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THE HOMOMORPHISMS OF TOPOLOGICAL
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Abstract. The main purpose of this paper is to study topological
groupoid homomorphisms and to give some kinds of special topological
groupoid homomorphisms. Finally, some characterizations of these ho-
momorphisms are given.
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1. Introduction

The concept of groupoid was first introduced by Brandt[1] in 1926. The
groupoids can be thought as generalizations of groups. Namely; a group is a
groupoid with only one object. After introducing of topological and differen-
tiable groupoids by Ehresmann[5] in the 1950’s, it has been widely studied by
many mathematicians in [2, 3, 4, 6, 7, 8, 10].

We know from group theory that there exist special morphisms between
groups, such as homomorphism, epimorphism, monomorphism, etc.. Since the
groupoids are generalizations of groups, there are also special homomorphisms
between groupoids. In [9], Ivan studied some kind of special morphisms of
groupoids in the algebraic sense.

In this work, we deal with the special homomorphisms of topological grou-
poids. We give the relations between them. Further, in the case of induced
topological groupoid, we obtain some characterizations of the special homo-
morphisms.

2. Topological Groupoids and their Properties

In this section we present the concept of topological groupoid and their
characteristic properties. Let us start with the definition of the groupoid.

Definition 2.1. ([2], pp.193) A groupoid is a small category in which every
arrow is invertible.

To clarify concepts and to fix notation, we briefly describe the groupoid
structure. A groupoid G over G0 consists of a set of arrows G and a set of
objects G0, together with the following five structure maps:
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α : G→ G0, called the source map,
β : G→ G0, called the target map,
ϵ : G0 → G, x 7→ ∼

x, called the object map,
i : G→ G, a 7−→ a−1, called the inverse map,
µ : G2 → G, (a, b) 7→ µ(a, b) = ab, called the composition map, where

G2 = {(a, b) ∈ G×G | α(a) = β(b)} denotes the set of composable arrows.
These maps must satisfy the following conditions:
i) α(ab) = α(a) and β(ab) = β(b) for all (a, b) ∈ G2,
ii) a(bc) = (ab)c for all a, b, c ∈ G such that α(b) = β(a) and α(c) = β(b),
iii) α(x̃) = β(x̃) = x for all x ∈ G0,

iv) aβ̃(a) = a and α̃(a)a = a for all a ∈ G,
v) each a ∈ G has a (two-sided) inverse a−1 such that α(a−1) = β(a),

β(a−1) = α(a) and aa−1 = α̃(a), a−1a = β̃(a).

We usually denote a groupoid G over G0 by (G,G0). Elements of G0 are
called objects of the groupoid G and elements of G are called arrows. The
arrow x̃ corresponding to an object x ∈ G0 is called the unity or identity
corresponding to x. We have also following notations about the groupoids. We
denote the set of arrows started at any object x ∈ G0 by Gx (or StGx), and
the set of arrows ended at any object y ∈ G0 by Gy (or CostGy) in a groupoid
(G,G0). Also we denote the set of arrows from x to y by G(x, y).

Specially, given a groupoid (G,G0), the vertex groups or isotropy groups in
G are subsets of the form G(x, x), where x is any object of G. It follows easily
from the axioms above that these are indeed groups, as every pair of elements is
composable and inverses are in the same vertex group. If we consider the union
of all isotropy groups in a groupoid, we reach the concept of isotropy group
bundle. That is, if (G,G0) is a groupoid, then Is(G) = {a | α(a) = β(a)} is a
group bundle called the isotropy group bundle associated to G.

Definition 2.2. ([10], pp. 8) Let (G,G0) be a groupoid. A subgroupoid

of (G,G0) is a pair of subsets G
′

⊆ G, G
′

0 ⊆ G0 such that α(G
′

) ⊆ G
′

0,

β(G
′

) ⊆ G
′

0, x̃ ∈ G
′

for every x ∈ G
′

0, and G
′

is closed under the composition

map and inversion in (G,G0). A subgroupoid (G
′

, G
′

0) of (G,G0) is called wide

if G
′

0 = G0 and is called full if G
′

(x, y) = G(x, y) for every x, y ∈ G
′

0.

