CONVERGENCE OF THE EXPLICIT ITERATION METHOD FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE

G. S. Saluja¹

Abstract. In this paper, we establish a weak convergence theorem and some strong convergence theorems of an explicit iteration process for a finite family of strictly asymptotically pseudo-contractive mappings in the intermediate sense and also establish a strong convergence theorem by a new hybrid method for above said iteration scheme and mappings in the setting of Hilbert spaces.

AMS Mathematics Subject Classification (2010): 47H09, 47H10.

Key words and phrases: Strictly asymptotically pseudo-contractive mapping in the intermediate sense, common fixed point, explicit iteration process, strong convergence, weak convergence, Hilbert space.

1. Introduction and Preliminaries

Throughout this paper, let H be a real Hilbert space with the scalar product and norm denoted by the symbols $\langle ., . \rangle$ and $\| . \|$ respectively. Let C be a closed convex subset of H, we denote by $P_C(.)$ the metric projection from H onto C. It is known that $z = P_C(x)$ is equivalent to $\langle z - y, x - z \rangle \ge 0$ for every $y \in C$. A point $x \in C$ is a fixed point of T provided that Tx = x. Denote by F(T)the set of fixed point of T, that is, $F(T) = \{x \in C : Tx = x\}$. It is known that F(T) is closed and convex. Let T be a (possibly) nonlinear mapping from Cinto C. We now consider the following classes:

T is contractive, i.e., there exists a constant k < 1 such that

(1.1)
$$||Tx - Ty|| \leq k||x - y||,$$

for all $x, y \in C$.

T is nonexpansive, i.e.,

$$(1.2) ||Tx - Ty|| \le ||x - y||.$$

for all $x, y \in C$.

T is uniformly $L\mbox{-Lipschitzian},$ i.e., if there exists a constant L>0 such that

(1.3) $||T^n x - T^n y|| \leq L||x - y||,$

¹Department of Mathematics, Govt. Nagarjuna P.G. College of Science, Raipur (C.G.), India, e-mail: saluja_1963@rediffmail.com

for all $x, y \in C$ and $n \in \mathbb{N}$.

T is pseudo-contractive, i.e.,

(1.4)
$$\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2,$$

for all $x, y \in C$.

T is asymptotically nonexpansive [6], i.e., if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

(1.5)
$$||T^n x - T^n y|| \leq k_n ||x - y||,$$

for all $x, y \in C$ and $n \ge 1$.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [6] as a generalization of the class of nonexpansive mappings. T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous and the following inequality holds:

(1.6)
$$\limsup_{n \to \infty} \sup_{x, y \in C} \left(\|T^n x - T^n y\| - \|x - y\| \right) \leq 0$$

Observe that if we define

(1.7)
$$G_n = \max\left\{0, \sup_{x,y \in C} \left(\|T^n x - T^n y\| - \|x - y\|\right)\right\}$$

then $G_n \to 0$ as $n \to \infty$. It follows that (1.7) is reduced to

(1.8)
$$||T^n x - T^n y|| \leq ||x - y|| + G_n,$$

for all $x, y \in C$ and $n \ge 1$.

The class of mappings which are asymptotically nonexpansive in the intermediate sense was introduced by Bruck et al. [3]. It is known [8] that if C is a nonempty closed convex bounded subset of a uniformly convex Banach space E and T is asymptotically nonexpansive in the intermediate sense, then T has a fixed point. It is worth mentioning that the class of mappings which are asymptotically nonexpansive in the intermediate sense contains properly the class of asymptotically nonexpansive mappings.

Recall that T is said to be a k-strictly pseudocontraction if there exists a constant $k \in [0, 1)$ such that

(1.9)
$$||Tx - Ty||^2 \leq ||x - y||^2 + k||(I - T)x - (I - T)y||^2,$$

for all $x, y \in C$.

T is said to an asymptotically k-strictly pseudocontraction with sequence $\{r_n\}$ if there exists a sequence $\{r_n\} \subset [0,\infty)$ with $\lim_{n\to\infty} r_n = 0$ such that

(1.10)
$$\begin{aligned} \|T^n x - T^n y\|^2 &\leq (1+r_n) \|x - y\|^2 \\ &+ k \|(x - T^n x) - (y - T^n y)\|^2, \end{aligned}$$

for some $k \in [0, 1)$ for all $x, y \in C$ and $n \ge 1$.

Remark 1.1. (see [13]) If T is k-strictly asymptotically pseudo-contractive mapping, then it is uniformly L-Lipschitzian with $L = \sup_{n\geq 1} \{(a_n + \sqrt{k})/(1+\sqrt{k}) : n \in N\}$ where $\{a_n\}$ is a sequence in $[1, \infty)$ with $a_n \to 1$ as $n \to \infty$, but the converse does not hold.

The class of asymptotically k-strictly pseudocontraction was introduced by Qihou [9] in 1996. Kim and Xu [7] studied weak and strong convergence theorems for this class of mappings. It is important to note that every asymptotically k-strictly pseudocontraction with sequence $\{r_n\}$ is a uniformly L-Lipschitzian mapping with $L = \sup_{n\geq 1}\{(k+\sqrt{1+(1-k)r_n})/(1+k): n \in N\}$.

