and Bruck loops.

The Bryant-Schneider group of a loop was introduced by Robinson [32],
based on the motivation of [16]. Since the advent of the Bryant-Schneider
group, some studies by Adeniran [1] and Chiboka [20] have been done on it
relative to CC-loops and extra loops.

The objectives of this present work are to study the structure of the holo-
morph of a generalized Bol loop and generalized flexible Bol loop, and also to
characterize elements of the Bryant-Schneider group of a generalized Bol loop
(generalized flexible Bol loop) and use these elements to build the holomorph
of a generalized Bol loop (generalized flexible Bol loop).

2. Preliminaries

Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈ L
for all x, y ∈ L, (L, ·) is called a groupoid. If for all a, b ∈ L, the equations:

a · x = b and y · a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasigroup.
For each x ∈ L, the elements xρ = xJρ ∈ L and xλ = xJλ ∈ L such that
xxρ = eρ and xλx = eλ are called the right and left inverse elements of x
respectively. Here, eρ ∈ L and eλ ∈ L satisfy the relations xeρ = x and eλx = x
for all x ∈ L and are respectively called the right and left identity elements.
Now, if eρ = eλ = e ∈ L, then e is called the identity element and (L, ·) is
called a loop. In case xλ = xρ, then, we simply write xλ = xρ = x−1 = xJ and
refer to x−1 as the inverse of x.

Let x be an arbitrarily fixed element in a loop (G, ·). For any y ∈ G, the
left and right translation maps of x ∈ G, Lx and Rx are respectively defined
by

yLx = x · y and yRx = y · x
A loop (L, ·) is called a (right) Bol loop if it satisfies the identity

(2.1) (xy · z)y = x(yz · y)

A loop (L, ·) is called a left Bol loop if it satisfies the identity

(2.2) y(z · yx) = (y · zy)x

A loop (L, ·) is called a Moufang loop if it satisfies the identity

(2.3) (xy) · (zx) = (x · yz)x

A loop (L, ·) is called a right inverse property loop (RIPL) if (L, ·) satisfies
right inverse property (RIP)

(2.4) (yx)xρ = y
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A loop (L, ·) is called a left inverse property loop (LIPL) if (L, ·) satisfies left
inverse property (LIP)

(2.5) xλ(xy) = y

A loop (L, ·) is called an automorphic inverse property loop (AIPL) if (L, ·)
satisfies automorphic inverse property (AIP)

(2.6) (xy)−1 = x−1y−1

A loop (L, ·) in which the mapping x 7→ x2 is a permutation, is called
a Bruck loop if it is both a Bol loop and either AIPL or obeys the identity
xy2 · x = (yx)2. (Robinson [30])

Let (L, ·) be a loop with a single valued self-map σ : x −→ σ(x):
(L, ·) is called a generalized (right) Bol loop or right B-loop if it satisfies

the identity

(2.7) (xy · z)σ(y) = x(yz · σ(y))

(L, ·) is called a generalized left Bol loop or left B-loop if it satisfies the identity

(2.8) σ(y)(z · yx) = (σ(y) · zy)x

(L, ·) is called an M-loop if it satisfies the identity

(2.9) (xy) · (zσ(x)) = (x · yz)σ(x)

Let (G, ·) be a groupoid (quasigroup, loop) and let A,B and C be three
bijective mappings, that map G onto G. The triple α = (A,B,C) is called an
autotopism of (G, ·) if and only if

xA · yB = (x · y)C ∀ x, y ∈ G.

Such triples form a group AUT (G, ·) called the autotopism group of (G, ·).
If A = B = C, then A is called an automorphism of the groupoid (quasi-

group, loop) (G, ·). Such bijections form a group AUM(G, ·) called the auto-
morphism group of (G, ·).

The right nucleus of (L, ·) is defined by Nρ(L, ·) = {x ∈ L | zy · x =
z · yx ∀ y, z ∈ L}.

Definition 2.1. Let (Q, ·) be a loop and A(Q) ≤ AUM(Q, ·) be a group of
automorphisms of the loop (Q, ·). Let H = A(Q)×Q. Define ◦ on H as

(α, x) ◦ (β, y) = (αβ, xβ · y) for all (α, x), (β, y) ∈ H.

(H, ◦) is a loop and is called the A-holomorph of (Q, ·).

The left and right translations maps of an element (α, x) ∈ H are respec-
tively denoted by L(α,x) and R(α,x).
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Remark 2.2. (H, ◦) has a subloop {I} ×Q that is isomorphic to (Q, ·). As ob-
served in Lemma 6.1 of Robinson [30], given a loop (Q, ·) with an A-holomorph
(H, ◦), (H, ◦) is a Bol loop if and only if (Q, ·) is a θ-generalized Bol loop for
all θ ∈ A(Q). Also in Theorem 6.1 of Robinson [30], it was shown that (H, ◦)
is a Bol loop if and only if (Q, ·) is a Bol loop and x−1 · xθ ∈ Nρ(Q, ·) for all
θ ∈ A(Q).