Definition 2.3. ([10], pp. 8) Let (G,G0) be a groupoid. A normal subgroupoid
of (G,G0) is a wide subgroupoid (N,G0) such that for any n ∈ N and any a ∈ G
with β(a) = α(n) = β(n), we have ana−1 ∈ N .

Definition 2.4. ([9]) Let (G,G0) and (G
′

, G
′

0) be two groupoids. A groupoid

homomorphism is a pair (f, f0) : (G,G0) → (G
′

, G
′

0) of maps f0 : G0 → G
′

0

and f : G → G
′

which send each object x of G to an object f0(x) of G
′

and

each arrow a ∈ G(x, y) to an arrow f(a) ∈ G
′

(f0(x), f0(y)), respectively, such
that

M1) f(µ(a, b)) = µ
′
(f(a), f(b)) for every (a, b) ∈ G2

M2) α
′ ◦ f = f0 ◦ α and β

′ ◦ f = f0 ◦ β.
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These conditions mean that the following diagrams are commutative:

G2
f×f //

µ

��

G
′

2

µ
′

��

G
f

// G
′

G
f //

α

��

G
′

α
′

��

G0
f0

// G
′

0

G
f //

β

��

G
′

β
′

��

G0
f0

// G
′

0

Remark 2.5. IfG0 = G
′

0 and f0 = IdG0 , we say that f is aG0−homomorphism.

We can now give the definition of topological groupoid.

Definition 2.6. ([10], pp.17) A topological groupoid is a groupoid (G,G0)
together with topologies on G and G0 such that the structure maps are con-
tinuous.

Here are some basic examples of topological groupoids that are well known.

Example 2.7. ([4]) A topological group can be regarded as a topological
groupoid with only one object.

Example 2.8. ([10], pp. 22) If G is a topological group and B is a topological
space, then B × G × B is a topological groupoid with the product topology,
called the trivial topological groupoid over B with topological group G. More
precisely, we have

α : B ×G×B → B , α(x, g, y) = x,

β : B ×G×B → B , β(x, g, y) = y,

ϵ : B → B ×G×B , ϵ(x) = (x, e, x),

i : B ×G×B → B ×G×B , i(x, g, y) = (y, g−1, x),

µ
(
(x, g, y), (y

′
, h, z)

)
= (x, gh, z) ⇔ y = y

′
.

Definition 2.9. ([4]) A topological groupoid homomorphism (f, f0) : (G,G0) →
(G

′

, G
′

0) is a groupoid homomorphism which is continuous on both objects and
arrows.

Proposition 2.10. ([10], pp. 7) Let (f, f0) : (G,G0) → (G
′

, G
′

0) be topological
groupoid homomorphism. Then (f, f0) satisfies the following properties:

f(
∼
x) = f̃0(x) , ∀x ∈ G0

f(a−1) = (f(a))−1, ∀a ∈ G.

That is, we have the equalities f ◦ ϵ = ϵ
′ ◦ f0 and f ◦ i = i

′ ◦ f . These equalities
correspond to the following commutative diagrams.

G0
ϵ //

f0
��

G

f
��

G
′

0
ϵ
′

// G
′

0

G
i //

f
��

G

f
��

G
′

i
′

// G
′
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Proposition 2.11. Let f : G → G
′

is a continuous map. Then the pair

(f, f0) : (G,G0) → (G
′

, G
′

0) is a topological groupoid homomorphism if and
only if the condition

(2.1) (f(a), f(b)) ∈ G
′

2 and f(µ(a, b)) = µ
′
(f(a), f(b)) , for ∀(a, b) ∈ G2

holds.

Proof. Let (f, f0) be a topological groupoid homomorphism. Then the condi-
tion (2.1) follows from the definition of topological groupoid homomorphism.

Conversely, we suppose that f : G → G
′

satisfies (2.1) and let us define

the map f0 : G0 → G
′

0 by f0(x) = α
′
(f(ϵ(x))) , for all x ∈ G0. f0 is contin-

uous, because it is a composition of continuous maps. To see that (f, f0) is a
topological groupoid homomorphism, we must show that α

′ ◦ f = f0 ◦ α and
β

′ ◦ f = f0 ◦ β.
Since (a, ϵ(β(a))) ∈ G2 , it follows that (f(a), f(ϵ(β(a)))) ∈ G

′

2. Thus we
have

f(a)f(ϵ(β(a))) = f(aϵ(β(a))) = f(a),

but f(a)ϵ
′
(β

′
(f(a))) = f(a). So

ϵ
′
(β

′
(f(a))) = f(ϵ(β(a))) =⇒ α

′
(ϵ

′
(β

′
(f(a)))) = α

′
(f(ϵ(β(a))))

and if we apply Definition 2.1, then we obtain β
′
(f(a)) = f0(β(a)). Hence it

follows that β
′ ◦ f = f0 ◦ β.

