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ON A CURVATURE-TYPE INVARIANT
OF A g-HOLOMORPHICALLY SEMI-SYMMETRIC
CONNECTION ON A LOCALLY PRODUCT SPACE

Nevena Pušić1

Abstract. We consider an n−dimensional locally product space with p
and q dimensional components (p+q = n). In our previous paper, we have
considered two connections, (F, g)−holomorphically semi-symmetric (this
means that both metric and structure tensor are parallel towards this
connection) and F−holomorphically semi-symmetric one, both with gra-
dient generators. We have proved that both of these connections have
curvature-like invariants which are both equal to product conformal cur-
vature tensor. Here we shall consider the third connection from this
family, namely, g-holomorphically semi-symmetric connection and find
its curvature-like invariant.
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1. Introduction

The geometrical motivation for such a consideration was the fact found in
one of our previous papers ([9]), that F−holomorphically semi-symmetric con-
nection and (F, g)−holomorphically semi-symmetric connection on a Kähler
space with Norden metrics (or anti-Kähler space) have curvature-type invari-
ants which are equal to one of its conformal invariants.

For such a reason, we have considered the same situation on a locally prod-
uct space and we obtained an analogous result. In [10], we considered the third
connection from such a group on anti-Kähler space and found its curvature-type
invariant. In [11], we considered situation on locally product spaces, which is
analogous to the situation in [9] and got similar results.

The papers [1, 2, 3, 4, 5, 6, 7, 8, 12] also helped us in consideration of this
problem.

It is well-known that a locally product space is an n−dimensional manifold
Mn with a (positive definite) metric (gij), which is called a Riemannian space
and with structure tensor field F i

j ̸= δij , satisfying conditions

F i
sF

s
j = δij , gstF

s
i F

t
j = gij , ∇kF

i
j = 0,

where ∇ denotes the operator of covariant derivative towards to Levi-Civita
connection.
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If we set gisF
s
j = Fij , then it is clear that the covariant structure tensor is

symmetric and parallel towards the Levi-Civita connection. In any neighbor-
hood of any point of a locally product space, its metric tensor can be expressed
in the form

(1.1) ds2 = gαβ(x
i)dxαdxβ + grs(x

i)dxrdxs,

where α, β = 1, ..., p; r, s = p+ 1, ..., p+ q = n (n = dimMn), or, equivalently,

(1.2) (gij) =

(
gαβ 0
0 grs

)
and then its tangent space is a product of two tangent subspaces of dimensions
p and q. Then the structure tensor in such a coordinate system has the form

(1.3) (F i
j ) =

(
δαβ 0

0 −δrs

)
,

or, for its covariant form

(1.4) (Fij) =

(
gαβ 0
0 −grs

)
.

If in the expression (1.1) the conditions gαβ = gαβ(x
γ) and grs = grs(x

t) are
satisfied, then the space Mn is called a locally decomposable space.

There are several papers dedicated to locally product spaces (see, e. g.
[1, 2, 3, 4, 5, 6, 7, 8, 12], which were interesting and useful for our consideration),
but not so many in last fifteen years. Maybe this angle of consideration is a
convenient way to make such kind of spaces rekindle again. It may also be
interesting to treat a special case when the considered space is a product of
semi-Riemannian or Riemannian spaces of constant curvature ([2, 3]).

The connection with coefficients

(1.5) Γi
jk =

{
i
jk

}
− pjδ

i
k + pigjk + qjF

i
k − qiFjk,

where qj = paF
a
j , is a g−connection; moreover, its torsion tensor is of the form

(1.6) − pjδ
i
k + pkδ

i
j + qjF

i
k − qkF

i
j ,

which is the reason to call it a holomorphically semi-symmetric connection.
Besides, holds

(1.7) Kijkl = F r
i F

s
jKrskl

and this is a Kähler-type condition for Riemann-Christoffel tensor.



On a curvature-type invariant... 117

2. The curvature tensor of a g−holomorphically
semi-symmetric connection and its algebraic
properties

Taking into account (1.5) , we can calculate the curvature tensor for such
connection. We obtain that, after lowering the upper index, holds,

Rijkl = Kijkl + gilpkj − gikplj + gjkpli − gjlpki(2.1)

−Filqkj + Fikqlj − Fjkqli + Fjlqki,

where

pkj = ∇kpj + pkpj − qkqj −
1

2
psp

pgkj +
1

2
psq

sFkj ,(2.2)

qkj = ∇kqj + qkpj − pkqj +
1

2
psp

sFkj −
1

2
psq

sgkj .

