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EXISTENCE OF SOLUTIONS FOR A SYSTEM OF
INTEGRAL EQUATIONS VIA MEASURE OF

NONCOMPACTNESS

Asadollah Aghajani1 and Ali Shole Haghighi 2

Abstract. Using the techniques of measures of noncompactness and
Darbo fixed point theorem, we present some existence results for solu-
tions of systems of nonlinear equations in Banach spaces. Also, as an
application, we discuss the existence of solutions for a general system
of nonlinear functional integral equations, which extends some previous
results in the literature. An example is given to show the efficiency and
usefulness of the results.
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1. Introduction

Recently, there have been several successful efforts to apply the concept
of measure of noncompactness in the study of the existence and behavior of
solutions of nonlinear differential and integral equations ([1, 2, 3, 4, 7, 8, 9, 10,
11, 13, 14, 15, 16, 19] ). In this paper, we present and prove some new existence
theorems for solutions of systems of nonlinear equations which are formulated
in terms of condensing operators in Banach spaces (i.e. mappings under which
the image of any set is in a certain sense more compact than the set itself [6]).
Moreover, as an application, we study the problem of existence of solutions for
the following system of nonlinear integral equation

(1.1)

 x(t) = f1

(
t, x(ξ1(t)), y(ξ1(t)),

∫ β1(t)

0
g1(t, s, x(η1(s)), y(η1(s)))ds

)
,

y(t) = f2

(
t, x(ξ2(t)), y(ξ2(t)),

∫ β2(t)

0
g2(t, s, x(η2(s)), y(η2(s)))ds

)
,

where fi, gi, ξi, ηi and βi satisfy certain conditions.
The organization of this paper is as follows. In Section 2, some basic nota-

tions, definitions and auxiliary results are given. Section 3 is devoted to state
and prove some existence theorems for systems of equations involving condens-
ing operators using the Darbo fixed point theorem. Finally in Section 4, using
the obtained results in Section 3, we investigate the problem of existence of
solutions for the system of nonlinear integral equation (1.1).
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2. Preliminaries

The first measure of noncompactness was defined by Kuratowski [18]. In a
metric space X and for a bounded subset S of X the Kuratowski measure of
noncompactness is defined as
(2.1)

α(S) := inf{δ > 0|S =

n∪
i=1

Si for some Si with diam(Si) ≤ δ for 1 ≤ i ≤ n ≤ ∞}.

Here diam(T ) denotes the diameter of a set T ⊂ X, i.e.,

diam(T ) := sup{d(x, y)|x, y ∈ T}.

Another important measure of noncompactness is the so-called Hausdorff (or
ball) measure of noncompactness defined as

χ(X) = inf{ε : X has a finite ε− net in E}.

Since a ball of radius r has diameter at most 2r, then the measures χ and α
are equivalent i.e., for any bounded subset X of E the following estimate holds
[6]

χ(X) ≤ α(X) ≤ 2χ(X).

The two measures χ and α share many properties [6, 8]. Here, we recall some
basic facts concerning measures of noncompactness from [8], which is defined
axiomatically in terms of some natural conditions. Denote by R the set of
real numbers and put R+ = [0, + ∞). Let (E, ∥.∥) be a Banach space. The
symbol X, ConvX will denote the closure and closed convex hull of a subset
X of E, respectively. Moreover, let ME indicate the family of all nonempty
and bounded subsets of E and NE indicate the family of all nonempty and
relatively compact subsets.

Definition 2.1. A mapping µ : ME −→ R+ is said to be a measure of non-
compactness in E if it satisfies the following conditions:

1◦ The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊆ NE .

2◦ X ⊂ Y =⇒ µ(X) ≤ µ(Y ).

3◦ µ(X) = µ(X).

4◦ µ(ConvX) = µ(X).

5◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

6◦ If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for
n = 1, 2, · · · and if lim

n→∞
µ(Xn) = 0 then X∞ = ∩∞

n=1Xn ̸= ∅.