Similarly, we can show that α
′ ◦ f = f0 ◦ α. Thus (f, f0) is a topological

groupoid homomorphism.

Definition 2.12. ( [10], pp. 8) Let (f, f0) : (G,G0) → (G
′

, G
′

0) be a topo-
logical groupoid homomorphism. The set Kerf = {a ∈ G | f(a) ∈ ϵ

′
(G

′

0)} is
called the kernel of f , which has the subspace topology. We say that (f, f0)
has discrete kernel, if Kerf = ϵ(G0).

Here we give two trivial examples about the homomorphisms of the topo-
logical groupoids, which are well-known.

Example 2.13. i) Let (G,G0) be a topological groupoid. Then (IdG, IdG0) :
(G,G0) → (G,G0) is a topological groupoid homomorphism.

ii) Let (f, f0) : (G,G0) → (G
′

, G
′

0) and (g, g0) : (G
′

, G
′

0) → (G
′′

, G
′′

0 ) be two
topological groupoid homomorphisms. Then the composition (g, g0) ◦ (f, f0) :
(G,G0) → (G

′′

, G
′′

0 ) is a topological groupoid homomorphism. Namely, it is
defined by (g, g0) ◦ (f, f0) = (g ◦ f, g0 ◦ f0).

If (f, f0) : (G,G0) → (G
′

, G
′

0) is a topological groupoid homomorphism,
then we have

f(Gx) ⊆ G
′

f0(x)
, f(Gy) ⊆ (G

′

)f0(y) , f(G(x, y)) ⊆ (G
′

)(f0(x), f0(y))
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for every x, y ∈ G0. Then the restrictions of f to Gx, G
y, G(x, y) resp., define

the continuous maps

fx : Gx → G
′

f0(x)
, fy : Gy → (G

′

)f0(y) , fyx : Gy
x → (G

′

)(f0(x), f0(y)),

but these maps are not topological groupoid homomorphisms.

Proposition 2.14. ([11], Proposition 2.3.3) Let (f, f0) : (G,G0) → (G
′

, G
′

0) be

a homomorphism of groupoids of G onto G
′

, where G
′

is a topological groupoid.
Then f induces a topology on G compatible with the groupoid structure of G
and f is then a homomorphism of topological groupoids.

For the readers convenience we rewrite the proof from [11].

Proof. Define a set U ⊂ G to be open if and only if U = f−1(V ) for some open

set V ⊂ G
′

, and define U ⊂ G0 to be open if and only if U = f−1
0 (V ) for some

open set V ⊂ G
′

0. This defines a topology on G and on G0. In addition, f and
f0, being surjective, are both continuous and open maps.

Since the diagram

G2
f×f //

µ

��

G
′

2

µ
′

��

G
f

// G
′

is commutative, it follows that µ is continuous. Because if U ⊂ G is open,

U = f−1(V ) for some open V ⊂ G
′

, and then µ−1(U) = µ−1(f−1(V )) =
(f × f)−1((µ

′
)−1(V )), which is open in G2. Similarly, the continuity of the

inverse map and the commutativity of the diagrams

G
f //

α

��

G
′

α
′

��

G0
f0

// G
′

0

G
f //

β

��

G
′

β
′

��

G0
f0

// G
′

0

G0
ϵ //

f0
��

G

f
��

G
′

0
ϵ
′

// G
′

are proved. The commutativity of these diagrams provides the continuity of
α, β and ϵ. Thus the result is established.

Definition 2.15. ([10], pp. 21) Let (G,G0) and (G
′

, G
′

0) be topological group-

oids. An isomorphism of topological groupoids (f, f0) : (G,G0) → (G
′

, G
′

0) is
a homomorphism of topological groupoids such that f (and hence f0) is a
homeomorphism.