It is obvious that

(2.3) pkj = 2∇kpj − qkaF
a
j

and, consequently

(2.4) qkj = 2∇kqj − pkaF
a
j .

Now we want the tensor Rijkl to be an algebraic curvature tensor. Its compo-
nent is skew-symmetric in last two indices by definition. Also, it is visible from
(2.1) that its component is skew-symmetric in first two indices. Its components
must also be invariant under changing places of the first and the second pair
of indices. Then, we are getting

0 = gil(pkj − pjk)− gik(plj − pjl) + gjk(pli − pil)−(2.5)

gjl(pki − pik) + Fik(qlj − qjl)− Fil(qkj − qjk)

+Fjl(qki − qik)− Fjk(qli − qil).

If we transvect the upper equality by gil,we obtain

(n− 2)(pkj − pjk) + F l
k(qlj − qjl)− ψ(qkj − qjk) + F i

j (qki − qik) = 0,

where ψ stands for p− q. If we take into account (2.3), then it holds that

(n− 3)(pkj − pjk) + 2(∇kpj −∇jpk)− ψ(qkj − qjk)

= F a
j qak − F a

k qaj .

From (2.2), it holds that ∇kpj −∇jpk = pkj − pjk; so, we obtain

(2.6) (n− 1)(pkj − pjk)− ψ(qkj − qjk) = F a
j qak − F a

k qaj .

If we transvect (2.5) by F il and take into account (2.4), we shall obtain that

ψ(pkj − pjk)− (n− 2)(qkj − qjk)(2.7)

= F l
k(plj − pjl) + F i

j (pki − pik).
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If we suppose that, like in [9, 10, 11], the generator (pi) is a gradient, then pkj
will be a symmetric tensor. Then qkj is also a symmetric tensor (from (2.7))
and then the equality (2.6) is satisfied automatically. Besides, it holds that

(2.8) ∇kqj = ∇jqk + 2(qjpk − qkpj).

If we use the fact that pkj and qkj are symmetric tensors, then it is easy to prove
that the tensor (2.1) satisfies the first Bianchi identity. So, we have proved that
the following theorem holds.

Theorem 2.1. If the generator of g−holomorphically semi-symmetric connec-
tion on an almost product space is a gradient, then the curvature tensor Rijkl

(satisfying (2.1)), of such connection is an algebraic curvature tensor.

In our following considerations, we would suppose that such a condition is
satisfied.

3. Some scalar functions and tensors which are connected
with a g− holomorphically semi-symmetric connection

If we set

(3.1) Skj = pkpj − qkqj −
1

2
psp

sgkj +
1

2
psq

sFkj ,

then, from (2.2), we have that

(3.2) pkj = ∇kpj + Skj , qkj = F a
j ∇kpa − SkaF

a
j .

The tensor Skj is a symmetric one; SkaF
a
j is not symmetric. Also, we can

notice that
F a
j qak = pkj − 2Skj .

We also can calculate that

Ss
s =

1

2
(ψpsq

s − npsp
s);(3.3)

SabF
ab =

1

2
(npsq

s − ψpsp
s);

SabF
a
k F

b
j = qkqj − pkpj −

1

2
psp

sgkj +
1

2
psq

sFkj

= −Skj − psp
sgkj + psq

sFkj .

As for the curvature tensor of the connection (2.1) there is not satisfied the
condition of Kähler type, but it is satisfied for Levi-Civita connection, we obtain
that

Rijkl − F r
i F

s
j Rrskl = 2(gil∇kpj − gik∇lpj + gjk∇lpi(3.4)

−gjl∇kpi)− 2(Fil∇kqj − Fik∇lqj +

Fjk∇lqi − Fjl∇kqi).
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Other eight terms from the expression (2.1) and from F r
i F

s
j Rrskl are cancelling

out each other, as they contain Skj and SkaF
a
j . In our next considerations, we

shall use abbreviations

RijklF
il = Rjk; Rjkg

jk = R;
˜̃
R = RjkF

jk

and analogous abbreviations for curvature elements for the Levi-Civita connec-
tion.