Here we recall the well known fixed point theorem of Darbo [12].
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Theorem 2.2. [12] Let Ω be a nonempty, bounded, closed and convex subset
of a space E and let F : Ω −→ Ω be a continuous mapping such that there exists
a constant k ∈ [0, 1) with the property

µ(FX) ≤ kµ(X)

for any nonempty subset X of Ω. Then F has a fixed point in the set Ω.

The following theorem and example are basic to prove all the results of this
work.

Theorem 2.3. [8] Suppose µ1, µ2, · · · , µn are measures in E1, E2, · · · , En, re-
spectively. Moreover, assume that the function F : Rn

+ −→ R+ is convex and
F (x1, · · · , xn) = 0 if and only if xi = 0 for i = 1, 2, · · · , n. Then

µ(X) = F (µ1(X1), µ2(X2), · · · , µn(Xn))

defines a measure of noncompactness in E1 ×E2 × · · · ×En where Xi denotes
the natural projection of X into Ei for i = 1, 2, · · · , n.

As results from Theorem 2.2 we present the following example.

Example 2.4. [5] Let µ be a measure of noncompactness, considering
F1(x, y) = max{x, y} and F2(x, y) = x + y for any (x, y) ∈ R2

+ then all the
conditions of Theorem 2.2 are satisfied. Therefore, µ̃1 = max{µ(X1), µ(X2)}
and µ̃2 = µ(X1) + µ(X2) are measures of noncompactness in the space E × E
where Xi, i = 1, 2 denote the natural projections of X.

3. Main results

In this section, we state and prove some existence results for solutions of
systems of equations involving condensing operators in Banach spaces which
will be used in Section 4.

Theorem 3.1. Let C be a nonempty, bounded and closed subset of a Banach
space E and µ an arbitrary measure of noncompactness on E. If Fi : C×C −→
C for i = 1, 2 are continuous operators and there exists a constant k ∈ [0, 1)
such that

(3.1) µ(Fi(X1 ×X2)) ≤ kmax{µ(X1), µ(X2)},

for any subset X1, X2 of C, then there exist x∗, y∗ ∈ X such that

(3.2)

{
F1(x

∗, y∗) = x∗,
F2(x

∗, y∗) = y∗.

Proof. Consider the operator F̃ : C × C −→ C × C defined by

F̃ (x, y) = (F1(x, y), F2(x, y)).

Example 2.4 shows that µ̃(X) := max{µ(X1), µ(X2)} is a measure of noncom-
pactness in the space C ×C, where Xi, i = 1, 2 denote the natural projections
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of X. Now let X be any nonempty subset of C × C. Then by (2◦) and (3.1)
we obtain

µ̃(F̃ (X)) ≤ µ̃(F1(X1 ×X2)× F2(X1 ×X2))

= max{µ(F1(X1 ×X2)), µ(F2(X1 ×X2))}
≤ max{kmax{µ(X1), µ(X2)}, kmax{µ(X2), µ(X1)}
≤ kµ̃(X).

Since µ̃ is also a measure of noncompactness, therefore all conditions of The-
orem 2.3 are satisfied. Hence F̃ has a fixed point, i.e., there exist x∗, y∗ ∈ X
such that

(x∗, y∗) = F̃ (x∗, y∗) = (F1(x
∗, y∗), F2(x

∗, y∗)),

which means (x∗, y∗) solves (3.2).

Corollary 3.2. Let C be a nonempty, bounded and closed subset of a Banach
space E and µ an arbitrary measure of noncompactness on E. If Fi : C ×
C −→ C for i = 1, 2 are continuous operators for which there exist nonnegative
constants k1, k2 with k1 + k2 < 1 such that

(3.3) µ(Fi(X1 ×X2)) ≤ k1µ(X1) + k2µ(X2)

for any subsets X1, X2 of C, then there exist x∗, y∗ ∈ X such that{
F1(x

∗, y∗) = x∗,
F2(x

∗, y∗) = y∗.

