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Abstract. In this paper a general fixed point theorem for pairs of non
weakly compatible pairs of mappings in G - metric spaces is proved. In
the case of a single mapping some results from [2], [3], [11], [13], [17], [30]
are obtained.
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1. Introduction

In [4] and [5] Dhage introduced a new class of generalized metric spaces,
named D - metric spaces. Mustafa and Sims [14], [15] proved that most of
the claims concerning the fundamental structures on D - metric spaces are
incorrect and introduced an appropriate notion of D - metric space, named G
- metric spaces. In fact, Mustafa, Sims and other authors studied many fixed
point results for self mappings in G - metric spaces under certain conditions
[1], [2], [16], [17], [29] and other papers.

In [19], [20] and other papers, the first author initiated the study of fixed
points for mappings satisfying implicit relations. Actually, the method is used
in the study of fixed points in metric spaces, symmetric spaces, quasi - metric
spaces, Tychonoff spaces, probabilistic metric spaces, convex metric spaces,
in two and three metric spaces, for single valued mappings, hybrid pair of
mappings and set valued mappings. Quite recently, the method is used in the
study of fixed points for mappings satisfying contractive conditions of integral
type, in fuzzy metric spaces and intuitionistic metric spaces. There exists a
vast literature in this topic which cannot be completely cited here. The method
unified different types of contractive and extensive conditions, some proofs of
fixed points theorems are more simple. Also, the method allows the study of
local and global properties of fixed point structures.

Quite recently, the present authors initiated the study of fixed points in G
- metric spaces using implicit relations in [21], [23], [24], [25]. In [24] a general
fixed point theorem for pairs of weakly compatible mappings in G - metric
spaces is proved.

In this paper, a general fixed point theorem for pairs of non weakly com-
patible mappings in G - metric space is proved. In the case of a single mapping
some results from [2], [3], [11], [13], [17] and [30] are obtained.
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2. Preliminaries

Definition 2.1 ([15]). Let X be a nonempty set and G : X3 → R+ be a
function satisfying the following properties:

(G1) : G(x, y, z) = 0 if x = y = z,

(G2) : 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,

(G3) : G(x, x, y) ≤ G(x, y, z) for all x, y ∈ X with z ̸= y,

(G4) : G(x, y, z) = G(y, z, x) = G(z, x, y) = ... (symmetry in all three
variables),

(G5) : G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle
inequality).

The function G is called a G - metric and the pair (X,G) is called a G -
metric space.

Note that if G(x, y, z) = 0 then x = y = z [15].

Definition 2.2 ([15]). Let (X,G) be a G - metric space. A sequence (xn) in
X is said to be:

a) G - convergent if for ε > 0, there exist an x ∈ X and k ∈ N such that for
m,n ≥ k, m,n ∈ N, G(x, xn, xm) < ε.

b)G - Cauchy if for each ε > 0, there exist k ∈ N such that for allm,n, p ∈ N
with m,n, p ≥ k, G(xn, xm, xp) < ε, that is G(xn, xm, xp) → 0 as n,m, p → ∞.

A G - metric space is said to be G - complete if every G - Cauchy sequence
is G - convergent.

Lemma 2.3 ([15]). Let (X,G) be a G - metric space. Then the following
properties are equivalent:

1) (xn) is G - convergent to x,

2) G(x, xn, xn) → 0 as n → ∞,

3) G(x, x, xn) → 0 as n → ∞,

4) G(xn, xm, x) → 0 as n,m → ∞.

Lemma 2.4 ([15]). Let (X,G) be a G - metric space. Then the following
properties are equivalent:

1) The sequence (xn) is G - Cauchy;

2) For every ε > 0, there exist k ∈ N such that for all m,n ∈ N, m,n ≥
k, G(xn, xm, xm) < ε.

Lemma 2.5 ([15]). Let (X,G) be a G - metric space. Then the function
G(x, y, z) is jointly continuous in all three of its variables.

Lemma 2.6 ([15]). Let (X,G) be a G - metric space. Then G(x, x, y) ≤
2G(x, y, y).
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3. Implicit relations

Definition 3.1. Let FG be the set of all real continuous functions F (t1, ..., t6) :
R6

+ → R such that
(F1) : F is non - increasing in variable t6,
(F2) : There exists h ∈ [0, 1) such that for all u, v ≥ 0, F (u, v, u, v, 0, u+v) ≤

0 implies u ≤ hv.
(F3) : There exists g ∈ [0, 1) such that for all t, t′ > 0, F (t, t, 0, 0, t′, t) ≤ 0

implies t ≤ gt′.