Transvecting (3.4) by gil, we are getting

Rjk −RskF
s
j = 2(n− 1)∇kpj − 2ψ∇kqj + 2gjk∇sp

s(3.5)

−2Fjk∇sq
s + 2F a

k∇aqj .

If we transvect (3.5) by gjk, we obtain

R− ˜̃
R = 4n∇sp

s − 4ψ∇sq
s

and, consequently

(3.6) n∇sp
s − ψ∇sq

s =
R− ˜̃

R

4
,

which is an important relation between these two scalar functions. If we
transvect the equality (3.4) by F kj , we shall obtain an identity. We shall
transvect the equality (3.4) by F il and obtain that

Rjk −RskF
s
j = −2(n− 1)∇kqj + 2ψ∇kpj − 2∇jqk(3.7)

+2gjk∇sq
s − 2Fjk∇sp

s.

If we transvect (3.7) by F jk, we obtain the relation (3.6) again; if we transvect
it by gjk, we obtain an identity again. If we change places of indices j and k
in (3.7), we obtain

Rkj −RsjF
s
k = −2(n− 1)∇jqk + 2ψ∇jpk − 2∇kqj(3.8)

+2gkj∇sq
s − 2Fkj∇sp

s.

Substracting (3.8) from (3.7) and taking into account that the tensor Rjk is
symmetric, we obtain

RsjF
s
k −RskF

s
j = 2(n− 2)(∇jqk −∇kqj)

and, consequently

(3.9) ∇jqk = ∇kqj −
RskF

s
j −RsjF

s
k

2(n− 2)
.

Substituting (3.9) into (3.7), we obtain
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2n∇kqj =
n− 1

n− 2
RskF

s
j − 1

n− 2
RsjF

s
k −Rkj + 2ψ∇kpj

+2gjk∇sq
s − 2Fjk∇sp

s

and, consequently

∇kqj =
n− 1

2n(n− 2)
RskF

s
j − RsjF

s
k

2n(n− 2)
− Rkj

2n
(3.10)

+
ψ

n
∇kpj +

∇sq
s

n
gkj −

∇sp
s

n
Fkj .

Applying the relation ∇kpj = F a
j ∇kqa, we obtain

∇kpj =
n− 1

2n(n− 2)
Rkj −

RskF
s
j

2n
−
RabF

b
j F

a
k

2n(n− 2)
(3.11)

+
ψ

n
∇kqj −

∇sp
s

n
gkj +

∇sq
s

n
Fkj .

If we substitute (3.10) into (3.11) and take into account (3.6), we shall obtain

∇kpj =
1

n2 − ψ2
[
n(n− 1)

2n(n− 2)
Rkj −

n

2
RskF

s
j −

nRabF
b
j F

a
k

2(n− 2)
(3.12)

+
ψ(n− 1)

2(n− 2)
RskF

s
j − ψ

2(n− 2)
RsjF

s
k − ψ

2
Rkj

−R− ˜̃
R

4
gjk − ψ

4n
(R− ˜̃

R)Fjk] + λFjk,

∇kqj =
1

n2 − ψ2
[
n(n− 1)

2n(n− 2)
RkaF

a
j − n

2
Rjk − nRajF

a
k

2(n− 2)
(3.13)

+
ψ(n− 1)

2(n− 2)
Rjk − ψ

2(n− 2)
RabF

b
j F

a
k − ψ

2
RkaF

a
j

−R− ˜̃
R

4
Fjk − ψ

4n
(R− ˜̃

R)gjk] + λgjk,

where in both expressions λ stands for ∇sq
s

n , which cannot be eliminated.
If we use expressions (2.1) and (3.2), we can state that

Rijkl − gil∇kpj + gik∇lpj − gjk∇lpi + gjl∇kpi − Fjk∇lqj(3.14)

+ Fil∇kqj − Fjl∇kqi + Fjk∇lqi

=Kijkl + gilSjk − gikSlj + gjkSli − gjlSki + FilSkaF
a
j

− FikSlaF
a
j + FjkSlaF

a
i − FjlSkaF

a
i .
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Using (3.3), we can obtain

(3.15) SajF
a
k = −SkaF

a
j − psp

sFkj + psq
sgkj .