Now let us give the characterizations of topological groupoid homomor-
phisms by a proposition.
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Proposition 2.16. Let (f, f0) : (G,G0) → (G
′

, G
′

0) be a topological groupoid
homomorphism. Then the following assertions hold:
i) if f is injective (or surjective), then f0 is also injective (or surjective),
ii) (f, f0) is an isomorphism if and only if the map f is bijection,

iii) f(Is(G)) ⊆ Is(G
′

),
iv) a topological groupoid homomorphism (f, f0) such that f is surjective and f0
is injective (in particular, every surjective G0 − homomorphism of topological

groupoids) preserves the isotropy group bundles, i.e. f(Is(G)) = Is(G
′

).

Proof. i) We prove that f0 is injective when f is injective. Let f be injective.
Then,

a = b whenever f(a) = f(b) for every a, b ∈ G.

Hence if f(a) = f(b), then we have α
′
(f(a)) = α

′
(f(b)) and β

′
(f(a)) =

β
′
(f(b)), and if a = b then we have α(a) = α(b) and β(a) = β(b). Now let

us f0(α(a)) = f0(α(b)). Since the second condition in definition of topological
groupoid homomorphism, we have α

′
(f(a)) = α

′
(f(b)) , and α(a) = α(b)

because a = b. Similar considerations are also said for β. Thus it follows that
f0 is injective.

The proof of surjectivity is straightforward.
ii) The proof follows easily from the Definition 2.15.
iii) Let a

′ ∈ f(Is(G)). Then a
′
= f(a) with a ∈ Is(G) and we have

α
′
(a

′
) = α

′
(f(a)) = f0(α(a)) = f0(β(a)) = β

′
(f(a)) = β

′
(a

′
),

since α(a) = β(a), hence a
′ ∈ Is(G

′

). Consequently, f(Is(G)) ⊆ Is(G
′

).

iv) We know that f(Is(G)) ⊆ Is(G
′

). For this reason, it sufficies to prove

Is(G
′

) ⊆ f(Is(G)). Let us take any a
′ ∈ Is(G

′

). Hence α
′
(a

′
) = β

′
(a

′
). Since

f is surjective, for a
′ ∈ G

′

there exists an arrow a ∈ G such that a
′
= f(a).

Then α
′
(f(a)) = β

′
(f(a)) and hence we have f0(α(a)) = f0(β(a)), because f

is a topological groupoid homomorphism. Further, it follows that α(a) = β(a),
since f0 is injective. Therefore a ∈ Is(G) and a

′ ∈ f(Is(G)). Consequently, it

follows that Is(G
′

) ⊆ f(Is(G)).

3. The Induced Topological Groupoid

There are various ways of producing topological groupoids from existing
ones. In this section we present the concept of induced topological groupoid.
Then we give the characterizations concerning it.

Definition 3.1. ([10], pp. 19) Let (G,G0) be a topological groupoid and let
h : X → G0 be a continuous map, where X is any topological space. Then the
induced topological groupoid of (G,G0) under h is a set

h∗(G) = {(x, y, a) ∈ X ×X ×G | h(x) = α(a), h(y) = β(a)}

together with the groupoid structure consisting of the projections α∗(x, y, a) =
x, β∗(x, y, a) = y, the object map ϵ∗(x) = (x, x, ϵ(h(x))) and the composi-
tion µ∗((x, y, a), (y, z, b)) = (x, z, ab). The inversion is defined by i∗(x, y, a) =
(y, x, i(a)). We denote it by (h∗(G), X).
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Let h∗(G) be induced topological groupoid of G under h : X → G0. Then
there exists a topological groupoid homomorphism (h∗G, h) : (h∗(G), X) →
(G,G0) defined by h∗(x, y, a) = a. It is called the canonical homomorphism of
an induced topological groupoid.

h∗(G)
h∗
G //

��

G

��
X

h
// G0

Let us give the universal property of an induced topological groupoid homo-
morphism. The proof of the following theorem is a special case of the Corollary
6. given by Brown and Hardy in [4].

Theorem 3.2. Let (G,G0) be a topological groupoid and let (h∗(G), X) be
induced topological groupoid for it, where h : X → G0 is a continuous map.
Then the homomorphism (h∗G, h) : (h

∗(G), X) → (G,G0) satisfies the following
property:

for every topological groupoid homomorphism (g, h) : (G
′

, X) → (G,G0)

there exists a unique X − homomorphism g
′
: G

′

→ h∗(G) of topolog-
ical groupoids such that h∗G ◦ g′

= g.