Definition 2.3. Let (Q, ·) be a loop with a single valued self-map σ and let
(H, ◦) be the A-holomorph of (Q, ·) with single valued self-map σ′. (Q, ·) is
called a σ-flexible loop (σ-flexible) if

xy · σ(xδ) = x · yσ(xδ) for all x, y ∈ Q and some δ ∈ A(Q).

(H, ◦) is called a σ′-flexible loop (σ′-flexible) if

(α, x)(β, y) ◦ σ′(α, x) = (α, x) ◦ (β, y)σ′(α, x) for all (α, x), (β, y) ∈ H.

If a loop is both a σ-generalized Bol loop and a σ-flexible loop, then it is called
a σ-generalized flexible-Bol loop.

If in this triple (A,B,C) ∈ AUT (G, ·), B = C = ARc, then A is called
a pseudo-automorphism of a quasigroup (G, ·) with companion c ∈ G. Such
bijections form a group PS(G, ·) called the pseudo-automorphism group of
(G, ·).

Definition 2.4. [Robinson [32]]
Let (G, ·) be a loop with symmetric group SYM(G). A mapping θ ∈

SYM(G) is called a special map for G if there exist f, g ∈ G so that
(θR−1

g , θL−1
f , θ) ∈ AUT (G, ·).

Theorem 2.5. [Robinson [32]]
Let (G, ·) be a loop with symmetric group SYM(G). The set of all special

maps in (G, ·) i.e.

BS(G, ·) = {θ ∈ SYM(G, ·) : ∃ f, g ∈ G (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

is a subgroup of SYM(G) and is called the Bryant-Schneider group of the loop
(G, ·).

Some existing results on generalized Bol loops and generalized Moufang
loops are highlighted below.

Theorem 2.6. [Adeniran and Akinleye [4]]
If (L, ·) is a generalized Bol loop, then:

1. (L, ·) is a RIPL.

2. xλ = xρ for all x ∈ L.

3. Ry·σ(y) = RyRσ(y) for all y ∈ L.

4. [xy · σ(x)]−1 = (σ(x))−1y−1 · x−1 for all x, y ∈ L.
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5. (Ry−1 , LyRσ(y), Rσ(y)), (R
−1
y , LyRσ(y), Rσ(y)) ∈ AUT (L, ·) for all y ∈ L.

Theorem 2.7. [Sharma and Sabinin [35]]
If (L, ·) is a half Bol loop, then:

1. (L, ·) is a LIPL.

2. xλ = xρ for all x ∈ L.

3. L(x)L(σ(x)) = L(σ(x)x) for all x ∈ L.

4. (σ(x) · yx)−1 = x−1 · y−1(σ(x))−1 for all x, y ∈ L.

5. (R(x)L(σ(x)), L(x)−1 , L(σ(x))), (R(σ(x))L(x)−1 , Lσ(x), L(x)−1) ∈ AUT (L, ·)
for all x ∈ L.

Theorem 2.8. [Ajmal [7]]
Let (L, ·) be a loop. The following statements are equivalent:

1. (L, ·) is a M-loop;

2. (L, ·) is both a left B-loop and a right B-loop;

3. (L, ·) is a right B-loop and satisfies the LIP;

4. (L, ·) is a left B-loop and satisfies the RIP.

Theorem 2.9. [Ajmal [7]]
Every isotope of a right B-loop with the LIP is a right B-loop.

Example 2.10. Let R be a ring of all 2×2 matrices taken over the field of three
elements and let G = R × R. For all (u, f), (v, g) ∈ G, define (u, f) · (v, g) =
(u + v, f + g + uv3). Then (G, ·) is a loop which is not a right Bol loop but
which is a σ-generalized Bol loop with σ : x 7→ x2 .

We introduce the notions defined below for the first time.

Definition 2.11. [Twin Special Mappings]
Let (G, ·) be a loop and let α, β ∈ SYM(G) such that α = ψRx, β = ψRy,

for some x, y ∈ G and ψ ∈ SYM(G). Then α and β are called twin special
maps (twins). α (or β) is called a twin map (twin) of β (or α) or simply a twin
map.

Let (Q, ·) be a loop. Define

TBS1(Q, ·)={α ∈ SYM(Q) | α is any twin map},
T1(Q, ·)=T1(Q)={ψ ∈ SYM(Q) | α = ψRx ∈ TBS1(Q, ·), x ∈ Q, ψ : e 7→ e},

TBS2(Q, ·)={α ∈ BS(Q, ·) | α ∈ TBS1(Q, ·)},
T2(Q, ·)=T2(Q)={ψ ∈ SYM(Q) | α = ψRx ∈ TBS2(Q, ·), x ∈ Q, ψ : e 7→ e}

and

T3(Q, ·)=T3(Q)={ψ ∈ T2(Q) | α−1∼β−1 for any twin maps α, β ∈ SYM(Q)}.