Proof. It is enough to show that (3.1) holds. Let X1, X2 ⊆ C be given, then

µ(Fi(X1 ×X2)) ≤ k1µ(X1) + k2µ(X2)

≤ k1 max{µ(X1), µ(X2)}+ k2 max{µ(X1), µ(X2)}
≤ (k1 + k2)max{µ(X1), µ(X2)}.

Now the conclusion follows from Theorem 3.1.

Definition 3.3. [17] An element (x, y) ∈ X×X is called a coupled fixed point
of the mapping F : X ×X −→ X if F (x, y) = x and F (y, x) = y.

Note that if F : C × C −→ C is a continuous operator and we define
F1(x, y) = F (x, y) and F2(x, y) = F (y, x) then as a result of Theorem 3.1 and
Corollary 3.2 we have the main results of [5].

Corollary 3.4. Let C be a nonempty, bounded and closed subset of a Banach
space E, µ an arbitrary measure of noncompactness on E and F : C×C −→ C
a continuous operator. Suppose either:

(I) There exist nonnegative constants k1, k2 with k1 + k2 < 1 such that

µ(F (X1 ×X2)) ≤ k1µ(X1) + k2µ(X2),

or
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(II) There exists a constant k ∈ [0, 1) such that

µ(F (X1 ×X2)) ≤ kmax{µ(X1), µ(X2)}

for any subset X1, X2 of C. Then F has a coupled fixed point.

Proof. Take F1(x, y) = F2(x, y) = F (y, x) in Theorem 3.1 and Corollary 3.2.

Corollary 3.5. Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and let Fi : C × C −→ E for i = 1, 2 be operators such that

(3.4) ∥Fi(x, y)− Fi(u, v)∥ ≤ kmax{∥x− u∥, ∥y − v∥},

where k ∈ [0, 1) . Assume that Gi : C × C −→ X are compact and continuous
operators and the operators Ti : C × C −→ C defined by

(3.5) ∥Ti(x, y)− Ti(u, v)∥ ≤ ∥Fi(x, y)− Fi(u, v)∥+Φ(∥Gi(x, y)−Gi(u, v)∥)

for i = 1, 2 where Φ : R+ −→ R+ is a nondecreasing continuous function and
Φ(0) = 0. Then there exist x∗, y∗ ∈ C such that{

T1(x
∗, y∗) = x∗,

T2(x
∗, y∗) = y∗.

Proof. Let X1 and X2 be arbitrary subsets of C and fixed 1 ≤ i ≤ 2. By the
definition of Kuratowski measure of noncompactness for every ε > 0 there exist
S1, · · · , Sn such that X1 ×X2 ⊆

∪i=n
k=1 Sk,

diam(Fi(Sk)) < α(Fi(X1 ×X2) + ε

and
diam(Gi(Sk)) < ε.

Let us fix arbitrarily 1 ≤ k ≤ n. Then for every p, q ∈ Sk we have

∥Ti(p)− Ti(q)∥ ≤ ∥Fi(p)− Fi(q)∥+Φ(∥Gi(p)−Gi(q)∥).

Thus, by properties of Φ we obtain

diam(Ti(Sk)) ≤ diam(Fi(Sk)) + Φ(diam(Gi(Sk))),

diam(Ti(Sk)) ≤ α(Fi(X1 ×X2)) + ε+Φ(ε)

and since ε was chosen arbitrarily and Φ is a nondecreasing continuous function,
so

(3.6) α(Ti(X1 ×X2)) ≤ α(Fi(X1 ×X2)).

Now we show that Ti satifies (3.1). To do this fix arbitrary x, y ∈ X1 and
u, v ∈ X2. Then we have

∥Fi(x, y)− Fi(u, v)∥ ≤ kmax{∥x− u∥, ∥y − v∥}
≤ kmax{diamX1, diamX2}
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so
diam(Fi(X1 ×X2) ≤ kmax{diamX1, diamX2}

Therefore, by definition of Kuratowski measure of noncompactness we have

(3.7) α(Fi(X1 ×X2) ≤ kmax{α(X1), α(X2)}.