Using standard method, by transvecting the expression (3.14) for the curvature
tensor first by gil and then by gjk and using (3.2), we obtain that

R−K

2
= n∇sp

s +
n− 2

2
(ψpsq

s − npsp
s)− ψ∇sq

s +
ψ

2
(npsq

s − ψpsp
s).

From the upper equality, we obtain that

(3.16)
R−K

2
= n∇sp

s − ψ∇sq
s + ψ(n− 1)psq

s − ((n− 2) + ψ2))

2
psp

s.

But, if we transvect (3.14) first by gil and then by F jk, we obtain that

R−K = 2(n− 2)SabF
ab + 2ψSs

s ,

and, consequently, using (3.3),

R−K = (n(n− 2) + ψ2)psq
s − 2ψ(n− 1)psp

s.

If we set abbreviations

(3.17) ψ(n− 1) = α; n(n− 2) + ψ2 = β,

we are getting the relationship between scalar products

(3.18) psq
s =

R−K + 2αpsp
s

β
.

If we substitute (3.17) and (3.18) into (3.16), we obtain

(3.19) ∇sp
s =

R−K

2n
− α(R−K)

nβ
+
ψ

n
∇sq

s +
(β + 2α)(β − 2α)

2nβ
psp

s.

Now we shall transvect (3.14) first by F il and after that by F jk and then use
(3.3) and (3.18); we shall obtain that

(3.20) ∇sp
s =

˜̃
K − ˜̃

R

2n
+
ψ

n
∇sq

s +
α(R−K)

nβ
− (β + 2α)(β − 2α)

2nβ
psp

s.

Comparing (3.19) and (3.20), we shall obtain that

(3.21) psp
s =

β

2(4α2 − β2)
(R−K +

˜̃
R− ˜̃

K)− 4α(R−K)

2(4α2 − β2)

and, using (3.18)
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(3.22) psq
s =

α

4α2 − β2
(R−K +

˜̃
R− ˜̃

K)− β

4α2 − β2
(R−K).

Using (3.3), we get that

Ss
s =

2ψα− nβ

4(4α2 − β2)
(R−K +

˜̃
R− ˜̃

K) +
2nα− ψβ

2(4α2 − β2)
(R−K);(3.23)

SabF
ab =

2nα− ψβ

4(4α2 − β2)
(R−K +

˜̃
R− ˜̃

K) +
4ψα− 2nβ

4(4α2 − β2)
(R−K).

If we set

(3.24) µ =
2ψα− nβ

4(4α2 − β2)
; ν =

2nα− ψβ

4(4α2 − β2)
,

then we obtain

Ss
s = µ(R−K +

˜̃
R− ˜̃

K) + 2ν(R−K);(3.25)

SabF
ab = ν(R−K +

˜̃
R− ˜̃

K) + 2µ(R−K).

4. Calculating tensors Skj and SkaF
a
j

We shall denote the tensor on the left-hand side of (3.14) by Lijkl. Using
(3.12) and (3.13), we shall calculate it later. It is a curvature-like tensor, but
not an algebraic curvature tensor and its final form will be rather long and
complicated. So, we would rewrite (3.14) as

Lijkl = Kijkl + gilSjk − gikSlj + gjkSli − gjlSki + FilSkaF
a
j(4.1)

−FikSlaF
a
j + FjkSlaF

a
i − FjlSkaF

a
i .

If we transvect (4.1) by gil, we obtain

(n− 4)Skj + ψSkaF
a
j = Ljk −Kjk − gjk(S

s
s + psp

s)(4.2)

−Fjk(SabF
ab − psq

s).

If we transvect (4.1) by F il and use (3.15), we obtain

ψSkj + (n− 2)SkaF
a
j = Ljk −Kjk − gkj(SabF

ab − psq
s)(4.3)

−Fkj(S
s
s + psp

s),

where Ljk stands for LijklF
il. The system of equations (4.2), (4.3) will give

us thenecessary tensors. We are going to solve this system, temporarily using
abbreviations
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(4.4) Ss
s + psp

s = γ; SabF
ab − psq

s = δ.