Define a relation ∼ on SYM(Q) as α ∼ β if there exists x ∈ Q such that
α−1 = Rxβ

−1.
The following results will be of judicious use to prove our main results.
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Lemma 2.12. [Bruck [10]]
(H, ◦) is a RIPL if and only if (Q, ·) is a RIPL.

Lemma 2.13. [Adeniran [2]]
(Q, ·) is a σ-generalized Bol loop if and only if (R−1

x , LxRσ(x), Rσ(x)) ∈
AUT (Q, ·) for all x ∈ Q.

Lemma 2.14. [Bruck [11]]
Let (Q, ·) be a RIPL. If (U, V,W ) ∈ AUT (Q, ·), then
(W,JV J, U) ∈ AUT (Q, ·).

3. Main results

Theorem 3.1. Let (Q, ·) be a loop with a self-map σ and let (H, ◦) be the
A-holomorph of (Q, ·) with a self-map σ′ such that σ′ : (α, x) 7→ (α, σ(x)) for
all (α, x) ∈ H. The A-holomorph (H, ◦) of (Q, ·) is a σ′-generalized Bol loop

if and only if
(
R−1

x , LxR[σ(xγ−1)]α−1 , R[σ(xγ−1)]α−1

)
∈ AUT (Q, ·) for all x ∈ Q

and all α, γ ∈ A(Q).

Proof. Define σ′ : H → H as σ′(α, x) = (α, σ(x)). Let (α, x), (β, y), (γ, z) ∈ H,
then by Lemma 2.12 and Lemma 2.13, (H, ◦) is a σ′-generalized Bol loop if and
only if (R(α,x)−1 ,L(α,x)Rσ′(α,x),Rσ′(α,x)) ∈ AUT (H, ◦) for all (α, x) ∈ H if and
only if (R(α,x)−1 ,L(α,x)R(α,σ(x)),R(α,σ(x))) ∈ AUT (H, ◦) ⇐⇒

(β, y)R(α,x)−1 ◦ (γ, z)L(α,x)R(α,σ(x)) = [(β, y) ◦ (γ, z)]R(α,σ(x))(3.1)

⇔ [(β, y) ◦ (α, x)−1] ◦ [((α, x) ◦ (γ, z)) ◦ (α, σ(x))] = [(β, y) ◦ (γ, z)] ◦ (α, σ(x))
(3.2)

Let (β, y) ◦ (α, x)−1 = (τ, t). Since (α, x)−1 = (α−1, (xα−1)−1), then

(3.3) (τ, t) = (βα−1, (yx−1)α−1)

From (3.3),

(τ, t) ◦ [(αγ, xγ · z) ◦ (α, σ(x))] = (βγ, yγ · z) ◦ (α, σ(x))(3.4)

⇔
(
ταγα, (tαγα)

(
(xγ · z)α · σ(x)

))
=

(
βγα, (yγ · z)α · σ(x)

)
(3.5)

Putting (3.3) into (3.5), we have

(
βα−1αγα, (yx−1)α−1(αγα)

(
(xγ · z)α · σ(x)

))
=

(
βγα, (yγ · z)α · σ(x)

)(3.6)

⇔
(
βγα, (yx−1)γα

[
(xγ · z)α · σ(x)

])
=

(
βγα, (yγ · z)α · σ(x)

)
(3.7)

⇔ (yx−1)γα · [(xγ · z)α · σ(x)] = (yγ · z)α · σ(x)(3.8)

⇔
[
(yx−1)γ · [(xγ · z) · (σ(x)α−1)]

]
α = [(yγ · z) · (σ(x)α−1)]α(3.9)

⇔ (yγx−1γ)[(xγ · z) · (σ(x)α−1)] = (yγ · z)(σ(x)α−1)(3.10)



Holomorph of generalized Bol loops 43

Let ȳ = yγ, then (3.10) becomes

(ȳ · x−1γ)[(xγ · z)(σ(x)α−1)] = (ȳ · z)(σ(x)α−1)(3.11)

⇔
(
R−1

xγ , LxγR[σ(x)α−1], R[σ(x)α−1]

)
∈ AUT (Q, ·)(3.12)

and replacing xγ by x,
(
R−1

x , LxR[σ(xγ−1)]α−1 , R[σ(xγ−1)]α−1

)
∈ AUT (Q, ·).

(3.13)

Corollary 3.2. Let (Q, ·) be a loop with a self-map σ and let (H, ◦) be the
A-holomorph of (Q, ·) with a self-map σ′ such that σ′ : (α, x) 7→ (α, σ(x))
for all (α, x) ∈ H. (H, ◦) is a σ′-generalized Bol loop if and only if (Q, ·) is a
α−1σγ−1-generalized Bol loop for any α, γ ∈ A(Q).