Example 3.2. F (t1, ..., t6) = t1 − kmax{t2, t3, t4, t5, t6}, where k ∈
[
0, 1

2

)
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u− kmaxu, v, u+ v =

h− k(u+ v) ≤ 0. Hence u ≤ hv, where 0 ≤ h = k
1−k < 1.

(F3) : Let t, t′ > 0 and F (t, t, 0, 0, t′, t) = t − kmax{t, t′} ≤ 0. If t > t′,
then t(1 − k) ≤ 0, a contradiction. Hence, t ≤ t′ which implies t ≤ gt′, where
0 ≤ g = k < 1.

Example 3.3. F (t1, ..., t6) = t1−at2−bt4−cmax{2t3, t5+t6}, where a, b, c ≥ 0
and 0 < a+ b+ 2c < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+v) = u−av−bv−cmax{2u, u+v} ≤

0. If u > v, then u(1− (a+ b+ 2c)) ≤ 0, a contradiction. Hence u ≤ v, which
implies u ≤ hv, where 0 ≤ h = a+ b+ 2c < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− at− c(t+ t′) ≤ 0 which implies

t ≤ gt′, where 0 ≤ g = c
a+c < 1.

Example 3.4. F (t1, ..., t6) = t1 − kmax {t3 + t6, t4 + t5} − at2, where 0 ≤
a+ 3k < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u− av− k(2u+ v) ≤ 0 which

implies u ≤ hv, where 0 ≤ h = a+k
1−2k < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− at− kmax {t, t′} ≤ 0. If t > t′,

then t(1 − (a + k)) ≤ 0, a contradiction. Hence t ≤ t′ which implies t ≤ gt′

where 0 ≤ g = k
1−a < 1.

Example 3.5. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t3 + t5
2

,
t5 + t6

2

}
, where

k ∈ [0, 1).
(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u− kmax

{
u, v, u

2 ,
u+v
2

}
≤ 0. If u > v, then u(1− k) ≤ 0, a contradiction. Hence u ≤ v, which implies
u ≤ hv, where 0 ≤ h = k < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t−kmax{t, t′

2 ,
t+t′

2 } ≤ 0. If t > t′,
then t(1 − k) ≤ 0, a contradiction. Hence t ≤ t′, which implies t ≤ gt′, where
0 ≤ g = k < 1.

Example 3.6. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t5 + 2t6
3

,
2t3 + t4

3

}
, where

k ∈
[
0, 3

4

)
.
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(F1) : Obviously.

(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u−kmax{u, v, 2(u+v)
3 , 2u+v

3 }
≤ 0. If u > v, then u

(
1− 4k

3

)
≤ 0, a contradiction. Hence u ≤ v, which implies

u ≤ hv, where 0 ≤ h = 4k
3 < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− kmax{t, , 2t+t′

3 } ≤ 0. If t > t′,
then t(1 − k) ≤ 0, a contradiction. Hence t ≤ t′, which implies t ≤ gt′, where
0 ≤ g = k < 1.

Example 3.7. F (t1, ..., t6) = t1−at2− (b+d)t3−ct4−emax{t3, t5, t6}, where
a, b, c, d, e ≥ 0 and a+ b+ c+ d+ 2e < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+v) = u−av−(b+d)u−cv−e(u+v) ≤

0 which implies u ≤ hv, where 0 ≤ h =
a+ c+ e

1− b− d− e
< 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− at− emax{t, t′} ≤ 0. If t > t′

then t(1 − (a + e)) ≤ 0, a contradiction. Hence t ≤ t′ which implies t ≤ gt′,

where 0 ≤ g =
e

1− a
< 1.

Example 3.8. F (t1, ..., t6) = t1 − kmax {t2, t3, t4, t5, t6, t1 + t3, t3 + t6, 2t5},
where k ∈

[
0, 1

3

)
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+v) = u−kmax{u, v, u+ v,2u, 2u+

v} ≤ 0. If u > v then u(1 − 3k) > 0, a contradiction. Hence u ≤ v which
implies u ≤ hv, where 0 ≤ h = 3k < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− kmax {t, t′,2t′} ≤ 0. If t > t′,

then t(1− 2k) ≤ 0, a contradiction. Hence, t ≤ t′ which implies t ≤ gt′, where
0 ≤ g = 2k < 1.