By (3.6) and (3.7) we deduce

α(Ti(X1 ×X2)) ≤ kmax{α(X1), α(X2)}.

Also, by conditon (3.5), Ti (i = 1, 2) are continuous operators and the applica-
tion of Theorem 3.1 completes the proof.

In the same way as the above proof, we can extend Theorem 3.1 for n-
dimensional systems of equations.

Theorem 3.6. Let C be a nonempty, bounded and closed subset of a Banach
space E and µ an arbitrary measure of noncompactness on E. If Fi : C

n −→ C,
i = 1, · · · , n are continuous operators for which there exists a constant k ∈ [0, 1)
such that

µ(Fi(X1 × · · · ×X2)) ≤ kmax{µ(X1), · · · , µ(Xn)}

for any subset X1, · · · , Xn of C. Then there exist x∗
1, · · · , x∗

n ∈ X such that
F1(x

∗
1, · · · , x∗

n) = x∗
1

...
...

Fn(x
∗
1, · · · , x∗

n) = x∗
n.

Proof. Define F̃ (x1, · · · , xn) = (F1(x1, · · · , xn), · · · , Fn(x1, · · · , xn)) and fol-
low the proof of Theorem 3.1.

4. Application

In this section, as an application of Theorem 3.1, we prove an existence
result for solutions of system (1.1). We will work in the Banach space BC(R+)
consisting of all real functions defined, bounded and continuous on R+. The
space BC(R+) is furnished with the standard supremum norm i.e., the norm
defined by the formula

∥x∥ = sup {|x(t)| : t ≥ 0} .

We will use a measure of noncompactness in the space BC(R+) which is stated
in ([8, 9]). In order to define this measure, let us fix a nonempty bounded
subset of X of BC(R+) and a positive number L > 0. For x ∈ X and ε ≥ 0
denote by ωL(x, ε), the modulus of continuity of x on the interval [0, L], i.e,

ωL(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, L] , |t− s| ≤ ε}.

Moreover, let us put



Existence of solutions for a system of integral equations... 65

ωL(X, ε) = sup
{
ωL(x, ε) : x ∈ X

}
,

ωL
0 (X) = lim

ε→0
ωL(X, ε),

ω0(X) = lim
L→∞

ωL
0 (X).

If t is a fixed number from R+, let us denote

X(t) = {x(t) : x ∈ X} .
Finally, consider the function µ defined on MBC(R+) by the formula

µ(X) = ω0(X) + lim sup
t→∞

diamX(t)

where

diamX(t) = sup {|x(t)− y(t)| : x, y ∈ X} .
It can be shown (cf. [8, 9]) that the function µ(X) defines a measure of non-
compactness on BC(R+) in the sense of the above accepted definition.

Now, we are ready to state and prove the main result of this section on the
existence of solutions for the system of integral equations (1.1).

Theorem 4.1. Assume that the following conditions are satisfied:

(i) ξi, ηi, βi : R+ −→ R+ (i=1,2) are continuous and ξi(t) −→ ∞ as t −→ ∞
for i = 1, 2,

(ii) fi : R+ × R × R × R −→ R for i = 1, 2 are continuous. Moreover,
there exist constant k ∈ [0, 1) and nondecreasing continuous functions
Φi : R+ −→ R+ with Φi(0) = 0, i = 1, 2, such that
(4.1)
|fi(t, x, y, z)− fi(t, u, v, w)| ≤ kmax{|x− u|, |y − v|}+Φi(mi(t)|z − w|),

where mi(t) : R+ −→ R+ are continuous functions.

(iii) The functions |fi(t, 0, 0, 0)| for i = 1, 2 are bounded on R+, i.e.

(4.2) Mi = sup{fi(t, 0, 0, 0) : t ∈ R+} < ∞.

(iv) gi : R+ × R+ × R× R −→ R for i = 1, 2 are continuous and there exists
a positive constant D such that
(4.3)

sup{mi(t)

∣∣∣∣ ∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s)))ds

∣∣∣∣ : t ∈ R+, x, y ∈ BC(R+),
1 ≤ i ≤ 2

} < D.