Proof. From Theorem 3.1, (H, ◦) is a σ′-generalized Bol loop if and only if(
R−1

x , LxR[σ(xγ−1)]α−1 , R[σ(xγ−1)]α−1

)
∈ AUT (Q, ·) ⇔(

R−1
x , LxRσ′′(x), Rσ′′(x)

)
∈ AUT (Q, ·)

where σ′′ = α−1σγ−1, for all x ∈ Q and all α, γ ∈ A(Q). It is equivalent to the
fact that (Q, ·) is a σ′′-generalized Bol loop.

Theorem 3.3. Let (Q, ·) be a loop with a self-map σ and let (H, ◦) be the
holomorph of (Q, ·) with a self-map σ′ such that σ′ : (α, x) 7→ (α, ασγ(x)) for
all (α, x) ∈ H. Then (Q, ·) is a σ-generalized Bol loop if and only if (H, ◦) is
a σ′-generalized Bol loop.

Proof. The proof of this follows from the proof of Theorem 3.1.

Theorem 3.4. Let (Q, ·) be a loop with a self-map σ and let (H, ◦) be the
holomorph of (Q, ·) with a self-map σ′ such that σ′ : (α, x) 7→ (α, σ(x)) for all
(α, x) ∈ H. Then for any γ ∈ A(Q), (Q, ·) is a σαγ−1-generalized flexible-Bol
loop if and only if (H, ◦) is a σ′-generalized flexible-Bol loop.

Proof.

(R−1
x , LxRσ(x), Rσ(x))

−1 = (Rx, L
−1
x R−1

σ(x), R
−1
σ(x))(3.14)

⇔ L−1
x R−1

σ(x) = (LxRσ(x))
−1 ⇔ Rσ(x)Lx = LxRσ(x)(3.15)

⇔ xy · σ(x) = x · yσ(x)(3.16)

Let (α, x), (β, y), (γ, z) ∈ H, then by Lemma 2.12 and Lemma 2.13, (H, ◦)
is a σ′-generalized Bol loop if and only if (R(α,x)−1 ,L(α,x)Rσ′(α,x),Rσ′(α,x)) ∈
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AUT (H, ◦) for all (α, x) ∈ H. Thus, following (3.14) to (3.16),

(R−1
(α,x),L(α,x)Rσ′(α,x),Rσ′(α,x))

−1 = (R(α,x),L−1
(α,x)R

−1
σ′(α,x),R

−1
σ′(α,x))(3.17)

⇔ L(α,x)Rσ′(α,x) = Rσ′(α,x)L(α,x)(3.18)

⇔ (α, x)(β, y) ◦ σ′(α, x) = (α, x) ◦ (β, y)σ′(α, x)(3.19)

⇔ (α, x)(β, y) ◦ (α, σx) = (α, x) ◦ (β, y)(α, σx)(3.20)

⇔
(
αβα, (xβ · y)α · σ(x)

)
=

(
αβα, xβα · (yα · σ(x))

)
(3.21)

⇔ (xβα · yα)σ(x) = xβα · (yα · σ(x))(3.22)

⇔ (xγ−1αβα · y)σ
(
xγ−1α

)
= xγ−1αβα ·

(
y · σ

(
xγ−1α

))
(3.23)

⇔ (xγ−1αβα · y)σαγ−1(x) = xγ−1αβα · (y · σαγ−1(x))(3.24)

⇔ (xy)σαγ−1
(
(x(αβα)−1γ

)
= x · (y · σαγ−1

(
(x(αβα)−1γ

)
(3.25)

⇔ (xy)σαγ−1(xδ) = x · (y · σαγ−1(xδ)(3.26)

where δ = (αβα)−1γ ∈ A(Q). So, by (3.19) to (3.26), (H, ◦) is σ′-flexible if
and only if (Q, ·) is σαγ−1-flexible.

Now, following (3.17), (H, ◦) is a σ′-generalized Bol loop if and only if

(R(α,x),L−1
(α,x)R

−1
σ′(α,x),R

−1
σ′(α,x)) ∈ AUT (Q, ·)(3.27)

⇔ (β, y)R(α,x) ◦ (γ, z)L−1
(α,x)R

−1
σ′(α,x) = [(β, y) ◦ (γ, z)]R−1

σ′(α,x)(3.28)

Let (γ, z)L−1
(α,x)R

−1
σ′(α,x) = (µ, u) in (3.28), then (γ, z) =

(
αµα, xµα(uα·σ(x))

)
⇒

γ = αµα and z = xµα(uα · σ(x)). Consequently,
(3.29)

µ = α−1γα−1 and u = zL−1
(xα−1γ)R(σ(x))−1α−1 =

[(
(xα−1γ)\z

)
(σ(x))−1

]
α−1

Also, if [(β, y) ◦ (γ, z)]R−1
σ′(α,x) = (βγ, yγ · z)R(α,σ(x))−1 = (τ, v) in (3.28), then