Example 3.9. F (t1, ..., t6) = t1 − at2 − kmax{t3 + t5 + t6, 2t3 + t4}, where
a, k ≥ 0 and a+ 3k < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u− av− k(2u+ v) ≤ 0 which

implies u ≤ hv, where 0 ≤ h =
a+ k

1− 2k
< 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t−at−k(t+ t′) ≤ 0 which implies

t ≤ gt′, where 0 ≤ g = k
1−a−k < 1.

Example 3.10. F (t1, ..., t6) = t1−at2−bt4−kmax {t1 + t3 + t5 + t6, 2t3 + t6},
where a, b, k ≥ 0 and a+ b+ 4c < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u− av − bv − k(3u+ v) ≤ 0

which implies u ≤ hv, where 0 ≤ h = a+b+k
1−3k < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t−at−k(2t+t′) ≤ 0 which implies

t ≤ gt′, where 0 ≤ g = k
1−a−2k < 1.

Example 3.11. F (t1, ..., t6) = t21−at22− bt5t6
1+t23+t24

, where a, b > 0 and a+b < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u2 − av2 ≤ 0, which implies

u ≤ hv, where 0 ≤ h =
√
a < 1.
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(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t2 − at2 − bt′t ≤ 0, which implies

t ≤ gt′, where 0 ≤ g =
b

1− a
< 1.

Example 3.12. F (t1, ..., t6) = t1−at2−bmax{t3, t4}−cmax{t3, t5}−dmax{t2,
t3, t4,

t3+t5
2 } − et6, where a, b, c, d, e ≥ 0 and 0 ≤ a+ b+ c+ d+ 2e < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u+ v) = u− av − bmax{u, v} − cu−

dmax{v, u, u
2 } − e(u + v) ≤ 0. If u > v, then u(1 − a − b− c − d− 2e) ≤ 0, a

contradiction. Hence u ≤ v which implies u ≤ hv, where 0 ≤ h = a+b+d+e
1−c−e < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− at− ct′− dmax{t, t′

2 }− et ≤ 0.
If t > t′ then t[1 − (a + c + d + e)] ≤ 0, a contradiction. Hence t ≤ t′ which
implies t ≤ gt′ where 0 ≤ g = a+ c+ d+ e < 1.

Example 3.13. F (t1, ..., t6) = t1−kmax{t2, t3+ t4, t5+ t6}, where k ∈
[
0, 1

2

)
.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u + v) = u − k(u + v) ≤ 0, which

implies u ≤ hv, where 0 ≤ h = k < 1.
(F3) : Let t, t′ > 0 and F (t, t, 0, 0, t′, t) = t − k(t + t′) ≤ 0 which implies

t ≤ gt′ where 0 ≤ g = k
1−k < 1.

Example 3.14. F (t1, ..., t6) = t1 − at2 − kmax{t3, t4, t5, t6}, where a, k ≥ 0
and a+ 2k < 1.

(F1) : Obviously.
(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u + v) = u − k(u + v) ≤ 0, which

implies u ≤ hv, where 0 ≤ h = a+k
1−k < 1.

(F3) : Let t, t
′ > 0 and F (t, t, 0, 0, t′, t) = t− at− kmax{t, t′} ≤ 0. If t > t′,

then t(1 − (a + k)) ≤ 0, a contradiction. Hence, t ≤ t′ which implies t ≤ gt′,
where 0 ≤ g = k

1−a < 1.

Example 3.15. F (t1, ..., t6) = t41 − k
t23t

2
4+t25t

2
6

1+t22
, where k ∈ (0, 1).

(F1) : Obviously.

(F2) : Let u, v ≥ 0 and F (u, v, u, v, 0, u + v) = u4 − k u2v2

1+v ≤ 0. If u > 0,

then u2 ≤ k v2

1+v ≤ kv2. Hence u ≤ hv, where 0 ≤ h =
√
k < 1. If u = 0, then

u ≤ hv.

(F3) : Let t, t′ > 0 and F (t, t, 0, 0, t′, t) = t4 − k t
′2t2

1+t ≤ 0, which implies

t2 ≤ k t
′2

1+t ≤ kt
′2. Hence, t ≤ gt′, where 0 ≤ g =

√
k < 1.