Morever,
(4.4)

lim
t−→∞

mi(t)

∣∣∣∣ ∫ βi(t)

0

[gi(t, s, x(ηi(s)), y(ηi(s)))−gi(t, s, u(ηi(s)), v(ηi(s)))]ds

∣∣∣∣ = 0,

uniformly with respect to x, y, u, v ∈ BC(R+) for i = 1, 2.
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Then the system of equations (1.1) has at least one solution in the space
BC(R+)×BC(R+).

Proof. The proof is carried out in two steps.

Step 1: Gi : BC(R+)×BC(R+) −→ BC(R+) defined by

(4.5) Gi(x, y)(t) = mi(t)

∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s)))ds

for i = 1, 2 are compact and continuous operators.

Let 1 ≤ i ≤ 2 be fixed. Notice that the continuity of Gi(x, y)(t) for any
x ∈ BC(R+) × BC(R+) is obvious. Moreover, by (4.3), Gi is an operator on
BC(R+) × BC(R+) into BC(R+). Now, we show that Gi is continuous. For
this, take x, y ∈ BC(R+) and ε > 0 arbitrarily, and consider u, v ∈ BC(R+)
with ∥x− u∥ < ε and ∥v − y∥ < ε. Then we have

|Gi(x, y)(t)−Gi(u, v)(t)| ≤
∣∣∣mi(t)

∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s)))ds

−mi(t)

∫ βi(t)

0

gi(t, s, u(ηi(s)), v(ηi(s)))ds
∣∣∣

≤ mi(t)
∣∣∣ ∫ βi(t)

0

[gi(t, s, x(ηi(s)), y(ηi(s)))

−gi(t, s, u(ηi(s)), v(ηi(s)))]ds
∣∣∣.(4.6)

Furthermore, considering condition (iv), there exists T > 0 such that for t > T
we have

|Gi(x, y)(t)−Gi(u, v)(t)| ≤ ε.

Also, if t ∈ [0, T ], then from (4.6) it follows that

|Gi(x, y)(t)−Gi(u, v)(t)| ≤ mTβTϑ(ε),

where

βT = sup{βi(t) : t ∈ [0, T ], 1 ≤ i ≤ 2},
mT = sup{mi(t) : t ∈ [0, T ], 1 ≤ i ≤ 2},
b = max{∥x∥, ∥y∥}+ ε,

ϑ(ε) = sup{|gi(t, s, x, y)− gi(t, s, u, v)| : t ∈ [0, T ], s ∈ [0, βT ],

x, y, u, v ∈ [−b, b], |x− u| ≤ ε, |y − v| ≤ ε}.

By using the continuity of gi on the compact set [0, T ]×[0, βT ]×[−b, b]×[−b, b],
we have ϑ(ε) −→ 0, as ε −→ 0. Thus, Gi is a continuous function from
BC(R+)×BC(R+) into BC(R+).
Now, Let X1, X2 be two nonempty and bounded subsets of BC(R+), and as-
sume that T > 0 and ε > 0 are chosen arbitrarily. Let t1, t2 ∈ [0, T ], with
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|t2 − t1| ≤ ε and x, y ∈ X, we obtain

(4.7)

|Gi(x, y)(t2)−Gi(x, y)(t1)| ≤

≤
∣∣∣mi(t1)

∫ βi(t2)

0

gi(t2, s, x(ηi(s)), y(ηi(s)))ds

−mi(t2)

∫ βi(t1)

0

gi(t1, s, x(ηi(s)), y(ηi(s)))ds
∣∣∣

≤ mT

∣∣∣ ∫ βi(t2)

0

[gi(t2, s, x(ηi(s)), y(ηi(s)))

− gi(t1, s, x(ηi(s)), y(ηi(s)))]ds
∣∣∣

+mT

∣∣∣ ∫ βi(t2)