Let (G,X) and (G
′

, X) be two topological groupoids. Then we can give
the relation between the induced topological groupoids of them as follows:

Let f : (G,X) → (G
′

, X) be a topological groupoid homomorphism over
the same base X. Let us consider a continuous map h : Y → X of topological

spaces. Then there is a homomorphism h∗(f) : (h∗(G), Y ) → (h∗(G
′

), Y ) of

the induced topological groupoids associated to (G,X) and (G
′

, X), which is
defined by for all (y1, y2, a) ∈ h∗(G)

h∗(f)(y1, y2, a) = (y1, y2, f(a)) ∈ h∗(G
′

).

It is easy to show that h∗(f) is well-defined and h∗(f) is a topological groupoid
homomorphism over the same base Y .

It is clear that f∗ is a functor. Namely, h∗(idG) = idh∗(G) and if g :

(G
′

, X) → (G
′′

, X) is another topological groupoid homomorphism over X,

then h∗(g ◦ f) : h∗(G) → h∗(G
′′

), defined for every (y1, y2, a) ∈ h∗(G) by

h∗(g ◦ f)(y1, y2, a) = (y1, y2, (g ◦ f)(a))

is a topological groupoid homomorphism over Y such that h∗(g ◦ f) = h∗(g) ◦
h∗(f).

Now let us state these facts in the following proposition.

Proposition 3.3. Let h : Y → X be a continuous map of topological spaces.
Then there exists a functor h∗ from the category G(X) of topological groupoids
over same base X to the category G(Y ) of induced topological groupoids of them
over same base Y .
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Proposition 3.4. Let h : Z → Y and k : Y → X be two continuous maps of
topological spaces and let (G,X) be a topological groupoid. Then the topological
groupoids h∗(k∗(G)) and (k ◦ h)∗(G) are isomorphic.

Proof. Let us first constitute the induced topological groupoids k∗(G), h∗(k∗(G))
and (k ◦ h)∗(G). Clearly, we have

k∗(G) = {(y1, y2, a) ∈ Y × Y ×G | k(y1) = α(a), k(y2) = β(a)} ,

h∗(k∗(G)) = {(z1, z2, (y1, y2, a)) ∈ Z × Z × k∗(G) | h(z1) = y1, h(z2) = y2} ,

(k◦h)∗(G) = {(z1, z2, a) ∈ Z×Z×G | (k ◦ h)(z1) = α(a), (k ◦ h)(z2) = β(a)} .

It is enough to prove that there exists an isomorphism between the induced
topological groupoids h∗(k∗(G)) and (k◦h)∗(G). Now let us consider the maps

φ : (k ◦ h)∗(G) → h∗(k∗(G))

(z1, z2, a) 7→ φ(z1, z2, a) = (z1, z2, (h(z1), h(z2), a))

and

ψ : h∗(k∗(G)) → (k ◦ h)∗(G)
(z1, z2, (y1, y2, a)) 7→ ψ(z1, z2, (y1, y2, a)) = (z1, z2, a).

It is easy to see that φ and ψ are topological groupoid homomorphisms over
base Z such that ψ ◦ φ = id(k◦h)∗(G) and φ ◦ ψ = idh∗(k∗(G)). Therefore φ is
an isomorphism of topological groupoids over the base Z .

Proposition 3.5. Let (G,X) be a topological groupoid. Then the topological
groupoids id∗X(G) and G are X − isomorphic.

Proof. Firstly, let us write precisely the induced topological groupoid id∗X(G).
id∗X(G) = {(x1, x2, a) ∈ X ×X ×G | α(a) = x1, β(a) = x2}.

It is clear that

φ : G→ id∗X(G)

a 7→ φ(a) = (α(a), β(a), a)

is an X − isomorphism.

Proposition 3.6. Let (G,X) be a transitive topological groupoid and let f :
Y → X be a continuous map of topological spaces. Then the induced topological
groupoid f∗(G) is also a transitive topological groupoid over Y .