4. Main results

Theorem 4.1. Let (X,G) be a G - complete metric space and let S, T : X →
X be two functions satisfying the following inequalities for all x, y ∈ X:

(4.1)


ϕ1(G(Tx, Tx, Sy), G(x, x, y), G(x, Tx, Tx),
G(y, Sy, Sy), G(x, Sy, Sy), G(y, Tx, Tx)) ≤ 0
ϕ2(G(Sx, Sx, Ty), G(x, x, y), G(x, Sx, Sx),

G(y, Ty, Ty), G(x, Ty, Ty), G(y, Sx, Sx)) ≤ 0

where ϕ1, ϕ2 ∈ FG. Then S and T have a unique common fixed point.
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Proof. Let x0 ∈ X be an arbitrary point and x2n+1 = Sx2n, x2n+2 = Tx2n+1

for n = 0, 1, 2, ... . By (ϕ1) we have successively:

ϕ1(G(Tx2n+1, Tx2n+1, Sx2n), G(x2n+1, x2n+1, x2n), G(x2n+1, Tx2n+1, Tx2n+1),
G(x2n, Sx2n, Sx2n), G(x2n+1, Sx2n, Sx2n), G(x2n, Tx2n+1, Tx2n+1)) ≤ 0,

ϕ1(G(x2n+2, x2n+2, x2n+1), G(x2n+1, x2n+1, x2n), G(x2n+1, x2n+2, x2n+2),
G(x2n, x2n+1, x2n+1), 0, G(x2n, x2n+2, x2n+2)) ≤ 0.

By (G5) we have

G(x2n, x2n+2, x2n+2) ≤ G(x2n, x2n+1, x2n+1) +G(x2n+1, x2n+2, x2n+2).

By (F1) and (G4) we obtain

ϕ1(G(x2n+2, x2n+2, x2n+1), G(x2n+1, x2n+1, x2n), G(x2n+2, x2n+2, x2n+1),
G(x2n+1, x2n+1, x2n), 0, G(x2n+1, x2n+1, x2n) +G(x2n+2, x2n+2, x2n+1)) ≤ 0

which implies by (F2) that

G(x2n+2, x2n+2, x2n+1) ≤ hG(x2n+1, x2n+1, x2n),

where h = max{h1, h2}. Similarly, by (ϕ2) we have successively

ϕ2(G(Sx2n+2, Sx2n+2, Tx2n+1), G(x2n+2, x2n+2, x2n+1),
G(x2n+2, Sx2n+2, Sx2n+2), G(x2n+1, Tx2n+1, Tx2n+1),

G(x2n+2, Tx2n+1, Tx2n+1), G(x2n+1, Sx2n+2, Sx2n+2)) ≤ 0,

ϕ2(G(x2n+3, x2n+3, x2n+2), G(x2n+2, x2n+2, x2n+1), G(x2n+2, x2n+3, x2n+3),
G(x2n+1, x2n+2, x2n+2), 0, G(x2n+1, x2n+3, x2n+3)) ≤ 0.

By (G5) we have

G(x2n+1, x2n+3, x2n+3) ≤ G(x2n+1, x2n+2, x2n+2) +G(x2n+2, x2n+3, x2n+3).

By (F1) and (G4) we obtain

ϕ2(G(x2n+3, x2n+3, x2n+2), G(x2n+2, x2n+2, x2n+1),
G(x2n+3, x2n+3, x2n+2), G(x2n+2, x2n+2, x2n+1),

0, G(x2n+2, x2n+2, x2n+1) +G(x2n+3, x2n+3, x2n+2)) ≤ 0

which implies by (F2) that

G(x2n+3, x2n+3, x2n+2) ≤ hG(x2n+2, x2n+2, x2n+1),

where h = max{h1, h2}.
Hence

G(xn+1, xn+1, xn) ≤ hG(xn, xn, xn−1) for n = 1, 2, ...,

which implies
G(xn+1, xn+1, xn) ≤ hnG(x1, x1, x0).
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Then, for m,n ∈ N, m > n, by repeating use of (G5) we have

G(xm, xm, xn) ≤ G(xn+1, xn+1, xn) +G(xn+2, xn+2, xn+1) +

+...+G(xm, xm, xm−1)

≤ (hn + hn+1 + ...+ hm−1)G(x1, x1, x0)

≤ hn

1− h
G(x1, x1, x0).