Recently, Sahu et al. [19] introduced a class of new mappings: asymptotically k-strictly pseudocontractive mappings in the intermediate sense. Recall that T is said to be an asymptotically k-strictly pseudocontraction in the intermediate sense with sequence $\{r_n\}$ if there exists a sequence $\{r_n\} \subset [0, \infty)$ with $\lim_{n\to\infty} r_n = 0$ and a constant $k \in [0, 1)$ such that

(1.11)
$$\lim_{n \to \infty} \sup_{x,y \in C} \left(\|T^n x - T^n y\|^2 - (1+r_n) \|x - y\|^2 - k\|(I - T^n)x - (I - T^n)y\|^2 \right) \le 0.$$

Throughout this paper, we assume that

(1.12)
$$s_n = \max\left\{0, \sup_{x,y\in C} \left(\|T^n x - T^n y\|^2 - (1+r_n)\|x - y\|^2 - k\|(I-T^n)x - (I-T^n)y\|^2\right)\right\}.$$

It follows that $s_n \to 0$ as $n \to \infty$ and (1.11) is reduced to the relation

(1.13)
$$\begin{aligned} \|T^n x - T^n y\|^2 &\leq (1+r_n) \|x - y\|^2 \\ +k\|(I-T^n)x - (I-T^n)y\|^2 + s_n, \end{aligned}$$

for all $x, y \in C$ and $n \ge 1$.

Remark 1.2. (see [19]) (1) T is not necessarily uniformly *L*-Lipschitzian (see Lemma 2.6 of [19]).

(2) When $s_n = 0$ for all $n \in \mathbb{N}$ in (1.13) then T is an asymptotically k-strictly pseudocontractive mapping with sequence $\{r_n\}$.

Remark 1.3. When $s_n = 0$ for all $n \in \mathbb{N}$ and k = 0 in (1.13), then T is an asymptotically nonexpansive mapping with sequence $\{r_n\} \subset [0, \infty)$ such that $\lim_{n\to\infty} r_n = 0$, a concept introduced by Goebel and Kirk [6] in 1972.

They obtained a weak convergence theorem of modified Mann iterative processes for the class of mappings which is not necessarily Lipschitzian. Moreover, a strong convergence theorem was also established in a real Hilbert space by hybrid projection method; see [19] for more details.

In 2001, Xu and Ori [22] have introduced the following implicit iteration process for common fixed points of a finite family of nonexpansive mappings $\{T_i\}_{i=1}^N$ in Hilbert spaces:

(1.14)
$$x_n = t_n x_{n-1} + (1 - t_n) T_n x_n, \quad n \ge 1$$

where $T_n = T_{n \mod N}$. (Here the mod N function takes values in $\{1, 2, ..., N\}$). And they proved the weak convergence of the process (1.14).

In 2003, Sun [20] modified the implicit iteration process of Xu and Ori [22] and applied the modified averaging iteration process for the approximation of fixed points of asymptotically quasi-nonexpansive mappings. Sun introduced the following implicit iteration process for common fixed points of a finite family of asymptotically quasi-nonexpansive mappings $\{T_i\}_{i=1}^N$ in Banach spaces:

(1.15)
$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_i^k x_n, \quad n \ge 1$$

where $n = (k-1)N + i, i \in I = \{1, 2, \dots, N\}.$

Assuming that the implicit iteration process is defined in C where C is a nonempty closed convex subset of a Banach space E, Sun proved the strong convergence theorem for said class of mappings in uniformly convex Banach spaces.

We note that it is the same as Mann's iterations [10] that have only weak convergence theorems with implicit iteration scheme (1.14) and (1.15) (also, see [1, 4, 5]). In this paper, we introduce the following explicit iteration scheme and modify it by hybrid method, so strong convergence theorems are obtained:

Let C be a closed convex subset of a Hilbert space H and let $\{T_i\}_{i=1}^N$ be N asymptotically k-strictly pseudocontraction in the intermediate sense on C such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $x_0 \in C$ and let $\{\alpha_n\}$ be a sequence in (0, 1). The explicit iteration scheme generates a sequence $\{x_n\}_{n=1}^\infty$ in the following way:

(1.16)
$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T_i^k x_n,$$

where $n = (k-1)N + i, i \in I = \{1, 2, \dots, N\}.$

The goal of this paper is to establish a weak convergence theorem and some strong convergence theorems of an explicit iteration scheme (1.16) to approximating a common fixed point for a finite family of strictly asymptotically pseudo-contractive mappings in the intermediate sense in Hilbert spaces. The results presented in the paper extend and improve some recent results of [2, 7, 9, 12, 14, 15, 17, 18, 22].

In order to prove our main results, we need the following lemma:

Lemma 1.4. Let H be a real Hilbert space, C be a nonempty closed convex subset of H and let $T_i: C \to C$ be asymptotically k_i -strictly pseudocontractive mappings in the intermediate sense for i = 1, 2, ..., N with a sequence $\{r_{n_i}\} \subset$ $[0, \infty)$ such that $\sum_{n=1}^{\infty} r_{n_i} < \infty$ and for some $0 \le k_i < 1$. Then there exists a constant $k \in [0, 1)$ and sequences $\{r_n\}, \{s_n\} \subset [0, \infty)$ with $\lim_{n\to\infty} r_n = 0$ and $\lim_{n\to\infty} s_n = 0$ such that for any $x, y \in C$ and for each i = 1, 2, ..., N and each $n \ge 1$, the following holds:

(1.17)
$$\begin{aligned} \|T_i^n x - T_i^n y\| &\leq (1+r_n) \|x - y\|^2 \\ &+ k \|(I - T_i^n) x - (I - T_i^n) y\|^2 + s_n. \end{aligned}$$

Proof. Since for each i = 1, 2, ..., N, T_i is asymptotically k_i -strictly pseudocontractive in the intermediate sense mapping, where $k_i \in [0, 1)$ and $\{r_{n_i}\}, \{s_{n_i}\} \subset [0, \infty)$ with $\lim_{n\to\infty} r_{n_i} = 0$ and $\lim_{n\to\infty} s_{n_i} = 0$. Taking $r_n = \max\{r_{n_i}, i = 1, 2, ..., N\}$, $s_n = \max\{s_{n_i}, i = 1, 2, ..., N\}$ and $k = \max\{k_i, i = 1, 2, ..., N\}$, hence, for each i = 1, 2, ..., N, we have from (1.13)