βi(t1)

gi(t1, s, x(ηi(s)), y(ηi(s)))ds
∣∣∣

≤ mTβT ωT
r (gi, ε) +mTU

T
r ωT (βi, ε),

where

r = max{sup{∥x∥ : x ∈ X1}, sup{∥x∥ : x ∈ X2}},
ωT (βi, ε) = {|βi(t1)− βi(t2)| : t1, t2 ∈ [0, T ], |t1 − t2| ≤ ε},
ωT
r (gi, ε) = sup{|gi(t2, s, x, y)− gi(t1, s, x, y)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε,

x, y ∈ [−r, r], s ∈ [0, βT ]},
UT
r = sup{|gi(t, s, x, y)| : t ∈ [0, T ], s ∈ [0, βT ], x, y ∈ [−r, r]}.

Since (x, y) was an arbitrary element of X1 ×X2 in (4.7), so we obtain

ωT (Gi(X1 ×X2), ε) ≤ mTβT ωT
r (gi, ε) +mTU

T
r ωT (β, ε).(4.8)

On the other hand by the uniform continuity of gi on [0, T ]× [0, βT ]× [−r, r]×
[−r, r], we have ωT

r (gi, ε) −→ 0, as ε −→ 0 and also because of the uniform
continuity of β on [0, T ], we derive that ωT (β, ε) −→ 0 as ε −→ 0. Therefore
we obtain

mTβT ωT
r (gi, ε) +mTU

T
r ωT (β, ε) −→ 0,

as ε −→ 0 and
ωT
0 (Gi(X1 ×X2)) = 0,

therefore

(4.9) ω0(Gi(X1 ×X2)) = 0.

Finally, for arbitrary (x, y), (u, v) ∈ X1 ×X2 and t ∈ R+ we get

(4.10)

∣∣∣Gi(x, y)(t)−Gi(u, v)(t)
∣∣∣ ≤

≤ mi(t)
∣∣∣ ∫ βi(t)

0

[gi(t, s, x(ηi(s)), y(ηi(s))

− gi(t, s, u(ηi(s)), v(ηi(s))]ds
∣∣∣

≤ mi(t)θi(t),
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where

θi(t) = sup{
∣∣∣ ∫ βi(t)

0

[gi(t, s, x(ηi(s)), y(ηi(s))ds)− gi(t, s, u(ηi(s)), v(ηi(s))]ds
∣∣∣ :

x, y, u, v ∈ BC(R+)}.

Since (x, y), (u, v) and t were chosen arbitrarily in (4.10), we conclude that

diamGi(X1 ×X2)(t) ≤ m(t)θ(t).(4.11)

Taking t −→ ∞ in the inequality (4.11), then using (iv) we deduce that

(4.12) lim sup
t−→∞

diamGi(X1 ×X2)(t) = 0.

Further, combining (4.9) and (4.12) we get

lim sup
t,s−→∞

diamGi(X1 ×X2)(t) + ω0(Gi(X1 ×X2)) = 0

or, equivalently
µ(Gi(X1 ×X2)) = 0.

Thus, Gi is a compact and continuous operator.
Step 2: There exists r0 ∈ R+ such that the operators Ti : B̄r0 × B̄r0 −→ B̄r0

(i = 1, 2) defined by

(4.13) Ti(x, y)(t) = fi

(
t, x(ξ(t)), y(ξ(t)),

∫ β(t)

0

gi(t, s, x(η(s)), y(η(s))ds)
)

are well defined and satisfy condition (3.5) where Gi is given by (4.5) and

Fi(x, y)(t) = kmax{x(t), y(t)},

for i = 1, 2.
Using conditions (i)-(iv), for arbitrarily fixed t ∈ R+ and i = 1, 2 we get

(4.14)
|Ti(x, y)(t)| ≤

≤
∣∣∣fi(t, x(ξi(t)), y(ξi(t)), ∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s))ds)− fi(t, 0, 0, 0)
∣∣∣

+ |fi(t, 0, 0, 0)|
≤ kmax{|x(ξi(t))|, |y(ξi(t))|}+ |fi(t, 0, 0, 0)|

+Φi

(
mi(t)

∣∣∣ ∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s)))ds
∣∣∣)

≤ kmax{∥x∥, ∥y∥}+Mi +Φi(D),

therefore,

(4.15) ∥Ti(x, y)∥ ≤ kmax{∥x∥, ∥y∥}+Mi +Φi(D).
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Thus, from the estimate (4.15) we have Ti(B̄r0 × B̄r0) ⊆ B̄r0 for

r0 = max{M1 +Φ1(D)

1− k
,
M2 +Φ2(D)

1− k
}.