This implies that (xn) is a G - Cauchy sequence. Since (X,G) is G -
complete, there exists u ∈ X such that (xn) is G - convergent to u. We prove
that u is a common fixed point for S and T .

By (ϕ1) we have successively

ϕ1(G(Tu, Tu, Sx2n), G(u, u, x2n), G(u, Tu, Tu),
G(x2n, Sx2n, Sx2n), G(u, Sx2n, Sx2n), G(x2n, Tu, Tu)) ≤ 0,

ϕ1(G(Tu, Tu, x2n+1), G(u, u, x2n), G(u, Tu, Tu),
G(x2n, x2n+1, x2n+1), G(u, x2n+1, x2n+1), G(x2n, Tu, Tu)) ≤ 0.

Letting n tend to infinity and by (G4) we obtain

ϕ1(G(Tu, Tu, u), 0, G(Tu, Tu, u), 0, 0, G(Tu, Tu, u)) ≤ 0.

By (F2) we obtain G(Tu, Tu, u) = 0 which implies u = Tu.
Similarly, by (ϕ2) we have successively

ϕ2(G(Su, Su, Tx2n+1), G(u, u, x2n+1),
G(u, Su, Su), G(x2n+1, Tx2n+1, Tx2n+1),

G(u, Tx2n+1, Tx2n+1), G(x2n+1, Su, Su)) ≤ 0,

ϕ2(G(Su, Su, x2n+2), G(u, u, x2n+1),
G(u, Su, Su), G(x2n+1, x2n+2, x2n+2),

G(u, x2n+2, x2n+2), G(x2n+1, Su, Su)) ≤ 0.

Letting n tend to infinity and (G4) we obtain

ϕ2(G(Su, Su, u), 0, G(Su, Su, u), 0, 0, G(Su, Su, u)) ≤ 0.

By (F2) we obtain G(Su, Su, u) = 0 which implies u = Su.
Hence u = Su = Tu and u is a common fixed point of S and T .
We prove that u is the unique common fixed point of S and T .
Let v = Sv = Tv be another common fixed point of S and T .
Then, by (ϕ1) and (G4) we have successively

ϕ1(G(Tu, Tu, Sv), G(u, u, v), G(u, Tu, Tu),
G(v, Sv, Sv), G(u, Sv, Sv), G(v, Tu, Tu)) ≤ 0

ϕ1(G(u, u, v), G(u, u, v), 0, 0, G(u, v, v), G(u, u, v)) ≤ 0

which implies by (F2) that

G(u, u, v) ≤ h1G(v, v, u).



98 Valeriu Popa, Alina-Mihaela Patriciu

Similarly,

G(v, v, u) ≤ h1G(u, u, v).

Hence

G(u, u, v)(1− h2
1) ≤ 0,

which implies G(u, u, v) = 0, i.e. u = v.

Remark 4.2. By Theorem 4.1, using examples 3.2 - 3.13 we obtain new partic-
ular results.

Theorem 4.3. Let (X,G) be a G - complete metric space and let T : X → X
be a function satisfying the following inequality for all x, y ∈ X:

(4.2)
ϕ(G(Tx, Tx, Ty), G(x, x, y), G(x, Tx, Tx),

G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) ≤ 0

where ϕ ∈ FG. Then T has a unique fixed point.

Corollary 4.4 (Theorem 2.1 [17]). Let (X,G) be a G - complete metric space
and let T : X → X be a function satisfying the following inequality for all
x, y, z ∈ X:

(4.3)
G(Tx, Ty, Tz) ≤ kmax{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty),

G(y, Tz, Tz), G(x, Ty, Ty), G(y, Tz, Tz), G(z, Tx, Tx))

where k ∈
[
0, 1

2

)
. Then T has a unique fixed point.

Proof. For z = x we obtain by (4.3) that

G(Tx, Tx, Ty) ≤ kmax{G(x, x, y), G(x, Tx, Tx), G(y, Ty, Ty),
G(x, Ty, Ty), G(y, Tx, Tx)) ≤ 0.

By Theorem 4.3 and Example 3.2, T has a unique fixed point.

Corollary 4.5 (Theorem 3.1 [17]). Let (X,G) be a G - complete metric space
and let T : X → X be a function satisfying the following inequality for all
x, y, z ∈ X:

(4.4)
G(Tx, Ty, Tz) ≤ kmax{G(x, Ty, Ty) +G(y, Tx, Tx),

G(y, Tz, Tz) +G(z, Ty, Ty), G(x, Tz, Tz) +G(z, Tx, Tx))

where k ∈
[
0, 1

2

)
. Then T has a unique fixed point.