Proof. Since (G,X) is transitive, the continuous map α × β : G → X ×
X, (α× β) (a) = (α(a), β(a)) is surjective. Hence there exists an arrow a ∈ G
such that (α× β) (a) = (f(y1), f(y2)) whenever (y1, y2) ∈ Y × Y , i.e. α(a) =
f(y1) and β(a) = f(y2). Thus (y1, y2, a) ∈ f∗(G) and (α∗ × β∗) (y1, y2, a) =
(α∗(y1, y2, a), β

∗(y1, y2, a)) = (y1, y2). That is, α∗ × β∗ : f∗(G) → Y × Y is
surjective. Further, the map α∗ × β∗ is continuous, because α∗ and β∗ are
projections onto the first and second factors, respectively. This means that
f∗(G) is a transitive topological groupoid.
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4. Special Homomorphisms of Topological Groupoids

In this section we obtain some characterizations which deal with the special
homomorphisms of the topological groupoids. Also we present the relation
between the induced topological groupoids and these special homomorphisms.

Let us begin this section with the following definition.

Definition 4.1. Let (f, f0) : (G,G0) → (G
′

, G
′

0) be topological groupoid ho-
momorphism. Then
(i) If f0 is injective (resp., surjective, bijective), then (f, f0) is called base in-
jective (resp., surjective, bijective).

(ii) If fx : Gx → G
′

f0(x)
is injective (resp., surjective, bijective), for all x ∈ G0,

then (f, f0) is called fibrewise injective (resp., surjective, bijective).

(iii) If fyx : G(x, y) → G
′

(f0(x), f0(y)) is injective (resp.,surjective,bijective),
for all x, y ∈ G0, then (f, f0) is called piecewise injective (resp.,surjective ,bi-
jective).

Definition 4.2. [10], p.19) Let (f, f0) : (G,G0) → (G
′

, G
′

0) be a topological
groupoid homomorphism. Then (f, f0) is called a pullback if for every topolog-

ical groupoid homomorphism (g, g0 = f0) : (G1, G0) → (G
′

, G
′

0) there exists a
unique topological groupoid homomorphism g : (G1, G0) → (G,G0) such that
f ◦ g = g.

This definition means that every topological groupoid homomorphism

(g, g0 = f0) : (G1, G0) → (G
′

, G
′

0) can be factored uniquely into G1
τ→ G

φ→ G
′

so that the diagram
G1

ḡ

��

g

  A
AA

AA
AA

A

G
f

// G
′

is commutative.
The following proposition gives the relation between the induced topological

groupoid and the notion of pullback.

Proposition 4.3. ([10], p.19) The canonical homomorphism (h∗G, h) of the
induced topological groupoid h∗(G) of G by the continuous map h : X → G0 is
a pullback.

Proof. The proof is a direct consequent of the Theorem 3.2.

Proposition 4.4. (i) The canonical homomorphism (h∗G, h) of the induced
topological groupoid h∗(G) of G by the continuous map h : X → G0 is piecewise
bijective.

(ii) If (f, f0) : (G,G0) → (G
′

, G
′

0) is base surjective and piecewise surjective
then f is surjective.

(iii) A topological groupoid homomorphism (f, f0) : (G,G0) → (G
′

, G
′

0) has
discrete kernel iff Ker fxx = {ϵ(x)}, for all x ∈ G0.
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Proof. (i) To see that (h∗G, h) is piecewise bijective, we will prove that (h∗G)
y
x :

h∗(G)(x, y) → G(h(x), h(y)) is bijective for all x, y ∈ G0. For injectivity, let us
take (x1, y1, a1), (x2, y2, a2) ∈ h∗(G)(x, y) so that

(h∗G)
y
x (x1, y1, a1) = (h∗G)

y
x (x2, y2, a2) ⇒

 α∗(x1, y1, a1) = α∗(x2, y2, a2) = x
β∗(x1, y1, a1) = β∗(x2, y2, a2) = y

a1 = a2.

Hence (x1, y1, a1) = (x2, y2, a2). That is, (h∗G)
y
x is injective. For surjectivity,

let b ∈ G(h(x), h(y)). Then α(b) = h(x) and β(b) = h(y), and hence (x, y, b) ∈
h∗(G) and (x, y, b) ∈ h∗(G)(x, y). Since the definition of h∗G, h

∗
G(x, y, b) = b .

Thus (h∗G)
y
x is surjective.