(1.18)
$$\begin{aligned} \|T_i^n x - T_i^n y\| &\leq (1+r_{n_i}) \|x - y\|^2 \\ &+ k_i \| (x - T_i^n x) - (y - T_i^n y) \|^2 + s_{n_i}, \\ &\leq (1+r_n) \|x - y\|^2 \\ &+ k \| (x - T_i^n x) - (y - T_i^n y) \|^2 + s_n. \end{aligned}$$

The conclusion (1.17) is proved. This completes the proof of Lemma 1.4. \Box

It is the purpose of this paper to modify iteration process (1.16) by hybrid method as follows: chosen arbitrary $x_0 \in C$ and

(1.19)
$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T_i^k x_n, \\ C_n = \left\{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 \\ + (1 - \alpha_n)(k - \alpha_n) \|x_n - T_i^k x_n\|^2 + \theta_n \right\}, \\ Q_n = \left\{ z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0 \right\}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0), \end{cases}$$

where n = (k-1)N + i, $i \in I = \{1, 2, ..., N\}$, $\theta_n = r_n \Delta_n^2 + (1 - \alpha_n) s_n \to 0 \ (n \to \infty)$ and

$$\Delta_n = \sup\left\{ \|x_n - z\| : z \in F = \bigcap_{i=1}^N F(T_i) \right\}.$$

The purpose of this paper is to establish strong convergence theorem of newly proposed (CQ) algorithm (1.19) for a finite family of asymptotically k-strictly pseudo-contractive mappings in the intermediate sense in Hilbert spaces. Our result extends the corresponding result of Thakur [21] and many others.

In the sequel, we will need the following lemmas.

Lemma 1.5. (see [21]) Let H be a real Hilbert space. The following identities hold:

(i)
$$||x - y||^2 = ||x||^2 - ||y||^2 - 2\langle x - y, y \rangle \quad \forall x, y \in H.$$

(ii) $||tx + (1 - t)y||^2 = t||x||^2 + (1 - t)||y||^2 - t(1 - t)||x - y||^2,$
 $\forall t \in [0, 1], \forall x, y \in H.$
(iii) If $\{x_n\}$ is a sequence in H weakly converges to z, then

$$\limsup_{n \to \infty} \|x_n - y\|^2 = \limsup_{n \to \infty} \|x_n - z\|^2 + \|z - y\|^2 \quad \forall \ y \in H$$

Lemma 1.6. (see [12]) Let H be a real Hilbert space. Let $C \subset H$ be a closed convex subset, $x, y, z \in H$ points and $a \in \mathbb{R}$ a real number. The set

$$\left\{ v \in C : \|y - v\|^2 \le \|x - v\|^2 + \langle z, v \rangle + a \right\}$$

is convex (and closed).

Lemma 1.7. (see [12]) Let K be a closed convex subset of a real Hilbert space H. For given $x \in H$ and $y \in K$, we have that $z = P_K x$ if and only if there holds the relation

$$\langle x-z, y-z \rangle \le 0 \quad \forall y \in K_{z}$$

where P_K is the nearest point projection from H onto K, that is, $P_K x$ is the unique point in K with the property

$$\|x - P_K x\| \le \|x - y\| \quad \forall x \in K.$$

We will use the following notations:

1. \rightarrow for weak convergence and \rightarrow for strong convergence.

2. $\omega_w(x_n) = \{x : \exists x_{n_i} \rightharpoonup x\}$ denotes the weak ω -limit set of $\{x_n\}$.

Lemma 1.8. (see [11]) Let K be a closed convex subset of H. Let $\{x_n\}$ be a sequence in H and $u \in H$. Let $q = P_K u$. If $\{x_n\}$ is such that $\omega_w(x_n) \subset K$ and satisfies the condition

$$(1.20) \|x_n - u\| \leq \|u - q\|, \quad \forall n$$

Then $x_n \to q$.

Lemma 1.9. (see [16]) Let $\{a_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+r_n)a_n + \beta_n, \quad n \ge 1.$$

If $\sum_{n=1}^{\infty} r_n < \infty$ and $\sum_{n=1}^{\infty} \beta_n < \infty$, then $\lim_{n\to\infty} a_n$ exists. If in addition $\{a_n\}_{n=1}^{\infty}$ has a subsequence which converges strongly to zero, then $\lim_{n\to\infty} a_n = 0$.

2. Main Results

Theorem 2.1. Let *C* be a closed convex subset of a Hilbert space *H*. Let $N \ge 1$ be an integer. Let for each $1 \le i \le N$, $T_i: C \to C$ be *N* uniformly L_i -Lipschitzian and asymptotically k_i -strictly pseudo-contraction in the intermediate sense mappings for some $0 \le k_i < 1$ and $I - T_n$ is demiclosed at zero. Let $k = \max\{k_i : 1 \le i \le N\}$ and $L = \max\{L_i : 1 \le i \le N\}$. Assume that $F = \bigcap_{i=1}^N F(T_i) \ne \emptyset$. Given $x_0 \in C$, let $\{x_n\}_{n=1}^{\infty}$ be the sequence generated by an explicit iteration scheme (1.16). Assume that the control sequence $\{\alpha_n\}$ is chosen so that $k + \epsilon < \alpha_n < 1 - \epsilon$ for all *n* and for some $\epsilon \in (0, 1)$, $\sum_{n=1}^{\infty} r_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$ where $r_n = \max\{r_n: 1 \le i \le N\}$ and $s_n = \max\{s_{n_i}: 1 \le i \le N\}$. Then $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=1}^N$.