Proof. For z = x we obtain by (4.4) that

G(Tx, Tx, Ty) ≤ kmax{G(x, Ty, Ty) +G(y, Tx, Tx), 2G(x, Tx, Tx)) .

By Theorem 4.3 and Example 3.3, T has a unique fixed point.
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Corollary 4.6 (Theorem 2.8 [17]). Let (X,G) be a G - complete metric space
and let T : X → X be a function satisfying the following inequality for all
x, y, z ∈ X:

(4.5)
G(Tx, Ty, Tz) ≤ kmax{G(z, Tx, Tx) +G(y, Tx, Tx),

G(y, Tz, Tz) +G(x, Tz, Tz), G(x, Ty, Ty) +G(y, Ty, Ty))

where k ∈
[
0, 1

3

)
. Then T has a unique fixed point.

Proof. For z = x we obtain by (4.5) that

G(Tx, Tx, Ty) ≤ kmax{G(x, Tx, Tx) +G(y, Tx, Tx),
G(x, Ty, Ty) +G(y, Ty, Ty))

.

By Theorem 4.3 and Example 3.4, T has a unique fixed point.

Corollary 4.7 (Theorem 2.1 [3]). Let (X,G) be a G - complete metric space
and let T : X → X be a function satisfying the following inequality for all
x, y, z ∈ X:
(4.6)
G(Tx, Ty, Tz) ≤ kmax{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),

G(x, Ty, Ty) +G(z, Tx, Tx)

2
,
G(x, Ty, Ty) +G(y, Tx, Tx)

2
,

G(y, Tz, Tz) +G(z, Ty, Ty)

2
,
G(x, Tz, Tz) +G(z, Tx, Tx)

2
}

where k ∈ [0, 1). Then T has a unique fixed point.

Proof. For z = x we obtain by (4.6) that

G(Tx, Tx, Ty) ≤ kmax{G(x, x, y), G(x, Tx, Tx), G(y, Ty, Ty),
G(x, Ty, Ty) +G(x, Tx, Tx)

2
,
G(x, Ty, Ty) +G(y, Tx, Tx)

2
}

.

By Theorem 4.3 and Example 3.5, T has a unique fixed point.

Corollary 4.8. Let (X,G) be a G - complete metric space and let T : X → X
be a function satisfying the following inequality for all x, y, z ∈ X:
(4.7)
G(Tx, Ty, Tz) ≤ kmax{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),

G(y, Tx, Tx) +G(z, Ty, Ty) +G(y, Tz, Tz)

3
,

G(x, Tx, Tx) +G(y, Ty, Ty) +G(z, Tz, Tz)

3
}

where k ∈
[
0, 3

4

)
. Then T has a unique fixed point.

Proof. For z = x we obtain by (4.7) that

G(Tx, Tx, Ty) ≤ kmax{G(x, x, y), G(x, Tx, Tx), G(y, Ty, Ty),
2G(y, Tx, Tx) +G(x, Ty, Ty)

3
,
2G(x, Tx, Tx) +G(y, Ty, Ty)

3
}

.

By Theorem 4.3 and Example 3.6, T has a unique fixed point.
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Remark 4.9. This Corollary is a generalization of Theorem 2.6 [2], where h ∈[
0, 1

2

)
.

Corollary 4.10 (Theorem 3.1 [13]). Let (X,G) be a G - complete metric
space and let T : X → X be a mapping such that:

(4.8)

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(x, Tx, Tx)
+cG(y, Ty, Ty) + dG(z, Tz, Tz)

+emax{G(x, Ty, Ty), G(y, Tx, Tx), G(y, Tz, Tz),
G(z, Ty, Ty), G(z, Tx, Tx), G(x, Tz, Tz)}

for all x, y, z ∈ X, where a, b, c, d, e ≥ 0 and a + b + c + d + 2e < 1. Then T
has a unique fixed point.

Proof. For z = x by (4.8) we obtain

G(Tx, Tx, Ty) ≤ aG(x, x, y) + bG(x, Tx, Tx)
+cG(y, Ty, Ty) + dG(x, Tx, Tx)

+emax{G(x, Ty, Ty), G(y, Tx, Tx), G(x, Tx, Tx)}.
.