(ii) Let b
′ ∈ G

′

. We suppose that α
′
(b

′
) = x

′
, β

′
(b

′
) = y

′
. Since (f, f0) is

base surjective, f0 is surjective. Hence there exist objects x, y ∈ G0 such that

x
′
= f0(x) and y

′
= f0(y). Since b

′ ∈ (G
′

)y
′

x′ and (f, f0) is piecewise surjective,

there exists a ∈ Gy
x such that fyx (a) = b

′
. Thus f is surjective, because

f(a) = b
′
.

(iii) The proof is straightforward.

Theorem 4.5. Let (f, f0) : (G,G0) → (G
′

, G
′

0) be a topological groupoid ho-
momorphism. Then, we have
(i) if (f, f0) is a pullback, then it is piecewise bijective.
(ii) f is injective if and only if it is base injective and piecewise injective.
(iii) (f, f0) is fibrewise injective if and only if it has discrete kernel.

Proof. (i) Let (f, f0) be a pullback and f∗0 (G
′

) the induced topological groupoid

of G
′

by f0 : G0 → G
′

0. By Proposition 4.3, (f0)
∗
G

′ is a pullback. Hence (f, f0)

can be factored uniquely into f = (f0)
∗
G

′ ◦ g, where g : G → f∗0 (G
′

) is a

topological groupoid homomorphism over G0.
Furthermore, since (f, f0) is a pullback, the topological groupoid homomor-

phism (f0)
∗
G

′ : f∗0 (G
′

) → G
′

can be factored uniquely into (f0)
∗
G

′ = f ◦ −
g ,

where
−
g : f∗0 (G

′

) → G is a topological groupoid homomorphism over G0.

From f = (f0)
∗
G

′ ◦g and (f0)
∗
G

′ = f ◦−g , we obtain that f = f ◦(−g◦g) = f ◦Id

and (f0)
∗
G

′ = (f0)
∗
G

′ ◦ (g ◦
−
g) = (f0)

∗
G

′ ◦ Id. Since f and (f0)
∗
G

′ are pullbacks,
−
g ◦ g = Id, and g ◦ −

g = Id. Hence g : G → f∗0 (G
′

) is an isomorphism
of topological groupoids such that f = (f0)

∗
G

′ ◦ g. Since (f0)
∗
G

′ is piecewise

bijective and g is bijective, we obtain that f is piecewise bijective.
(ii) We assume that f is injective. Then f ◦ ϵ is injective, because the object
map ϵ is injective. Further, since f ◦ϵ = ϵ

′ ◦f0, ϵ
′ ◦f0 is also injective. Therefore

f0 is injective.
Conversely, let f0 and fyx be injective, for all x, y ∈ G0. We will prove that

f is injective. Let us take a, b ∈ G such that f(a) = f(b). Hence,
f(a) = f(b) =⇒ (α

′ ◦ f)(a) = (α
′ ◦ f)(b) and (β

′ ◦ f)(a) = (β
′ ◦ f)(b)

=⇒ (f0 ◦ α)(a) = (f0 ◦ α)(b) and (f0 ◦ β)(a) = (f0 ◦ β)(b)



The homomorphisms of topological groupoids 139

=⇒ α(a) = α(b) and β(a) = β(b).
If we denote α(a) = x and β(b) = y, then a, b ∈ Gy

x and fyx (a) = fyx (b).
Since fyx is injective, we obtain a = b. Therefore f is injective.

(iii) Let (f, f0) be fibrewise injective. Hence fx : Gx → G
′

f0(x)
is injective.

For the proof we need only show that Ker f = ϵ(G0). It is obvious that
ϵ(G0) ⊆ Ker f . Therefore, it is enough to prove only that Ker f ⊆ ϵ(G0).
For this, let us take any a ∈ Ker f . Let us denote α(a), f0(x) by x and x

′
,

respectively. If f(a) ∈ ϵ
′
(G

′

0), then f(a) = ϵ
′
(x

′
) with x

′ ∈ G
′

0. Further

f(ϵ(x)) = ϵ
′
(f0(x)) = ϵ

′
(x

′
) =⇒ f(a) = f(ϵ(x))

=⇒ fx(a) = fx(ϵ(x)) , fx is injective

=⇒ a = ϵ(x).