Then the system will take the form

(n− 4)Skj + ψSkaF
a
j = Ljk −Kjk − γgjk − δFjk,(4.5)

ψSkj + (n− 2)SkaF
a
j = Ljk −Kjk − δgjk − γFjk.

Solving this system of linear equations using the method od opposite coeffi-
cients, we obtain

Skj =
1

(n− 2)(n− 4)− ψ2
[(n− 2)(Ljk −Kjk)− ψ(Ljk −Kjk)(4.6)

−((n− 2)γ − ψδ)gjk − ((n− 2)δ − ψγ)Fjk].

We can see that, in fact, calculating SkaF
a
j from the system of linear equa-

tions is unnecessary, because we can calculate it using their simple mutual
relationship.

Now we shall calculate these scalar functions which are factors with metrics
and structure. Using (4.4), (3.21), (3.22), (3.23) and (3.3), we obtain that

(n− 2)γ − ψδ = −β (n− 2)2 − ψ2

4(4α2 − β2)
(R−K +

˜̃
R− ˜̃

K)(4.7)

+α
(n− 2)2 − ψ2

4α2 − β2
(R−K);

(n− 2)δ − ψγ = α
(n− 2)2 − ψ2

2(4α2 − β2)
(R−K +

˜̃
R− ˜̃

K)

−β (n− 2)2 − ψ2

2(4α2 − β2)
(R−K).

Substituting these scalar quantities in the expression (4.6), we obtain that

Skj =
1

(n− 2)(n− 4)− ψ2
[(n− 2)(Ljk −Kjk)− ψ(Ljk −Kjk)(4.8)

+
(n− 2)2 − ψ2

4(4α2 − β2)
(β(R−K +

˜̃
R− ˜̃

K)− 4α(R−K))gjk

− (n− 2)2 − ψ2

2(4α2 − β2)
(α(R−K +

˜̃
R− ˜̃

K)− β(R−K))Fjk].

Then, it is easy to calculate
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SkaF
a
j =

1

(n− 2)(n− 4)− ψ2
[(n− 2)(Lak −Kak)F

a
j(4.9)

−ψ(Lak −Kak)F
a
j

+
(n− 2)2 − ψ2

4(4α2 − β2)
(β(R−K +

˜̃
R− ˜̃

K)− 4α(R−K))Fkj

− (n− 2)2 − ψ2

2(4α2 − β2)
(α(R−K +

˜̃
R− ˜̃

K)− β(R−K))gkj ].

5. Explicite calculating of tensors
Lijkl, Ljk, LskF

s
j , Ljk, LskF

s
j

The tensor on the left-hand side of (3.14) we have denoted by Lijkl. As
we have calculated covariant derivatives of the generator and its image by the
structure ((3.12), (3.13)), we can substitute them into this expression. Then,
all the members of these expressions which are containing λ are cancelling and
we shall obtain

Lijkl =

Rijkl −
1

n2 − ψ2
[
n(n− 1)

2(n− 2)
(gilRkj − gikRlj + gjkRli − gjlRki)

− n

2
(gilRskF

s
j − gikRslF

s
j + gjkRslF

s
i − gjlRskF

s
i )

− n

2(n− 2)
(gilRabF

b
j F

a
k − gikRabF

b
j F

a
l + gjkRabF

b
i F

a
k

− gjlRabF
a
k F

b
i )

+
ψ(n− 1)

2(n− 2)
(gilRskF

s
j − gikRslF

s
j + gjkRslF

s
i − gjlRskF

s
i )

− ψ

2(n− 2)
(gilRsjF

s
k − gikRsjF

s
l + gjkRsiF

s
l − gjlRsiF

s
k )

− ψ

2
(gilRkj − gikRlj + gjkRli − gjlRki)−

R− ˜̃
R

2
(gilgjk − gijglk)

− ψ

4n
(R− ˜̃

R)(gilFkj − gikFlj + gjkFli − gjlFki)]

+
1

n2 − ψ2
[
n(n− 1)

2(n− 2)
(FilRkaF

a
j − FikRlaF

a
j + FjkRlaF

a
j −

− FjlRkaF
a
i )

