ON UPPER AND LOWER CONTRA- ω-CONTINUOUS MULTIFUNCTIONS

Carlos Carpintero ${ }^{\text {DI }}$, Neelamegarajan Rajesn ${ }^{\boxtimes]}$, Ennis Rosas ${ }^{[3]}$, Saranya Saranyasri ${ }^{[1]}$

Abstract

In this paper, we define contra- ω-continuous multifunctions between topological spaces and obtain some characterizations and some basic properties of such multifunctions.

AMS Mathematics Subject Classification (2010): 54C60, 54C08
Key words and phrases: ω-open set, contra- ω-continuous multifunctions.

1. Introduction

Various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and a good many of them have been extended to the setting of multifunction [[3], [$[3],[4],[5],[6]$. A. Al-Omari et. al. introduced the concept of contra- ω-continuous functions between topological spaces. In this paper, we define contra- ω-continuous multifunctions and obtain some characterizations and some basic properties of such multifunctions.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces in which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. For a subset A of $(X, \tau), \mathrm{Cl}(A)$ and $\operatorname{Int}(A)$ denote the closure of A with respect to τ and the interior of A with respect to τ, respectively. Recently, as generalization of closed sets, the notion of ω-closed sets were introduced and studied by Hdeib [[] . A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω-closed [$[8]$ if it contains all its condensation points. The complement of an ω-closed set is said to be ω-open. It is well known that a subset W of a space (X, τ) is ω-open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and $U \backslash W$ is countable. The

[^0]family of all ω-open subsets of a topological space (X, τ), denoted by $\omega O(X)$, forms a topology on X finer than τ. The family of all ω-closed subsets of a topological space (X, τ) is denoted by $\omega C(X)$. The ω-closure and the ω interior, that can be defined in the same way as $\mathrm{Cl}(A)$ and $\operatorname{Int}(A)$, respectively, will be denoted by $\omega \mathrm{Cl}(A)$ and $\omega \operatorname{Int}(A)$, respectively. We set $\omega O(X, x)=$ $\{A: A \in \omega O(X)$ and $x \in A\}$ and $\omega C(X, x)=\{A: A \in \omega C(X)$ and $x \in A\}$. By a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, following [3], we shall denote the upper and lower inverse of a set B of Y by $F^{+}(B)$ and $F^{-}(B)$, respectively, that is, $F^{+}(B)=\{x \in X: F(x) \subset B\}$ and $F^{-}(B)=\{x \in X: F(x) \cap B \neq \emptyset\}$. In particular, $F^{-}(Y)=\{x \in X: y \in F(x)\}$ for each point $y \in Y$ and for each $A \subset X, F(A)=\cup_{x \in A} F(x)$. Then F is said to be surjection if $F(X)=Y$ and injection if $x \neq y$ implies $F(x) \cap F(y)=\emptyset$.
Definition 2.1. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be [1]3]:
(i) upper ω-continuous if for each point $x \in X$ and each open set V containing $F(x)$, there exists $U \in \omega O(X, x)$ such that $F(U) \subset V$;
(ii) lower ω-continuous if for each point $x \in X$ and each open set V such that $F(x) \cap V \neq \emptyset$, there exists $U \in \omega O(X, x)$ such that $U \subset F^{-}(V)$.
Definition 2.2. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be [Z] contra- ω continuous if for each point $x \in X$ and each open set V containing $f(x)$, there exists $U \in \omega O(X, x)$ such that $f(U) \subset V$.

3. On upper and lower contra- ω-continuous multifunctions

Definition 3.1. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be:
(i) upper contra- ω-continuous if for each point $x \in X$ and each closed set V containing $F(x)$, there exists $U \in \omega O(X, x)$ such that $F(U) \subset V$;
(ii) lower contra- ω-continuous if for each point $x \in X$ and each closed set V such that $F(x) \cap V \neq \emptyset$, there exists $U \in \omega O(X, x)$ such that $U \subset F^{-}(V)$.
The following examples show that the concepts of upper ω-continuity (resp. lower ω-continuity) and upper contra- ω-continuity (resp. lower contra- ω-continuity) are independent of each other.
Example 3.2. Let $X=\Re$ with the topology $\tau=\{\emptyset, \Re, \Re-Q\}$. Define a multifunction $F:(\Re, \tau) \rightarrow(\Re, \tau)$ as follows:

$$
F(x)=\left\{\begin{array}{cc}
Q & \text { if } x \in \Re-Q \\
\Re-Q & \text { if } x \in Q
\end{array}\right.
$$

Then F is upper contra- ω-continuous but is not upper ω-continuous.
Example 3.3. Let $X=\Re$ with the topology $\tau=\{\emptyset, \Re, \Re-Q\}$. Define a multifunction $F:(\Re, \tau) \rightarrow(\Re, \tau)$ as follows:

$$
F(x)=\left\{\begin{array}{cc}
Q & \text { if } x \in Q \\
\Re-Q & \text { if } x \in \Re-Q
\end{array}\right.
$$

Then F is upper ω-continuous but is not upper contra- ω-continuous.