Next, by condition (ii) of Theorem 4.1, it is obvious that Fi and Fi(x) for
x ∈ BC(R+) are continuous functions on BC(R+) and R+, respectively, and
for i = 1, 2, x, y, u, v ∈ BC(R+) and t ∈ R+ we have

|Ti(x, y)(t)−Ti(u, v)(t)| =

=
∣∣∣fi(t, x(ξi(t)), y(ξi(t)), ∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s))ds)
)

− fi

(
t, u(ξi(t)), v(ξi(t)),

∫ βi(t)

0

gi(t, s, u(ηi(s)), v(ηi(s))ds)
)∣∣∣

≤ kmax{|x(t)− u(t)|, |y(t)− v(t)|}

+Φ(mi(t)
∣∣∣ ∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s))ds

−
∫ βi(t)

0

gi(t, s, u(ηi(s)), v(ηi(s))ds
∣∣∣)

≤ |Fi(x, y)(t)− Fi(u, v)(t)|+Φ(|Gi(x, y)(t)−Gi(u, v)(t)|)
≤ ∥Fi(x, y)− Fi(u, v)∥+Φ(∥Gi(x, y)−Gi(u, v)∥),

therefore,

∥Ti(x, y)− Ti(u, v)∥ ≤ ∥Fi(x, y)− Fi(u, v)∥+Φ(∥Gi(x, y)−Gi(u, v)∥).

Obviously, Fi satisfies condition (3.4) and thus by Corollary 3.4, there exist
x0, y0 ∈ BC(R+) that are solutions of the system of integral equations (1.1),
and the proof is complete.

In the same way as the above proof, we can extend Theorem 4.1 for finite
system of nonlinear integral equation

xi(t) = fi

(
t, x1(ξi(t)), · · · , xn(ξi(t)),

∫ βi(t)

0

gi(t, s, x1(ηi(s)), · · · , xn(ηi(s)))ds
)

where fi, gi, ξi, ηi and βi satisfy certain conditions. As a corollary of Theorem
4.1 we have the main results of [5].

Corollary 4.2. [5] Suppose that (i) f : R+ × R × R → R is continuous and
the function t → f(t, 0, 0) is a member of the space BC(R+);

(ii) there exists k ∈ [0, 1) such that

(4.16) |f(t, x, y)− f(t, u, v)| ≤ k

2
(|x− u|+ |y − v|),

for any t ≥ 0 and for all x, y, u, v ∈ R;
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(iii) the functions ξ, η, q : R+ → R+ are continuous and ξ(t) → ∞ as
t → ∞.

(iv) h : R+ × R+ × R × R → R is a continuous function and there exist
x0, y0 ∈ R and a positive constant d such that

(4.17)

∫ q(t)

0

|h(t, s, x0, y0)| ds ≤ d

for all t ∈ R+. In addiition,

(4.18) lim
t→∞

∫ q(t)

0

|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s))| ds = 0,

(4.19)

∫ q(t)

0

|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s))| ds ≤ ∞

for any t ∈ R+ and uniformly respect to x, y, u, v ∈ BC(R+).
Then the system of equations

(4.20)

{
x(t) = f(t, x(ξ(t)), y(ξ(t))) +

∫ q(t)

0
h(t, s, x(η(s)), y(η(s)))ds,

y(t) = f(t, y(ξ(t)), x(ξ(t))) +
∫ q(t)

0
h(t, s, y(η(s)), x(η(s)))ds,

has at least one solution in the space BC(R+)×BC(R+).