Proof. Let $p \in F = \bigcap_{i=1}^{N} F(T_i)$. It follows from (1.16) and Lemma 1.5(ii) that

$$\begin{aligned} \|x_{n+1} - p\|^2 &= \|\alpha_n x_n + (1 - \alpha_n) T_i^k x_n - p\|^2 \\ &= \|\alpha_n (x_n - p) + (1 - \alpha_n) (T_i^k x_n - p)\|^2 \\ &= \alpha_n \|x_n - p\|^2 + (1 - \alpha_n) \|T_i^k x_n - p\|^2 \\ &- \alpha_n (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &\leq \alpha_n \|x_n - p\|^2 + (1 - \alpha_n) \Big[(1 + r_n) \|x_n - p\|^2 \\ &+ k \|x_n - T_i^k x_n\|^2 + s_n \Big] - \alpha_n (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &\leq \Big[\alpha_n (1 + r_n) + (1 - \alpha_n) (1 + r_n) \Big] \|x_n - p\|^2 + (1 - \alpha_n) s_n \\ &- (\alpha_n - k) (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &= (1 + r_n) \|x_n - p\|^2 - (\alpha_n - k) (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ \end{aligned}$$
(2.1)

Since $k + \epsilon < \alpha_n < 1 - \epsilon$ for all n and for some $\epsilon \in (0, 1)$, from (2.1) we have

(2.2)
$$\begin{aligned} \|x_{n+1} - p\|^2 &\leq (1+r_n) \|x_n - p\|^2 - \epsilon^2 \|x_n - T_i^k x_n\|^2 \\ &+ (1-k-\varepsilon)s_n. \end{aligned}$$

Now (2.2) implies that

(2.3)
$$||x_{n+1} - p||^2 \leq (1 + r_n) ||x_n - p||^2 + (1 - k - \varepsilon) s_n.$$

Since $\sum_{n=1}^{\infty} r_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$, it follows from Lemma 1.9, that $\lim_{n\to\infty} ||x_n - p||$ exists and so $\{x_n\}$ is bounded. Consider (2.2) again yields that

(2.4)
$$\|x_n - T_i^k x_n\|^2 \leq \frac{1}{\epsilon^2} \left[\|x_n - p\|^2 - \|x_{n+1} - p\|^2 \right] + \frac{r_n}{\epsilon^2} \|x_n - p\|^2 + \left(\frac{1 - k - \varepsilon}{\varepsilon^2}\right) s_n.$$

Since $\{x_n\}$ is bounded, $r_n \to 0$ and $s_n \to 0$ as $n \to \infty$. So, we get

(2.5)
$$||x_n - T_i^k x_n|| \to 0 \text{ as } n \to \infty.$$

From the definition of $\{x_n\}$, we have

(2.6)
$$||x_{n+1} - x_n|| = (1 - \alpha_n) ||x_n - T_i^k x_n|| \to 0, \text{ as } n \to \infty.$$

Thus,

(2.7)
$$||x_n - x_{n+l}|| \to 0 \text{ as } n \to \infty$$

and for all l < N. Now for $n \ge N$, and since T is uniformly Lipschitzian with

Lipschitz constant L > 0, so we have

$$\begin{aligned} \|x_n - T_n x_n\| &\leq \|x_n - T_n^k x_n\| + \|T_n^k x_n - T_n x_n\| \\ &\leq \|x_n - T_n^k x_n\| + L \|T_n^{k-1} x_n - x_n\| \\ &\leq \|x_n - T_n^k x_n\| + L \Big[\|T_n^{k-1} x_n - T_{n-N}^{k-1} x_{n-N}\| \\ &+ \|T_{n-N}^{k-1} x_{n-N} - x_{(n-N)}\| \\ &+ \|x_{(n-N)} - x_n\| \Big]. \end{aligned}$$

$$(2.8)$$

Since for each $n \ge N$, $n \equiv (n - N) \pmod{N}$. Thus $T_n = T_{n-N}$, therefore from (2.8), we have

(2.9)
$$\begin{aligned} \|x_n - T_n x_n\| &\leq \|x_n - T_n^k x_n\| + L^2 \|x_n - x_{n-N}\| \\ &+ L \|T_{n-N}^{k-1} x_{n-N} - x_{(n-N)}\| \\ &+ L \|x_{(n-N)} - x_n\|. \end{aligned}$$

From(2.5), (2.7) and (2.9), we obtain

(2.10)
$$||x_n - T_n x_n|| \to 0 \text{ as } n \to \infty.$$

Consequently, for any $l \in I = \{1, 2, \dots, N\}$,

$$\begin{aligned} \|x_n - T_{n+l}x_n\| &\leq \|x_n - x_{n+l}\| + \|x_{n+l} - T_{n+l}x_{n+l}\| \\ &+ \|T_{n+l}x_{n+l} - T_{n+l}x_n\| \\ &\leq (1+L)\|x_n - x_{n+l}\| + \|x_{n+l} - T_{n+l}x_{n+l}\| \\ &\to 0 \text{ as } n \to \infty. \end{aligned}$$

This implies that

(2.12)
$$\lim_{n \to \infty} \|x_n - T_l x_n\| = 0, \quad \forall \ l \in I = \{1, 2, \dots, N\}.$$

Since $I - T_n$ is demiclosed at zero, (2.10) imply that $x_n \rightharpoonup x$ where x is a weak limit of $\{x_n\}$ and hence $\omega_w(x_n) \subset F = \bigcap_{i=1}^N F(T_i)$. Now we show that $\{x_n\}$ is weakly convergent. Let $p_1, p_2 \in \omega_w(x_n)$ and $\{x_{n_i}\}$ and $\{x_{m_j}\}$ be subsequences of $\{x_n\}$ which converge weakly to some p_1 and p_2 respectively.