By Theorem 4.3 and Example 3.7, T has a unique fixed point.

Corollary 4.11 (Theorem 3.7 [13]). Let (X,G) be a G - complete metric
space and let T : X → X be a mapping such that:

(4.9)

G(Tx, Ty, Tz) ≤ kmax{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),
G(x, Ty, Ty), G(y, Tz, Tz), G(z, Tx, Tx), G(x, Tz, Tz),
G(y, Tx, Tx), G(z, Ty, Ty), G(x, Ty, Ty), G(y, Tz, Tx),

G(z, Tx, Ty), G(x, y, Tz), G(y, z, Tx), G(z, x, Ty), G(x, y, z)},

for all x, y, z ∈ X, where k ∈
[
0, 1

3

)
. Then T has a unique fixed point.

Proof. For z = x by (4.9) we obtain

G(Tx, Tx, Ty) ≤ kmax{G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty),
G(y, Tx, Tx), G(x, Ty, Tx), G(x, y, Tx), G(x, x, Ty), G(x, x, y)}. .

By (G5) and Lemma 2.6 we obtain

G(Tx, Tx, Ty) ≤ kmax{G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty),
G(y, Tx, Tx), G(x, Tx, Tx) +G(Tx, Tx, Ty),

G(x, Tx, Tx) +G(y, Tx, Tx), 2G(x, Ty, Ty), G(x, x, y)}.

By Theorem 4.3 and Example 3.8, T has a unique fixed point.

Corollary 4.12. Let (X,G) be a G - complete metric space and let T : X → X
be a mapping such that for all x, y, z ∈ X:
(4.10)

G(Tx, Ty, Tz) ≤ aG(x, y, z) + kmax{G(x, Ty, Ty) +G(y, Tx, Tx)+
+G(z, Tz, Tz), G(y, Tz, Tz) +G(z, Ty, Ty) +G(x, Tx, Tx),

G(z, Tx, Tx) +G(x, Tz, Tz) +G(y, Ty, Ty)},

where a, k ≥ 0 and a+ 3k < 1. Then T has a unique fixed point.
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Proof. For z = x by (4.10) we obtain

G(Tx, Tx, Ty) ≤ aG(x, x, y)
+kmax{G(x, Ty, Ty) +G(y, Tx, Tx) +G(x, Tx, Tx),

2G(x, Tx, Tx) +G(y, Ty, Ty)},

By Theorem 4.3 and Example 3.9, T has a unique fixed point.

Remark 4.13. If a = 0, by Corollary 4.12 we obtain Theorem [13].

Corollary 4.14. Let (X,G) be a G - complete metric space and let T : X → X
be a mapping such that for all x, y, z ∈ X:

(4.11)

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bG(y, Ty, Ty)
+kmax{G(x, Ty, Ty) +G(y, Tx, Tx) +G(z, Tx, Ty),

G(y, Tz, Tz) +G(z, Ty, Ty) +G(x, Ty, Tz),
G(z, Tx, Tx) +G(x, Tz, Tz) +G(y, Tz, Tx)},

where a, b, k ≥ 0 and a+ b+ 4k < 1. Then T has a unique fixed point.

Proof. For z = x and (G5) we obtain

G(Tx, Tx, Ty) ≤ aG(x, x, y) + bG(y, Ty, Ty)
+kmax{G(x, Ty, Ty) +G(y, Tx, Tx) +G(x, Tx, Ty),

2G(x, Tx, Tx) +G(y, Tx, Tx)}
≤ aG(x, x, y) + bG(y, Ty, Ty)

+kmax{G(x, Ty, Ty) +G(y, Tx, Tx)+
G(x, Tx, Tx) +G(Tx, Tx, Ty),
2G(x, Tx, Tx) +G(y, Tx, Tx)}.

.

By Theorem 4.3 and Example 3.10, T has a unique fixed point.

Remark 4.15. If a = b = 0, by Corollary 4.14 we obtain Theorem 3.11 [13].

Corollary 4.16. Let (X,G) be a G - complete metric space and let T : X → X
be a mapping such that for all x, y, z ∈ X:

(4.12)

G(Tx, Ty, Tz) ≤ aG(x, y, z) + bmax{G(x, Tx, Tx), G(y, Ty, Ty)}
+cmax{G(x, Tz, Tz), G(x, Ty, Ty)}

+dmax{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty),
G(x,Ty,Ty)+G(x,Tz,Tz)

2 }+ eG(y, Tx, Tx),

where a, b, c, d, e ≥ 0 and a + b + c + d + 2e < 1. Then T has a unique fixed
point.