Proof. Take

f1(t, x, y, z) = f(t, x, y) + z,

f2(t, x, y, z) = f(t, y, x) + z,

g1(t, s, x, y) = h(t, s, x, y),

g1(t, s, x, y) = h(t, s, y, x)

in Theorem 4.1.

Now, we give an example where Theorem 4.1 can be applied but the previous
results [5] are not applicable.

Example 4.3. Consider the system of integral equations
(4.21)

x(t) = t2(x(t)+y(t))
2(1+t4) +

∫ t2

0
s3 cos(sx(

√
s))+es(2+sin(x4(

√
s)+y4(

√
s)))

et2 (2+sin(x4(
√
s)+y4(

√
s)))

ds,

y(t) = sin(t2(x(t)+y(t)))
2(1+t4) + arctan

∫√
t

0

4
√

1+sy(s)+ts11(1+x4(s)+y4(s))

(1+t7)(1+x4(t)+y4(t)) ds,

where t ∈ [0,∞).
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Eq. (4.21) is a special case of Eq. (1.1) where

ξ1(t) = ξ2(t) = η2(t) = t, β1(t) = t2, β2(t) = η1(t) =
√
s

f1(t, x, y, z) =
t2(x+ y)

2(1 + t4)
+ z,

f2(t, x, y, z) =
sin(t2(x+ y))

2(1 + t4)
+ arctan z,

g1(t, s, x, y) =
s3 cos(sx) + es(2 + sin(x4 + y4))

et2(2 + sin(x4 + y4))
,

g1(t, s, x, y) =
4
√
1 + sy + ts11(1 + x4 + y4)

(1 + t7)(1 + x4 + y4)
.

Now we check all conditions of Theorem 4.1. It is clear that condition (i) is
satisfied. Assume that t ∈ R+ and x, y, z, u, v, w ∈ R. Then we get

|f1(t, x, y, z)− f1(t, u, v, w)| ≤ t2

1 + t4
|x− u|+ |y − v|

2
+ |z − w|

≤ 1

2
max{|x− u|, |y − v|}+ |z − w|

and

|f2(t, x, y, z)− f2(t, u, v, w)| ≤ | sin(t2(x− u+ y − v))|
2(1 + t4)

+| arctan(z)− arctan(w)|

≤ 1

2
max{|x− u|, |y − v|}+ |z − w|.

Therefore f1 and f2 satisfy condition (ii) of Theorem 4.1 with k = 1
2 . Also it

is clear that fi and gi are continuous and by simple calculation we obtain that

M1 = sup{ t
2(0 + 0)

2(1 + t4)
+ 0 : t ∈ R+} = 0,

M2 = sup{ sin(t
2(0 + 0))

2(1 + t4)
+ 0 : t ∈ R+} = 0,∣∣∣s3 cos(sx(√s)) + es(2 + sin(x4(

√
s) + y4(

√
s)))

et2(2 + sin(x4(
√
s) + y4(

√
s)))

∣∣∣ ≤ ∣∣∣s3 + 2es

et2

∣∣∣,
lim

t−→∞

∣∣∣ ∫ √
t

0

4
√
1 + sx(s) + ts11(1 + x4(t) + y4(s))

(1 + t7)(1 + x4(t) + y4(t))
ds
∣∣∣ = 1

12
,

|g1(t, s, x(η1(s)), y(η1(s)))− g1(t, s, u(η1(s)), v(η1(s)))| ≤
2s3

et2
,

|g2(t, s, x(η2(s)), y(η2(s)))− g2(t, s, u(η2(s)), v(η2(s)))| ≤
2(1 + s)

1 + t7
.

Thus, D ≤ ∞ and we have

lim
t−→∞

∣∣∣∣ ∫ βi(t)

0

gi(t, s, x(ηi(s)), y(ηi(s)))− gi(t, s, u(ηi(s)), v(ηi(s)))ds

∣∣∣∣ = 0
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Therefore, as a result of Theorem 4.1, the system of integral equations (4.21)
has at least one solution in the space BC(R+)×BC(R+).
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