Since $\lim_{n\to\infty} ||x_n - z||$ exists for every $z \in F$ and since $p_1, p_2 \in F$, we have

$$\begin{split} \lim_{n \to \infty} \|x_n - p_1\|^2 &= \lim_{j \to \infty} \|x_{m_j} - p_1\|^2 \\ &= \lim_{j \to \infty} \|x_{m_j} - p_2\|^2 + \|p_2 - p_1\|^2 \\ &= \lim_{i \to \infty} \|x_{n_i} - p_1\|^2 + 2\|p_2 - p_1\|^2 \\ &= \lim_{n \to \infty} \|x_n - p_1\|^2 + 2\|p_2 - p_1\|^2. \end{split}$$

Hence $p_1 = p_2$. Thus $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=1}^N$. This completes the proof.

Theorem 2.2. Let *C* be a closed convex compact subset of a Hilbert space *H*. Let $N \ge 1$ be an integer. Let for each $1 \le i \le N$, $T_i: C \to C$ be *N* uniformly L_i -Lipschitzian and asymptotically k_i -strictly pseudo-contraction in the intermediate sense mappings for some $0 \le k_i < 1$. Let $k = \max\{k_i : 1 \le i \le N\}$ and $L = \max\{L_i : 1 \le i \le N\}$. Assume that $F = \bigcap_{i=1}^N F(T_i) \ne \emptyset$. Given $x_0 \in C$, let $\{x_n\}_{n=1}^{\infty}$ be the sequence generated by an explicit iteration scheme (1.16). Assume that the control sequence $\{\alpha_n\}$ is chosen so that $k + \epsilon < \alpha_n < 1 - \epsilon$ for all *n* and for some $\epsilon \in (0, 1)$, $\sum_{n=1}^{\infty} r_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$ where $r_n = \max\{r_{n_i}: 1 \le i \le N\}$ and $s_n = \max\{s_{n_i}: 1 \le i \le N\}$. Then $\{x_n\}$ converges strongly to a common fixed point of the family $\{T_i\}_{i=1}^N$.

Proof. We only prove the difference between this theorem and Theorem 2.1. By compactness of C this immediately implies that there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges to a common fixed point of $\{T_i\}_{i=1}^N$, say, p. Combining (2.3) with Lemma 1.9, we have $\lim_{n\to\infty} ||x_n - p|| = 0$. This completes the proof.

For our next result, we shall need the following definition:

Definition 2.3. A mapping $T: C \to C$ is said to be semi-compact, if for any bounded sequence $\{x_n\}$ in C such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$ there exists a subsequence $\{x_{n_i}\} \subset \{x_n\}$ such that $\lim_{i\to\infty} x_{n_i} = x \in C$.

Theorem 2.4. Let C be a closed convex subset of a Hilbert space H. Let $N \ge 1$ be an integer. Let for each $1 \le i \le N$, $T_i: C \to C$ be N uniformly L_i -Lipschitzian and asymptotically k_i -strictly pseudo-contraction in the intermediate sense mappings for some $0 \le k_i < 1$. Let $k = \max\{k_i : 1 \le i \le N\}$ and $L = \max\{L_i : 1 \le i \le N\}$. Suppose that $F = \bigcap_{i=1}^N F(T_i) \ne \emptyset$. Given $x_0 \in C$, let $\{x_n\}_{n=1}^{\infty}$ be the sequence generated by an explicit iteration scheme (1.16). Assume that the control sequence $\{\alpha_n\}$ is chosen so that $k + \epsilon < \alpha_n < 1 - \epsilon$ for all n and for some $\epsilon \in (0, 1)$, $\sum_{n=1}^{\infty} r_n < \infty$ and $\sum_{n=1}^{\infty} s_n < \infty$ where $r_n = \max\{r_{n_i} : 1 \le i \le N\}$ and $s_n = \max\{s_{n_i} : 1 \le i \le N\}$. Assume that one member of the family $\{T_i\}_{i=1}^N$ is semi-compact. Then $\{x_n\}$ converges strongly to a common fixed point of the family $\{T_i\}_{i=1}^N$.

Proof. Without loss of generality, we can assume that T_1 is semi-compact. It follows from (2.12) that

(2.13)
$$\lim_{n \to \infty} \|x_n - T_1 x_n\| = 0$$

By the semi-compactness of T_1 , there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to u \in C$ strongly. Since C is closed, $u \in C$, and furthermore,

(2.14)
$$\lim_{n_k \to \infty} \|x_{n_k} - T_l x_{n_k}\| = \|u - T_l u\| = 0,$$

for all $l \in I = \{1, 2, ..., N\}$. Thus $u \in F$. Since $\{x_{n_k}\}$ converges strongly to u and $\lim_{n\to\infty} ||x_n - u||$ exists, it follows from Lemma 1.9 that $\{x_n\}$ converges strongly to u. This completes the proof.

We now prove strong convergence of k-strictly asymptotically pseudo-contractive mappings in the intermediate sense using iteration scheme (1.19).

Theorem 2.5. Let *C* be a closed convex subset of a Hilbert space *H*. Let $N \ge 1$ be an integer. Let for each $1 \le i \le N$, $T_i: C \to C$ be *N* uniformly L_i -Lipschitzian and asymptotically k_i -strictly pseudo-contraction in the intermediate sense mappings for some $0 \le k_i < 1$ and $I - T_n$ is demiclosed at zero. Let $k = \max\{k_i : 1 \le i \le N\}$ and $L = \max\{L_i : 1 \le i \le N\}$. Assume that $F = \bigcap_{i=1}^N F(T_i) \ne \emptyset$. Given $x_0 \in C$, let $\{x_n\}_{n=1}^\infty$ be the sequence generated by an explicit iterative process (1.19). Assume that $F = \bigcap_{i=1}^N F(T_i) \ne \emptyset$. Assume that the sequence $\{\alpha_n\}$ is chosen so that $\limsup_{n\to\infty} \alpha_n < 1$, $\sum_{n=1}^\infty r_n < \infty$ and $\sum_{n=1}^\infty s_n < \infty$ where $r_n = \max\{r_{n_i} : 1 \le i \le N\}$ and $s_n = \max\{s_{n_i} : 1 \le i \le N\}$. Then $\{x_n\}$ converges strongly to $P_F(x_0)$.