In a similar form, we can find examples in order to show that lower contra-ω-continuity and lower ω-continuity are independent of each other.

Theorem 3.4. The following statements are equivalent for a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$:
(i) F is upper contra- ω-continuous;
(ii) $F^{+}(V) \in \omega O(X)$ for every closed subset V of Y;
(iii) $F^{-}(V) \in \omega C(X)$ for every open subset V of Y;
(iv) for each $x \in X$ and each closed set K containing $F(x)$, there exists $U \in \omega O(X, x)$ such that if $y \in U$, then $F(y) \subset K$.

Proof. $(i) \Leftrightarrow(i i)$: Let V be a closed subset in Y and $x \in F^{+}(V)$. Since F is upper contra- ω-continuous, there exists $U \in \omega O(X, x)$ such that $F(U) \subset V$. Hence, $F^{+}(V)$ is ω-open in X. The converse is similar.
$(i i) \Leftrightarrow(i i i)$: It follows from the fact that $F^{+}(Y \backslash V)=X \backslash F^{-}(V)$ for every subset V of Y.
$($ iii $) \Leftrightarrow(i v)$: This is obvious.
Theorem 3.5. The following statements are equivalent for a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$:
(i) F is lower contra- ω-continuous;
(ii) $F^{-}(V) \in \omega O(X)$ for every closed subset V of Y;
(iii) $F^{+}(K) \in \omega C(X)$ for every open subset K of Y;
(iv) for each $x \in X$ and each closed set K such that $F(x) \cap K \neq \emptyset$, there exists $U \in \omega O(X, x)$ such that if $y \in U$, then $F(y) \subset K \neq \emptyset$.

Proof. The proof is similar to that of Theorem [3.4.
Corollary 3.6. [匀] The following statements are equivalent for a function f : $X \rightarrow Y$:
(i) f is contra- ω-continuous;
(ii) $f^{-1}(V) \in \omega O(X)$ for every closed subset V of Y;
(iii) $f^{-1}(U) \in \omega C(X)$ for every open subset U of Y;
(iv) for each $x \in X$ and each closed set K containing $f(x)$, there exists $U \in$ $\omega O(X, x)$ such that $f(U) \subset K$.

Definition 3.7. A topological space (X, τ) is said to be semi-regular [IT] if for each open set U of X and for each point $x \in U$, there exists a regular open set V such that $x \in V \subset U$.

Definition 3.8. [[12] Let (X, τ) be a topological space and A a subset of X and x a point of X. Then
(i) x is called δ-cluster point of A if $A \cap \operatorname{Int}(\mathrm{Cl}(U)) \neq \emptyset$, for each open set U containing x.
(ii) the family of all δ-cluster points of A is called the δ-closure of A and is denoted by $\mathrm{Cl}_{\delta}(A)$.
(iii) A is said to be δ-closed if $\mathrm{Cl}_{\delta}(A)=A$. The complement of a δ-closed set is said to be a δ-open set.

Theorem 3.9. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, where Y is semiregular, the following are equivalent:
(i) F is upper contra- ω-continuous;
(ii) $F^{+}\left(\mathrm{Cl}_{\delta}(B)\right) \in \omega O(X)$ for every subset B of Y;
(iii) $F^{+}(K) \in \omega O(X)$ for every δ-closed subset K of Y;
(iv) $F^{-}(V) \in \omega C(X)$ for every δ-open subset V of Y.

Proof. $(i) \Rightarrow(i i)$: Let B be any subset of Y. Then $\mathrm{Cl}_{\delta}(B)$ is closed and by Theorem [3.4, $F^{+}\left(\mathrm{Cl}_{\delta}(B)\right) \in \omega O(X) .(i i) \Rightarrow(i i i)$: Let K be a δ-closed set of Y. Then $\mathrm{Cl}_{\delta}(K)=K$. By $(i i), F^{+}(K)$ is ω-open. $(i i i) \Rightarrow(i v)$: Let V be a δ-open set of Y. Then $Y \backslash V$ is δ-closed. By $(i i i), F^{+}(Y \backslash V)=X \backslash F^{-}(V)$ is ω-open. Hence, $F^{-}(V)$ is ω-closed. $(i v) \Rightarrow(i)$: Let V be any open set of Y. Since Y is semi-regular, V is δ-open. By $(i v), F^{-}(V)$ is ω-closed and by Theorem [.4, F is upper contra- ω-continuous.