Proof. For z = x by (4.12) we obtain

G(Tx, Tx, Ty) ≤ aG(x, x, y) + bmax{G(x, Tx, Tx), G(y, Ty, Ty)}
+cmax{G(x, Tx, Tx), G(x, Ty, Ty)}

+dmax{G(x, x, y), G(x, Tx, Tx), G(y, Ty, Ty),
G(x,Ty,Ty)+G(x,Tx,Tx)

2 }+ eG(y, Ty, Ty).

.

By Theorem 4.3 and Example 3.12, T has a unique fixed point.
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Remark 4.17. Corollary 4.16 is a generalization of Theorem 3.2 [11] because in
this theorem a+ b+ 2c+ 2d < 1 and e = 0.

Corollary 4.18 (Corollary 5 [11]). Let (X,G) be a G - complete metric space
and let T : X → X be a mapping such that for all x, y, z ∈ X:

(4.13)
G(Tx, Ty, Tz) ≤ kmax{G(x, y, z), G(x, Tx, Tx) +G(y, Ty, Ty),

G(x, Ty, Ty) +G(y, Tx, Tx)},

where k ∈
[
0, 1

2

)
. Then T has a unique fixed point.

Proof. For z = x by (4.13) we obtain

G(Tx, Tx, Ty) ≤ kmax{G(x, x, y), G(x, Tx, Tx) +G(y, Ty, Ty),
G(x, Ty, Ty) +G(y, Tx, Tx)}. .

By Theorem 4.3 and Example 3.13, T has a unique fixed point.

Corollary 4.19. Let (X,G) be a G - complete metric space and let T : X → X
be a mapping such that for all x, y, z ∈ X:

(4.14)
G(Tx, Ty, Tz) ≤ aG(x, y, z) + kmax{G(x, Tx, Tx), G(x, Ty, Ty),

G(x, Tz, Tz), G(y, Ty, Ty), G(y, Tx, Tx),
G(y, Tz, Tz), G(z, Tz, Tz), G(z, Tx, Tx), G(z, Ty, Ty)},

where x, y, z ∈ X, where a, k ≥ 0 and 0 < a + 2k < 1. Then T has an unique
fixed point.

Proof. For z = x by (4.14) we obtain

G(Tx, Tx, Ty) ≤ aG(x, x, y) + kmax{G(x, Tx, Tx),
G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)}, .

and the proof it follows by Theorem 4.1 and Example 3.14.

Remark 4.20. If a = 0 we obtain Theorem 1 [30].

Note. 1) The notions of quasi - metric spaces are introduced in [31].
Some fixed point theorems for mappings in quasi - metric spaces are proved in
[6], [7], [8], [12], [26], [27] and other papers.

Let (X,Q) be a quasi - metric space, where q(x, y) is a quasi - metric on
X. In the proofs of Theorem 1 [26] and Theorem 1 [27] is used that d(x, y) =
max{q(x, y), q(y, x)} is a metric on X.

Let (X,G) be a G - metric space. It is proved in Theorem 2.1 [9], Lemma
5.1 [22], Lemma 2.4 [25] that G(x, x, y) is a quasi - metric q(x, y) on X, hence
D(x, y) = max{G(x, x, y), G(y, y, x)} is a metric on X.

Using this fact, the study of ([9], Theorem 3.1) and ([28], Theorems 17, 19,
21) is reduced to the study of fixed points in metric spaces.

2) Let F (t1, ..., t6) ≤ 0 be a contractive condition in G - metric spaces.
To use a technique as in [9], [28] it is necessary that F (t1, ..., t6) to be non -
increasing in variables t2, ..., t6.



General fixed point theorem for pairs of non weakly compatible mappings 103

In the present paper, F is non - increasing only in variable t6. In Example
3.11 F is non - decreasing in variables t3 and t4 and in Example 3.15, F is non
- decreasing in variable t2. Hence, Theorems 4.1 and 4.3 cannot be derived as
the results from [9], [28].

3) In [10] there exists a function F non - increasing in variables t2, t3, ...
which is not derived as the results from [9], [28].
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