Proof. By Lemma 1.6, we observe that C_n is convex.

Now, for all $p \in F$, using **Lemma 1.5**(ii), we have

$$\begin{aligned} \|y_n - p\|^2 &= \|\alpha_n x_n + (1 - \alpha_n) T_i^k x_n - p\|^2 \\ &= \|\alpha_n (x_n - p) + (1 - \alpha_n) (T_i^k x_n - p)\|^2 \\ &= \alpha_n \|x_n - p\|^2 + (1 - \alpha_n) \|T_i^k x_n - p\|^2 \\ &- \alpha_n (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &\leq \alpha_n \|x_n - p\|^2 + (1 - \alpha_n) \Big[(1 + r_n) \|x_n - p\|^2 \\ &+ k \|x_n - T_i^k x_n\|^2 + s_n \Big] - \alpha_n (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &\leq \Big[\alpha_n (1 + r_n) + (1 - \alpha_n) (1 + r_n) \Big] \|x_n - p\|^2 + (1 - \alpha_n) s_n \\ &- (\alpha_n - k) (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &= (1 + r_n) \|x_n - p\|^2 - (\alpha_n - k) (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &+ (1 - \alpha_n) s_n \\ &= (1 + r_n) \|x_n - p\|^2 + (k - \alpha_n) (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 \\ &+ (1 - \alpha_n) s_n \end{aligned}$$

$$(2.15) \leq \|x_n - p\|^2 + (k - \alpha_n) (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 + \theta_n \end{aligned}$$

so $p \in C_n$ for all n. Thus $F \subset C_n$ for all n.

Next we show that $F \subset Q_n$ for all $n \ge 0$, for this we use induction. For n = 0, we have $F \subset C = Q_0$. Assume that $F \subset Q_n$. Since x_{n+1} is the projection of x_0 onto $C_n \cap Q_n$, by Lemma 1.6, we have

$$\langle x_{n+1} - z, x_0 - x_{n+1} \rangle \ge 0 \quad \forall z \in C_n \cap Q_n.$$

As $F \subset C_n \cap Q_n$ by the induction assumption, the last inequality holds, in particular, for all $z \in F$. This together with the definition of Q_{n+1} implies that $F \subset Q_{n+1}$. Hence $F \subset Q_n$ for all $n \ge 0$.

Now, since $x_n = P_{Q_n}(x_0)$ (by the definition of Q_n), and since $F \subset Q_n$, we have

$$||x_n - x_0|| \le ||p - x_0|| \quad \forall p \in F.$$

In particular, $\{x_n\}$ is bounded and

(2.16)
$$||x_n - x_0|| \leq ||q - x_0||, \text{ where } q = P_F(x_0).$$

The fact $x_{n+1} \in Q_n$ asserts that $\langle x_{n+1} - x_n, x_n - x_0 \rangle \ge 0$. This together with Lemma 1.5(i), implies that

$$||x_{n+1} - x_n||^2 = ||(x_{n+1} - x_0) - (x_n - x_0)||^2$$

= $||x_{n+1} - x_0||^2 - ||x_n - x_0||^2 - 2\langle x_{n+1} - x_n, x_n - x_0 \rangle$
(2.17) $\leq ||x_{n+1} - x_0||^2 - ||x_n - x_0||^2.$

This implies that the sequence $\{\|x_n - x_0\|\}$ is increasing. Since it is also bounded, we get that $\lim_{n\to\infty} \|x_n - x_0\|$ exists. It turns out from (2.17) that

$$(2.18) ||x_{n+1} - x_n|| \to 0.$$

By the fact $x_{n+1} \in C_n$, we get

(2.19)
$$\begin{aligned} \|x_{n+1} - y_n\|^2 &\leq \|x_{n+1} - x_n\|^2 \\ &+ (k - \alpha_n)(1 - \alpha_n)\|x_n - T_i^k x_n\|^2 + \theta_n. \end{aligned}$$

Moreover, since $y_n = \alpha_n x_n + (1 - \alpha_n) T_i^k x_n$, we deduce that

(2.20)
$$\begin{aligned} \|x_{n+1} - y_n\|^2 &= \alpha_n \|x_{n+1} - x_n\|^2 \\ &+ (1 - \alpha_n) \|x_{n+1} - T_i^k x_n\|^2 \\ &- \alpha_n (1 - \alpha_n) \|x_n - T_i^k x_n\|^2. \end{aligned}$$

Substituting (2.20) into (2.19) to get

$$(1 - \alpha_n) \|x_{n+1} - T_i^k x_n\|^2 \leq (1 - \alpha_n) \|x_{n+1} - x_n\|^2 + k(1 - \alpha_n) \|x_n - T_i^k x_n\|^2 + \theta_n.$$

Since $\limsup_{n\to\infty} \alpha_n < 1$, the last inequality becomes,

(2.21)
$$\begin{aligned} \|x_{n+1} - T_i^k x_n\|^2 &\leq \|x_{n+1} - x_n\|^2 + k \|x_n - T_i^k x_n\|^2 \\ &+ \frac{\theta_n}{1 - \tau}, \end{aligned}$$

for some positive number $\tau > 0$, such that $\alpha_n \leq \tau < 1$.