(3.30) (τ, v) =
(
βγα−1, (yγ · z)α−1 ·

(
(σ(x))−1

)
α−1

)
Substituting (3.29) and (3.30) into (3.28), we get

[(β, y) ◦ (α, x)] ◦ (µ, u) = (τ, v) ⇔ (βαµ, (yα · x)µ · u) = (τ, v)(3.31)

⇔
(
βγα−1, (yα · x)α−1γα−1 ·

(
[(xα−1γ)\z](σ(x))−1

)
α−1

)
(3.32)

=
(
βγα−1, (yγ · z)α−1 · α−1

(
(σ(x))−1

))
(3.33)

⇔
{
(yα · x)α−1γ ·

(
[(xα−1γ)\z](σ(x))−1

)}
α−1 =

[
(yγ · z)(σ(x))−1

]
α−1

(3.34)

⇔ (yα · x)α−1γ ·
(
[(xα−1γ)\z](σ(x))−1

)
= (yγ · z)(σ(x))−1(3.35)

⇔ (yγ · xα−1γ) ·
(
[(xα−1γ)\z](σ(x))−1

)
= (yγ · z)(σ(x))−1(3.36)

⇔ ȳRx̄ · zL−1
x̄ R−1

[σ(x̄γ−1α)] = (ȳz)R−1
[σ(x̄γ−1α)](3.37)

⇔
(
Rx̄, L

−1
x̄ R−1

[σ(x̄γ−1α)], R
−1
[σ(x̄γ−1α)]

)
∈ AUT (Q, ·)(3.38)



Holomorph of generalized Bol loops 45

where ȳ = yγ and x̄ = xα−1γ. Based on (3.26) and the reverse of the procedure
from (3.14) to (3.16), (3.38) is true if and only if (Q, ·) is a σαγ−1-generalized
Bol loop.

∴ (Q, ·) is a σαγ−1-generalized flexible-Bol loop if and only if (H, ◦) is a
σ′-generalized flexible-Bol loop.

Theorem 3.5. Let (Q, ·) be a loop with a self-map σ and let (H, ◦) be the
holomorph of (Q, ·) with a self-map σ′ such that σ′ : (α, x) 7→ (α, σγα−1(x))
for all (α, x) ∈ H. Then for any γ ∈ A(Q), (Q, ·) is a σ-generalized flexible-Bol
loop if and only if (H, ◦) is a σ′-generalized flexible-Bol loop.

Proof. The proof of this follows in the sense of Theorem 3.4.

Theorem 3.6. Let (Q, ·) be a generalized Bol loop. If a mapping α ∈ BS(Q, ·)
such that α = ψRx, where ψ : e 7→ e, then ψ is a unique pseudo-automorphism
with companion xg−1 · σ(x) for some g ∈ Q and for all x ∈ Q.

Proof. If α ∈ BS(Q, ·), then (αR−1
g , αL−1

f , α) ∈ AUT (Q, ·) for some f, g ∈ Q.

So, applying Lemma 2.14, (α, JαL−1
f J, αRg−1) ∈ AUT (Q, ·) for some f, g ∈ Q.

Since, (Rx−1 , LxRσ(x), Rσ(x)) ∈ AUT (Q, ·) for all x ∈ Q, then

(α, JαL−1
f J, αRg−1)(R−1

x , LxRσ(x), Rσ(x)) =(3.39)

(αRx−1 , JαL−1
f JLxRσ(x), αRg−1Rσ(x)) ∈ AUT (Q, ·)(3.40)

Let θ = JαL−1
f JLxRσ(x). Then (3.40) becomes

(3.41) uαRx−1 · vθ = (u · v)αRg−1Rσ(x)

for all u, v ∈ Q. If α = ψRx, then αR
−1
x = ψ. Thus, θ = JψRxL

−1
f JLxRσ(x)

and (3.41) becomes

(3.42) uψ · vθ = (u · v)ψRxRg−1Rσ(x)

Let u = e in (3.41), then we have eψ · vθ = (e · v)ψRxRg−1Rσ(x) =⇒

(3.43) θ = ψRxRg−1Rσ(x)

So by (3.42) and (3.41), (3.40) becomes

(ψ, θ, ψRxRg−1Rσ(x)) = ⟨ψ,ψRxRg−1Rσ(x), ψRxRg−1Rσ(x)) ∈ AUT (Q, ·)

for all x ∈ Q and some g ∈ Q. Since (Q, ·) is a generalized Bol loop,
RxRg−1Rσ(x) = Rxg−1·σ(x). Hence,

(3.44) (ψ,ψRxg−1·σ(x), ψRxg−1·σ(x)) ∈ AUT (Q, ·).

for all x ∈ Q and some g ∈ Q. Thus, ψ is a pseudo-automorphism with a
companion xg−1σ(x).

Let ψ1Rx1 = ψ2Rx2 where ψ1, ψ2 : e 7→ e and x1, x2 ∈ Q. Then Rx1R
−1
x2

=

ψ−1
1 ψ2. So, eRx1R

−1
x2

= eψ−1
1 ψ2, thus, x1x

−1
2 = e. Hence x1 = x2, so ψ1 = ψ2.