Hence a ∈ ϵ(G0). This means that Ker f ⊆ ϵ(G0). Thus Ker f = ϵ(G0).
Consequently, Ker f is discrete.

Conversely, assume that f has discrete kernel. Let us take a, b ∈ Gx such
that fx(a) = fx(b). Then α(a) = α(b) = x and f(a) = f(b). Hence we obtain

f(a)(f(b))−1 = ϵ
′
(x

′
) with x

′ ∈ G
′

0. Then

f(ab−1) = ϵ
′
(x

′
) =⇒ ab−1 ∈ Ker f = ϵ(G0)

=⇒ ab−1 = ϵ(x) , x ∈ G0

=⇒ a = ϵ(x)b

=⇒ ϵ(x)a = ϵ(x)ϵ(x)b

=⇒ ϵ(x)a = ϵ(x)b

=⇒ a = b.

Therefore (f, f0) is fibrewise injective.

Proposition 4.6. Let (f, f0) : (G,G0) → (G
′

, G
′

0) be a fibrewise surjective
homomorphism of topological groupoids. Then (f, f0) is a fibrewise bijective
homomorphism if and only if Ker f is discrete.

Proof. The proof is a direct consequence of Theorem 4.5(iii).

Theorem 4.7. Let (f, f0) : (G,G0) → (G
′

, G
′

0) and (g, g0) : (G
′

, G
′

0) →
(G

′′

, G
′′

0 ) be topological groupoid homomorphisms. Then
(i) if f, g are fibrewise surjective (resp.,bijective) homomorphisms, then so is
g ◦ f ,
(ii) if g ◦ f and f are fibrewise surjective homomorphisms and f0 : G0 → G

′

0 is
surjective, then g is a fibrewise surjective homomorphism,
(iii) if g ◦ f and g are fibrewise bijective homomorphisms, then so is f .

Proof. (i) The proof follows from a direct computation.

(ii) We need show that gx′ : St
G

′ (x
′
) → St

G
′′ (g0x

′
), x

′ ∈ G
′

0 is surjective. If

we take any b
′′ ∈ St

G
′′ (g0x

′
), then (α

′′
)(b

′′
) = g0(x

′
) with x

′ ∈ G
′

0. There
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exists x ∈ G0 such that f0(x) = x
′
, because f0 is surjective. Then (g ◦ f)x :

StG(x) → St
G

′′ (g ◦ f)0(x) is surjective. Hence (α
′′
)(b

′′
) = (g0 ◦ f0)(x) and

therefore there exists some a ∈ StG(x) such that α(a) = x and (g ◦ f)(a) = b
′′
.

If we say that a
′
= f(a), a

′ ∈ St
G

′ x
′
since

α
′
(a

′
) = α

′
(f(a)) = f0(α(a)) = f0(x) = x

′
.

Furthermore, from (g ◦ f)(a) = b
′′
, we obtain gx′ (a

′
) = b

′′
. Thus gx′ is surjec-

tive. So g is a fibrewise surjective homomorphism.
(iii) We show that fx is bijective for all x ∈ StGx. For any a, b ∈ StG(x), we
suppose that fx(a) = fx(b). Then

f(a) = f(b) =⇒ (g ◦ f)(a) = (g ◦ f)(b)
=⇒ (g ◦ f)x(a) = (g ◦ f)x(b), (g ◦ f)x is injective

=⇒ a = b.

Hence f is fibrewise injective.
It is clear that (g ◦ f)x = gf0(x) ◦ fx and (g ◦ f)0 = g0 ◦ f0. Let us take any

b
′ ∈ St

G
′′ (y), where y = f0(x). Then

gy(b
′
) ∈ St

G
′′ (g0(y)) =⇒ gf0(x)(b

′
) ∈ St

G
′′ (g0 ◦ f0)(x).

Because of the surjectivity of (g ◦ f)x, for gf0(x)(b
′
) ∈ St

G
′′ (g0 ◦ f0)(x) there

exists an arrow a ∈ StG(x) such that (g ◦ f)(a) = gf0(x)(b
′
). It follows that

gf0(x)(fx(a)) = gf0(x)(b
′
). We obtain fx(a) = b

′
because of the injectivity of

gf0(x). Hence fx is surjective. Consequently, f is a fibrewise bijective homo-
morphism. This completes the proof.
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