But on the other hand, we compute

(2.22)
$$\begin{aligned} \|x_{n+1} - T_i^k x_n\|^2 &= \|x_{n+1} - x_n\|^2 + 2\langle x_{n+1} - x_n, x_n - T_i^k x_n \rangle \\ &+ \|x_n - T_i^k x_n\|^2. \end{aligned}$$

By (2.21) and (2.22), we get

$$(2.23) \quad (1-k)\|x_n - T_i^k x_n\|^2 \leq \frac{\theta_n}{1-\tau} - 2\langle x_{n+1} - x_n, x_n - T_i^k x_n \rangle.$$

Therefore

$$||x_n - T_i^k x_n||^2 \leq \frac{\theta_n}{(1-\tau)(1-k)} - \frac{2}{1-k} \langle x_{n+1} - x_n, x_n - T_i^k x_n \rangle$$

(2.24) $\to 0 \text{ as } n \to \infty.$

Now,

$$\begin{aligned} \|x_n - T_n x_n\| &\leq \|x_n - T_n^k x_n\| + \|T_n^k x_n - T_n x_n\| \\ &\leq \|x_n - T_n^k x_n\| + [(1+r_1)\|T_n^{k-1} x_n - x_n\| + s_1] \\ (2.25) &\to 0 \text{ as } n \to \infty. \end{aligned}$$

Now, since $I - T_n$ is demiclosed at zero, (2.25) imply that $x_n \to x$, where x is a weak limit of $\{x_n\}$ and hence $\omega_w(x_n) \subset F(T_i)$ for any i = 1, 2, ..., N. So, $\omega_w(x_n) \subset F = \bigcap_{i=1}^N F(T_i)$. This fact, the inequality (2.16) and Lemma 1.8 imply that $x_n \to q = P_F(x_0)$, that is, $\{x_n\}$ converges strongly to $P_F(x_0)$. This completes the proof.

Since asymptotically nonexpansive mappings are asymptotically 0-strict pseudo-contractions in the intermediate sense (by remark 1.3), we have the following consequence.

Corollary 2.6. Let C be a closed bounded convex subset of a Hilbert space H. Let $N \ge 1$ be an integer. Let for each $1 \le i \le N$, $T_i: C \to C$ be N uniformly L_i -Lipschitzian and asymptotically nonexpansive mappings and $I - T_n$ is demiclosed at zero. Let $L = \max\{L_i: 1 \le i \le N\}$. Assume that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Given $x_0 \in C$, let $\{x_n\}_{n=1}^\infty$ be the sequence generated by the following (CQ) algorithm:

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T_i^k x_n, \\ C_n = \left\{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 \\ -\alpha_n (1 - \alpha_n) \|x_n - T_i^k x_n\|^2 + \theta_n \right\}, \\ Q_n = \left\{ z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0 \right\}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0), \end{cases}$$

where n = (k-1)N + i, $i \in I = \{1, 2, ..., N\}$, $\theta_n = r_n \Delta^2 \to 0 \ (n \to \infty)$ and $\Delta = diam C$. Assume that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Assume that the sequence $\{\alpha_n\}$ is chosen so that $\limsup_{n\to\infty} \alpha_n < 1$ and $\sum_{n=1}^{\infty} r_n < \infty$ where $r_n = \max\{r_{n_i} : 1 \leq i \leq N\}$. Then $\{x_n\}$ converges strongly to $P_F(x_0)$.

Remark 2.7. If the closed convex subset C in Theorem 2.5 is bounded, we can replace the Δ_n in the definition of θ_n in the algorithm (1.19) with the diameter of C, i.e., $\Delta_n = diam \ C$ for all n and thus $\theta_n = r_n(diam \ C)^2 + (1 - \alpha_n)s_n$.

Remark 2.8. Theorem 2.1 extends and improves the corresponding result of Reich [18] and Marino and Xu [12] from nonexpansive and strict pseudo-contraction mapping to the more general class of finite family of asymptotically k-strictly pseudo-contractive in the intermediate sense mappings and explicit iteration process considered in this paper.

Remark 2.9. Theorem 2.1 also extends and improves the corresponding result of Acedo and Xu [2] from k-strictly pseudo-contraction mapping to the more general class of asymptotically k-strictly pseudo-contractive in the intermediate sense mappings and explicit iteration process considered in this paper.

Remark 2.10. Theorem 2.1 also extends and improves the corresponding result of Xu and Ori [22] from nonexpansive mapping to the more general class of asymptotically k-strictly pseudo-contractive in the intermediate sense mappings and explicit iteration process considered in this paper.

Remark 2.11. Theorem 2.2 extends and improves the corresponding result of Liu [9] in the following ways:

(i) A k-strictly asymptotically pseudo-contractive mapping is replaced by finite family of asymptotically k-strictly pseudo-contractive in the intermediate sense mappings.

(ii) The modified Mann iteration process is replaced by explicit iteration process for a finite family of mappings.

Remark 2.12. Theorem 2.4 extends and improves the corresponding result of Kim and Xu [7].

Remark 2.13. Theorem 2.4 also extends and improves Theorem 1.6 of Osilike and Akuchu [15] to the case of the more general class of asymptotically pseudocontractive mappings and explicit iteration process considered in this paper.

Remark 2.14. Theorem 2.5 extends Theorem 3.1 of Thakur [21] to the case of finite family of asymptotically k-strictly pseudo-contractive in the intermediate sense mappings and explicit iteration process considered in this paper.

Remark 2.15. Our results also extend the corresponding results of Sahu et al. [19] to the case of explicit iteration process considered in this paper.

Example 2.16. ([19]) Let $X = \mathbb{R}$ be a normed linear space and C = [0, 1]. For each $x \in C$, we define

$$T(x) = \begin{cases} kx, & \text{if } x \in [0, 1/2], \\ 0, & \text{if } x \in (1/2, 1], \end{cases}$$

where 0 < k < 1. Then $T: C \to C$ is discontinuous at x = 1/2 and hence T is not Lipschitzian. Set $C_1 := [1, 1/2]$ and $C_2 := (1/2, 1]$. Hence

$$|T^{n}x - T^{n}y| = k^{n}|x - y| \le |x - y|$$

for all $x, y \in C_1$ and $n \in \mathbb{N}$ and

$$|T^n x - T^n y| = 0 \le |x - y|$$

for all $x, y \in C_2$ and $n \in \mathbb{N}$.