And this implies that for all x ∈ Q, there exists a unique ψ such that α = ψRx.
Therefore, α = ψRx if and only if ψ ∈ PS(Q, ·) with companion xg−1 · σ(x)
for some g ∈ Q and all x ∈ Q.
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Corollary 3.7. Let (Q, ·) be a σ-generalized Bol loop with σ : x 7→ (xg−1)−1

for all x ∈ Q and some g ∈ Q. If a mapping α ∈ BS(Q, ·) is such that
α = ψRx, where ψ : e 7→ e, then ψ ∈ AUM(Q, ·) is unique.

Proof. Using (3.44),
(ψ,ψRxg−1·σ(x), ψRxg−1·σ(x)) = (ψ,ψRxg−1·(xg−1)−1 , ψRxg−1·(xg−1)−1) =
(ψ,ψ, ψ) ∈ AUT (Q, ·). Thus, ψ is an automorphism of Q.

Theorem 3.8. Let (Q, ·) be a σ-generalized Bol loop in which σ
(
x−1

)
=

(σ(x))−1 and xy ·σ(x) = x·yσ(x) for all x, y ∈ Q. If a mapping α ∈ BS(Q, ·) is
such that α = ψR−1

x , where ψ : e 7→ e, then ψ is a unique pseudo-automorphism
with companion x−1g−1 · (σ(x))−1 for some g ∈ Q and for all x ∈ Q.

Proof. By Lemma 2.12 and Lemma 2.13, (Q, ·) is a generalized Bol loop if and
only if (Rx−1 , LxRσ(x), Rσ(x)) ∈ AUT (Q, ·) for all x ∈ Q. Since xy · σ(x) =
x · yσ(x), then (Rx−1 , LxRσ(x), Rσ(x))

−1 = (Rx, L
−1
x R(σ(x))−1 , R(σ(x))−1) ∈

AUT (Q, ·). α ∈ BS(Q, ·) ⇐⇒ (αR−1
g , αL−1

f , α) ∈ AUT (Q, ·) =⇒ (α, JαLf−1J, αR−1
g ) ∈

AUT (Q, ·) for some g, f ∈ Q by Lemma 2.14. Now, the product

(α, JαL−1
f J, αR−1

g )(Rx, L
−1
x R(σ(x))−1 , R(σ(x))−1) =(3.45)

(αRx, JαL
−1
f JL−1

x R(σ(x))−1 , αR−1
g R(σ(x))−1) ∈ AUT (Q, ·)(3.46)

for all x ∈ Q and some g, f ∈ Q. Substituting α = ψR−1
x into (3.46), we have

(3.47) (ψ, JψR−1
x L−1

f JL−1
x R(σ(x))−1 , ψR−1

x R−1
g R(σ(x))−1) ∈ AUT (Q, ·)

for all x ∈ Q and some g ∈ Q. Now, for all y, z ∈ Q

(3.48) yψ · zJψR−1
x L−1

f JL−1
x R(σ(x))−1 = (yz)ψR−1

x R−1
g R(σ(x))−1

Putting y = e in (3.48), we have

(3.49) JψR−1
x L−1

f JL−1
x R(σ(x))−1 = ψR−1

x R−1
g R(σ(x))−1

for all x ∈ Q and some g ∈ Q. Thus, using (3.49) in (3.48),

(3.50) (ψ,ψR−1
x R−1

g R(σ(x))−1 , ψR−1
x R−1

g R(σ(x))−1) ∈ AUT (Q, ·)

for all x ∈ Q and some g ∈ Q.
Since (Q, ·) is a generalized Bol loop,

Rx−1Rg−1R(σ(x))−1 = Rx−1g−1·(σ(x))−1 .

Hence,

(3.51)
(
ψ,ψRx−1g−1·(σ(x))−1 , ψRx−1g−1·(σ(x))−1

)
∈ AUT (Q, ·).

The proof the uniqueness of ψ is similar to that in Theorem 3.6. Therefore, ψ is
a unique pseudo-automorphism of (Q, ·) with companion x−1g−1 ·(σ(x))−1.



Holomorph of generalized Bol loops 47

Corollary 3.9. Let (Q, ·) be a σ-generalized Bol loop and an AIPL in which
σ
(
x−1

)
= (σ(x))−1 and xy · σ(x) = x · yσ(x) for all x, y ∈ Q where σ : x 7→

(xg)−1 for all x ∈ Q and some g ∈ Q. If a mapping α ∈ BS(Q, ·) is such that
α = ψR−1

x , where ψ : e 7→ e, then ψ ∈ AUM(Q, ·) is unique.

Proof. Using (3.51),(
ψ,ψRx−1g−1·(σ(x))−1 , ψRx−1g−1·(σ(x))−1

)
=(

ψ,ψRx−1g−1·((xg)−1)−1 , ψRx−1g−1·((xg)−1)−1

)
= (ψ,ψ, ψ) ∈ AUT (Q, ·).