− n

2
(FilRkj − FikRlj + FjkRli − FjlRki)−

n

2(n− 2)
(FilRajF

a
k

− FikRajF
a
l + FkjRaiF

a
l − FjlRaiF

a
l )

+
ψ(n− 1)

2(n− 2)
(RjkFil − FikRjl + FjkRil − FjlRik)

− ψ

2(n− 2)
(FilRabF

b
j F

a
k − FikRabF

b
j F

a
l + FjkRabF

a
l F

b
i
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− FjlRabF
a
k F

b
i )−

ψ

2
(FilRkaF

a
j − FikRlaF

a
j + FjkRlaF

a
i

− FjlRkaF
a
i )−

R− ˜̃
R

2
(FilFkj − FikFlj)

− ψ

4n
(R− ˜̃

R)(Filgjk − Fikgjl + Fjkgil − Fjlgik)].

It is not complicated to see that the eighth and the last row are cancelling
each other out. If we change the sign of the second group of members, we
obtain that

Lijkl =(5.1)

Rijkl −
1

n2 − ψ2
[
n(n− 1)

2(n− 2)
(gilRkj − gikRlj + gjkRli

− gjlRki + FikRlaF
a
j − FilRkaF

a
j + FjlRkaF

a
i − FjkRlaF

a
i )

− n

2
(gilRskF

s
j − gikRslF

s
j + gjkRslF

s
i − gjlRskF

s
i

+ FikRlj − FilRkj + FjlRki − FjkRli)

− n

2(n− 2)
Rab(gilF

b
j F

a
k − gikF

b
j F

a
l + gjkF

b
i F

a
l − gjlF

a
k F

b
i )

+
n

2(n− 2)
(FilRajF

a
k − FikRajF

a
l + FjkRaiF

a
l − FjlRaiF

a
k )

+
ψ(n− 1)

2(n− 2)
(gilRskF

s
j − gikRslF

s
j + gjkRslF

s
i − gjlRskF

s
i

+ FikRjl − FilRkj + FjlRki − FjkRli)

− ψ

2(n− 2)
(gilRsjF

s
k − gikRsjF

s
l + gjkRsiF

s
l − gjlRsiF

s
k )

+
ψ

2(n− 2)
Rab(FilF

b
j F

a
k − FikF

b
j F

a
l + FjkF

b
i F

a
l − FjlF

b
i F

a
k )

− ψ

2
(gilRkj − gikRlj + gjkRli − gjlRki + FikRlaF

a
j )

− FilRkaF
a
j + FjlRkaF

a
i − FjkRlaF

a
i )

− R− ˜̃
R

2
(gilgkj − gikglj + FikFlj − FilFkj)].

Transvecting the expression (5.1) by gil, we obtain

Ljk =(5.2)

Rjk − 1

n2 − ψ2
[(
n2

2
− ψ2(n− 1)

2(n− 2)
)Rjk

− nψ

2(n− 2)
RkaF

a
j +

nψ

2(n− 2)
RjaF

a
k

+
ψ(ψ − n+ 2)

2(n− 2)
RabF

a
j F

b
k +

ψ2 − n(n− 1)

2
RakF

a
j
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− n

2
RajF

a
k − ψ(n− 1)

2
Rkj + (R− ˜̃

R)gjk − ψ(R− ˜̃
R)Fjk]

and, consequently

LskF
s
j =(5.3)

RskF
s
j − 1

n2 − ψ2
[(
n2

2
− ψ2(n− 1)

2(n− 2)
)RksF

s
j

− nψ

2(n− 2)
Rkj +

nψ

2(n− 2)
RsaF

a
k F

s
j

+
ψ(ψ − n+ 2)

2(n− 2)
RjbF

b
k +

ψ2 − n(n− 1)

2
Rjk

− n

2
RasF

a
k F

s
j − ψ(n− 1)

2
RksF

s
j

+ (R− ˜̃
R)Fkj − ψ(R− ˜̃

R)gkj ].

In the same way, we can calculate components of tensors Ljk = LijklF
il

and LskF
s
j , which will also be necessary for the invariant.