For $x \in C_1$ and $y \in C_2$, we have

$$\begin{aligned} |T^n x - T^n y| &= |k^n x - 0| = |k^n (x - y) + k^n y| \\ &\leq k^n |x - y| + k^n |y| \\ &\leq |x - y| + k^n, \text{ for all } n \in \mathbb{N}. \end{aligned}$$

Thus,

$$\begin{aligned} |T^n x - T^n y|^2 &\leq (|x - y| + k^n)^2 \\ &\leq |x - y|^2 + k|x - T^n x - (y - T^n y)|^2 + k^n K, \end{aligned}$$

for all $x, y \in C$, $n \in \mathbb{N}$ and for some K > 0. Therefore, T is an asymptotically k-strictly pseudocontractive mapping in the intermediate sense.

Example 2.17. Let $X = \ell_2 = \{\bar{x} = \{x_i\}_{i=1}^{\infty} : x_i \in C, \sum_{i=1}^{\infty} |x_i|^2 < \infty\}$, and let $\bar{B} = \{\bar{x} \in \ell_2 : ||x|| \le 1\}$. Define $T : \bar{B} \to \ell_2$ by

$$T\bar{x} = (0, x_1^2, a_2 x_2, a_3 x_3, \dots)$$

where $\{a_j\}_{j=1}^{\infty}$ is a real sequence satisfying: $a_2 > 0, 0 < a_j < 1, j \neq 2$, and $\prod_{i=2}^{\infty} a_i = 1/2$. Then

$$\begin{aligned} \|T^{n}\bar{x} - T^{n}\bar{y}\|^{2} \\ &\leq 2\Big(\prod_{j=2}^{n} a_{j}\Big)\|\bar{x} - \bar{y}\|^{2} \\ &\leq 2\Big(\prod_{j=2}^{n} a_{j}\Big)\|\bar{x} - \bar{y}\|^{2} + k\|(I - T^{n})\bar{x} - (I - T^{n})\bar{y}\|^{2} + k^{n}Q \end{aligned}$$

for all $k \in (0,1)$, $n \ge 2$, $\bar{x}, \bar{y} \in X$ and for some Q > 0. Since

$$\lim_{n \to \infty} 2\Big(\prod_{j=2}^n a_j\Big) = 1,$$

it follows that T is an asymptotically k-strictly pseudo-contractive mapping in the intermediate sense.

Acknowledgement

The author would like to thanks the referee for careful reading and valuable suggestions on the manuscript.

References

 Abbas, M., Jovanović, M., Radenović, S., Sretenović, A., Simić, S., Abstract metric spaces and approximating fixed points of a pair of contractive type mappings. J. Comput. Anal. Appl. 13(2) (2011), 243-253.

- [2] Acedo, G.L., Xu, H.K., Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67 (2007), 2258-2271.
- [3] Bruck, R., Kuczumow, T., Reich, S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Collo. Math. 65(2) (1993), 169-179.
- [4] Círić, Lj., Rafiq, A., Radenović Stojan, Rajović Miloje, Ume Jeong Sheok, On Mann implicit iterations for strongly accretive and strongly pseudo-contractive mappings. Appl. Math. Comput. 198 (2008), 128-137.
- [5] Dukić, D., Paunović, Lj., Radenović, S., Convergence of iterates with errors of unifomly quasi-Lipschitzian mappings in cone metric spaces. Kragujevac J. Math. 35(3) (2011), 399-410.
- [6] Goebel, K., Kirk, W.A., A fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35 (1972), 171-174.
- [7] Kim, T.H., Xu, H.K., Convergence of the modified Mann's iteration method for asymptotically strictly pseudocontractive mapping. Nonlinear Anal. 68 (2008), 2828-2836.
- [8] Kirk, W.A., Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Israel J. Math. 17 (1974), 339-346.
- [9] Liu, Q., Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal. 26 (1996), 1835-1842.
- [10] Mann, W.R., Mean value methods in iteration. Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [11] Martinez-Yanex, C., Xu, H.K., Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 64 (2006), 2400-2411.
- [12] Marino, G., Xu, H.K., Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl. 329 (2007), 336-346.
- [13] Osilike, M.O., Iterative approximation of fixed points of asymptotically demicontractive mappings, Indian J. pure appl. Math. 29(12), December 1998, 1291-1300.
- [14] Osilike, M.O., Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps. J. Math. Anal. Appl. 294(1) (2004), 73-81.
- [15] Osilike, M.O., Akuchu, B.G., Common fixed points of a finite family of asymptotically pseudocontractive maps. Fixed Point Theory and Applications 2 (2004), 81-88.
- [16] Osilike, M.O., Aniagbosor, S.C., Akuchu, B.G., Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces. PanAm. Math. J. 12 (2002), 77-88.
- [17] Osilike, M.O., Udomene, A., Igbokwe, D.I., Akuchu, B.G., Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps. J. Math. Anal. Appl. 326(2) (2007), 1334-1345.
- [18] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67 (1979), 274-276.
- [19] Sahu, D.R., Xu, H.K., Yao, J.C., Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Anal. TMA 70(10) (2009), 3502-3511.
- [20] Sun, Z.H., Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings. J. Math. Anal. Appl. 286 (2003), 351-358.

- [21] Thakur, B.S., Convergence of strictly asymptotically pseudo-contractions. Thai J. Math. 5(1) (2007), 41-52.
- [22] Xu, H.K., Ori, R.G., An implicit iteration process for nonexpansive mappings. Numer. Funct. Anal. Optim. 22 (2001), 767-773.

Received by the editors December 30, 2012