Thus, ψ is an automorphism of Q.

Lemma 3.10. Let (Q, ·) be a σ-generalized Bol loop. Then

1. ∼ is an equivalence relation over SYM(Q).

2. For any α, β ∈ SYM(Q), α ∼ β if and only if α, β ∈ TBS1(Q, ·).

3. TBS1(Q, ·) =
∪

[α]∈SYM(Q)/∼

[α].

Proof. 1. Let α, β, γ ∈ SYM(Q). With x = e, α−1 = Reα
−1 and so α ∼ α.

Thus, ∼ is reflexive. Let α ∼ β, then there exists x ∈ Q such that
α−1 = Rxβ

−1 =⇒ β−1 = Rx−1α−1 =⇒ β ∼ α. Thus, ∼ is symmetric.
Let α ∼ β and β ∼ γ, then there exist x, y ∈ Q such that α−1 = Rxβ

−1

and β−1 = Ryγ
−1 =⇒ α−1 = RxRyγ

−1. Choose y = σ(x), so that
α−1 = RxRσ(x)γ

−1 = Rxσ(x)γ
−1 =⇒ α ∼ γ. ∴ ∼ is an equivalence

relation over SYM(Q).

2. Let α, β ∈ SYM(Q). Let α ∼ β, then there exists y ∈ Q such that
α−1 = Ryβ

−1. Take y = xσ(x), then α−1 = Rxσ(x)β
−1 = RxRσ(x)β

−1 ⇒
αRx = βRσ(x)−1 . Say, αRx = βRσ(x)−1 = ψ, then α = ψRx−1 and
β = ψRσ(x). So, α, β ∈ TBS1(Q, ·).
Let α, β ∈ TBS1(Q, ·). Then there exist x, y ∈ Q, ψ ∈ SYM(Q) such
that α = ψRx and β = ψRy. This implies ψ = αR−1

x = βR−1
y ⇒

α−1 = Rx−1Ryβ
−1. Take y = σ(x−1), then α−1 = Rx−1Rσ(x−1)β

−1 =
Rx−1σ(x−1)β

−1 ⇒ α ∼ β.

3. Use 1. and 2.

Lemma 3.11. Let (Q, ·) be a loop. Then

1. TBS1(Q, ·) ≤ SYM(Q) if and only if α−1 ∼ β−1 for any twin maps
α, β ∈ SYM(Q). Hence, T1(Q, ·) ≤ SYM(Q).

2. TBS2(Q, ·) ≤ BS(Q, ·) if and only if α−1 ∼ β−1 for any twin maps
α, β ∈ SYM(Q). Hence, T2(Q, ·) ≤ PS(Q, ·).

Proof.
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1. TBS1(Q, ·) ̸= ∅ because I = IRe and I−1 = I−1Re and so, I, I−1 ∈
TBS1(Q, ·). Let α1, α2 ∈ TBS1(Q, ·) and let ψ1, ψ2 ∈ SYM(Q). Then
there exist x1, y1, x2, y2 ∈ Q, ψ1, ψ2 ∈ SYM(Q) and β1, β2 ∈ SYM(Q)
such that α1 = ψ1Rx1 , β1 = ψ1Ry1 and α2 = ψ2Rx2 , β2 = ψ2Ry2 . So,
α1α

−1
2 = ψ1Rx1R

−1
x2
ψ−1
2 . Now, α1α

−1
2 ∈ TBS1(Q, ·) ⇔ α1α

−1
2 = ψRx

and β1β
−1
2 = ψRy for some x, y ∈ Q and ψ ∈ SYM(Q). Taking ψ =

ψ1ψ
−1
2 and x = x2, then α1α

−1
2 = ψ1ψ

−1
2 Rx ⇔ ψ1Rx1R

−1
x2
ψ−1
2

= ψ1ψ
−1
2 Rx ⇔ ψ2Rx1 = Rxψ2Rx2 ⇔ ψ2Rx1 = Rxα2 ⇔ ψ2Ry2 =

Rxα2 with x1 = y2 ⇔ β2 = Rxα2 ⇔ α−1
2 ∼ β−1

2 . Thus, TBS1(Q, ·) ≤
SYM(Q) if and only if α−1

2 ∼ β−1
2 .

Assuming that TBS1(Q, ·) ≤ SYM(Q), then T1(Q, ·) ̸= ∅ because I ∈
T1(Q, ·). As earlier shown, α1α

−1
2 = ψ1ψ

−1
2 Rx for any ψ1, ψ2 ∈ T1(Q, ·)

and α1, α2 ∈ TBS1(Q, ·). So, T1(Q, ·) ≤ SYM(Q).