6. Calculating the curvature-type invariant of
g−holomorphically semi-symmetric connection
on a locally product space

We shall use (4.1) to calculate the curvature-type invariant. As we already
have calculated tensors Skj and SkaF

a
j , we shall substitute (4.8) and (4.9) into

the right-hand side of (4.1) and obtain

Lijkl =(6.1)

Kijkl +
1

(n− 2)(n− 4)− ψ2
{(n− 2)[(Ljk −Kjk)gil

− (Ljl −Kjl)gik + (Lil −Kil)gjk − (Lik −Kik)gjl]

− ψ[(Ljk −Kjk)gil − (Ljl −Kjl)gik

+ (Lil −Kil)gjk − (Lik −Kik)gjl]

+
(n− 2)2 − ψ2

2(4α2 − β2)
[β(R−K +

˜̃
R− ˜̃

K)− 4α(R−K)](gilgjk − gikgjl)

− (n− 2)2 − ψ2

2(4α2 − β2)
[α(R−K +

˜̃
R− ˜̃

K)− β(R−K)]·

(gilFkj − gikFlj + gjkFli − gjlFki)

+ (n− 2)[(Lak −Kak)F
a
j Fil − (Lal −Kal)F

a
j Fik

+ (Lal −Kal)F
a
i Fjk − (Lak −Kak)F

a
i Fjl]

− ψ[(Lak −Kak)F
a
j Fil − (Lal −Kal)F

a
j Fik

+ (Lal −Kal)F
a
i Fjk − (Lak −Kak)F

a
i Fjl
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+
(n− 2)2 − ψ2

2(4α2 − β2)
[β(R−K +

˜̃
R− ˜̃

K)− 4α(R−K)](FilFjk − FikFjl)

− (n− 2)2 − ψ2

2(4α2 − β2)
[α(R−K +

˜̃
R− ˜̃

K)− β(R−K)]·

· (Filgjk − Fikgjl + Fjkgil − Fjlgik).

When we put all tensors and scalars which are depending on curvature
tensor of g−holomorphically semi-symmetric connection on the left-hand side
and the same objects which are depending on the curvature tensor of the Levi-
Civita connection, we obtain:

Lijkl −
1

(n− 2)(n− 4)− ψ2
{((n− 2)Ljk − ψLjk)gil

(6.2)

− ((n− 2)Ljl − ψLjl)gik + ((n− 2)Lil − ψLil)gjk

− ((n− 2)Lik − ψLik)gjl + ((n− 2)Lak − ψLak)F
a
j Fil

− ((n− 2)Lal − ψLal)F
a
j Fik + ((n− 2)Lal − ψLal)F

a
i Fjk

− ((n− 2)Lak − ψLak)F
a
i Fjl

+
(n− 2)2 − φ2

2(4α2 − β2)
[β(R+

˜̃
R)− 4αR] · (gilgjk − gikgjl + FilFjk − FikFlj)

− (n− 2)2 − φ2

2(4α2 − β2)
[α(R+

˜̃
R)− βR] · (gilFkj − gikFlj + gjkFli − gjlFki)

= Kijkl −
1

(n− 2)(n− 4)− ψ2
{((n− 2)Kjk − ψKjk)gil

− ((n− 2)Kjl − ψKjl)gik + ((n− 2)Kil − ψKil)gjk

− ((n− 2)Kik − ψKik)gjl + ((n− 2)Kak − ψKak)F
a
j Fil

− ((n− 2)Kal − ψKal)F
a
j Fik + ((n− 2)Kal − ψKal)F

a
i Fjk

− ((n− 2)Kak − ψKak)F
a
i Fjl

+
(n− 2)2 − φ2

2(4α2 − β2)
[β(K +

˜̃
K)− 4αK] · (gilgjk − gikgjl + FilFjk − FikFlj)

− (n− 2)2 − φ2

2(4α2 − β2)
[α(K +

˜̃
K)− βK] · (gilFkj − gikFlj + gjkFli − gjlFki).

So, we have proved that the following theorem holds.

Theorem 6.1. If the curvature tensor of a g−holomorphically semi-symmetric
connection of a locally product space is an algebraic curvature tensor, then
the tensor on the left-hand side of (6.2) (tensor quantities appearing in this
formula are given by (3.14) and (5.1) to (5.3)) is independent on the choice of
its generator.

The tensor on the left-hand side of (6.2) is said to be a curvature-type
invariant of a g−holomorphically semi-symmetric connection.
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