2. TBS2(Q, ·) ̸= ∅ because TBS1(Q, ·) ̸= ∅ and BS(Q, ·) ̸= ∅. For any
α1, α2 ∈ TBS2(Q, ·), α1α

−1
2 ∈ BS(Q, ·). So, α1α

−1
2 ∈ TBS2(Q, ·) ⇔

α1α
−1
2 ∈ TBS1(Q, ·) ⇔ α−1

2 ∼ β−1
2 . ∴ TBS2(Q, ·) ≤ BS(Q, ·) ⇔ α−1

2 ∼
β−1
2 .

Assuming that TBS2(Q, ·) ≤ BS(Q, ·), then T2(Q, ·) ̸= ∅ because I ∈
T2(Q, ·). Let ψ ∈ T2(Q, ·), then there exists α ∈ BS(Q, ·), and α = ψRx ∈
TBS2(Q, ·) for some x ∈ Q. Recall that α ∈ BS(Q, ·) implies there exist
f, g ∈ Q such that (αR−1

g , αL−1
f , α) ∈ AUT (Q, ·). Taking g = x and

f = e, (αR−1
g , αL−1

f , α) = (ψRxR
−1
x , ψRxL

−1
e , ψRx) = (ψ,ψRx, ψRx) ∈

AUT (Q, ·) ⇒ α ∈ PS(Q, ·). Thus, T2(Q, ·) ⊆ PS(Q, ·).
Let ψ1, ψ2 ∈ T2(Q, ·), then there exist α1, α2 ∈ TBS2(Q, ·) such that
α1 = ψ1Rx1 and α2 = ψ2Rx2 . In fact, α1, α2 ∈ TBS1(Q, ·) and so,
following 1., α1α

−1
2 = ψ1ψ

−1
2 Ry ∈ TBS1(Q, ·) for some y ∈ Q. This

implies that α1α
−1
2 = ψ1ψ

−1
2 Ry ∈ TBS2(Q, ·) for some y ∈ Q and so

ψ1ψ
−1
2 ∈ T2(Q, ·). Thus, T2(Q, ·) ≤ PS(Q, ·).

In what follows, in a loop (Q, ·) with A-holomorph (H, ◦) where H = A(Q)×
Q, we shall replace A(Q) by T3(Q) whenever T3(Q) ≤ AUM(Q, ·) and then
call (H, ◦) a T3-holomorph of (Q, ·).

Corollary 3.12. Let (Q, ·) be a loop with a self-map σ : x 7→ (xg−1)−1 for
all x ∈ Q and some g ∈ Q and let (H, ◦) be the T3-holomorph of (Q, ·) with a
self-map σ′ such that σ′ : (α, x) 7→

(
α, (xg−1)−1

)
for all (α, x) ∈ H. Then

(H, ◦) is a σ′-generalized Bol loop if (Q, ·) is a α−1σγ−1-generalized Bol loop
for any α, γ ∈ T3.

Proof. This is proved using Lemma 3.11, Corollary 3.2 and Corollary 3.7.

Corollary 3.13. Let (Q, ·) be a loop with a self-map σ : x 7→ (xg−1)−1 for all
x ∈ Q and some g ∈ Q and let (H, ◦) be the T3-holomorph of (Q, ·) with a self-

map σ′ such that σ′ : (α, x) 7→
(
α,

[
αγ(x)(α(g))−1

]−1
)
for all (α, x) ∈ H and
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any γ ∈ T3. If (Q, ·) is a σ-generalized Bol loop, then (H, ◦) is a σ′-generalized
Bol loop.

Proof. This is proved using Lemma 3.11, Theorem 3.3 and Corollary 3.7.

Corollary 3.14. Let (Q, ·) be a loop with a self-map σ : x 7→ (xg−1)−1 for
all x ∈ Q and some g ∈ Q and let (H, ◦) be the T3-holomorph of (Q, ·) with
a self-map σ′ such that σ′ : (α, x) 7→

(
α, (xg−1)−1

)
for all (α, x) ∈ H. If

for any γ ∈ T3, (Q, ·) is a σαγ−1-generalized flexible-Bol loop, then (H, ◦) is a
σ′-generalized flexible-Bol loop.

Proof. This is proved using Lemma 3.11, Theorem 3.4 and Corollary 3.7.

Corollary 3.15. Let (Q, ·) be a loop with a self-map σ : x 7→ (xg−1)−1 for
all x ∈ Q and some g ∈ Q and let (H, ◦) be the T3-holomorph of (Q, ·) with a

self-map σ′ such that σ′ : (α, x) 7→
(
α,

[(
γα−1(x)

)
g−1

]−1
)
for all (α, x) ∈ H

and any γ ∈ T3. If (Q, ·) is a σ-generalized flexible-Bol loop, then (H, ◦) is a
σ′-generalized flexible-Bol loop.

Proof. This is proved using Lemma 3.11, Theorem 3.5 and Corollary 3.7.

Remark 3.16. In Corollary 3.12, 3.13, 3.14, 3.15, the holomorph of a loop is
built on the group of automorphisms gotten via the group of twin mappings.
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