Theorem 3.10. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, where Y is semiregular, the following are equivalent:
(i) F is lower contra- ω-continuous;
(ii) $F^{-}\left(\mathrm{Cl}_{\delta}(B)\right) \in \omega O(X)$ for every subset B of Y;
(iii) $F^{-}(K) \in \omega O(X)$ for every δ-closed subset K of Y;
(iv) $F^{+}(V) \in \omega C(X)$ for every δ-open subset V of Y.

Proof. The proof is similar to that of Theorem [..9.
Remark 3.11. By Theorems 3.9 and 3.10, we obtain the following new characterization for contra- ω-continuous functions.

Corollary 3.12. For a function $f: X \rightarrow Y$, where Y is semi-regular, the following are equivalent:
(i) f is contra- ω-continuous;
(ii) $f^{-1}\left(\mathrm{Cl}_{\delta}(B)\right) \in \omega O(X)$ for every subset B of Y;
(iii) $f^{-1}(K) \in \omega O(X)$ for every δ-closed subset K of Y;
(iv) $f^{-1}(V) \in \omega C(X)$ for every δ-open subset V of Y.

Definition 3.13. A subset K of a space X is said to be strongly S-closed [7] (resp. ω-compact [2$]$) relative to X if every cover of K by closed (resp. ω-open) sets of X has a finite subcover. A space X is said to be strongly S-closed (resp. ω-compact) if X is strongly S-closed (resp. ω-compact) relative to X.

Theorem 3.14. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be an upper contra- ω-continuous surjective multifunction and $F(x)$ is strongly S-closed relative to Y for each $x \in X$. If A is a ω-compact relative to X, then $F(A)$ is strongly S-closed relative to Y.

Proof. Let $\left\{V_{i}: i \in \Delta\right\}$ be any cover of $F(A)$ by closed sets of Y. For each $x \in A$, there exists a finite subset $\Delta(x)$ of Δ such that $F(x) \subset \cup\left\{V_{i}: i \in\right.$ $\Delta(x)\}$. Put $V(x)=\cup\left\{V_{i}: i \in \Delta(x)\right\}$. Then $F(x) \subset V(x)$ and there exists $U(x) \in \omega O(X, x)$ such that $F(U(x)) \subset V(x)$. Since $\{U(x): x \in A\}$ is a cover of A by ω-open sets in X, there exists a finite number of points of A, say, $x_{1}, x_{2}, \ldots x_{n}$ such that $A \subset \cup\left\{U\left(x_{i}\right): 1=1,2, \ldots . n\right\}$. Therefore, we obtain $F(A) \subset F\left(\bigcup_{i=1}^{n} U\left(x_{i}\right)\right) \subset \bigcup_{i=1}^{n} F\left(U\left(x_{i}\right)\right) \subset \bigcup_{i=1}^{n} V\left(x_{i}\right) \subset \bigcup_{i=1}^{n} \bigcup_{i=\Delta\left(x_{i}\right)} V_{i}$. This shows that $F(A)$ is strongly S-closed relative to Y.

Corollary 3.15. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be an upper contra- ω-continuous surjective multifunction and $F(x)$ is ω-compact relative to Y for each $x \in X$. If X is ω-compact, then Y is strongly S-closed.

Corollary 3.16. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra- ω-continuous surjective and A is ω-compact relative to X, then $f(A)$ is strongly S-closed relative to Y.

Lemma 3.17. [1] Let A and B be subsets of a topological space (X, τ).
(i) If $A \in \omega O(X)$ and $B \in \tau$, then $A \cap B \in \omega O(B)$;
(ii) If $A \in \omega O(B)$ and $B \in \omega O(X)$, then $A \in \omega O(X)$.

Theorem 3.18. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be a multifunction and U an open subset of X. If F is an upper contra- ω-continuous (resp. lower contra- ω continuous), then $F_{\left.\right|_{U}}: U \rightarrow Y$ is an upper contra- ω-continuous (resp. lower contra- ω-continuous) multifunction.

Proof. Let V be any closed set of Y. Let $x \in U$ and $x \in F_{\left.\right|_{U}}^{-}(V)$. Since F is lower contra- ω-continuous multifunction, there exists a ω-open set G containing x such that $G \subset F^{-}(V)$. Then $x \in G \cap U \in \omega O(A)$ and $G \cap U \subset F_{\left.\right|_{U}}^{-}(V)$. This shows that $F_{\left.\right|_{U}}$ is a lower contra- ω-continuous. The proof of the upper contra- ω-continuous of $F_{\left.\right|_{U}}$ is similar.

Corollary 3.19. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is contra- ω-continuous and $U \in \tau$, then $f_{\mid U}: U \rightarrow Y$ is contra- ω-continuous.

Theorem 3.20. Let $\left\{U_{i}: i \in \Delta\right\}$ be an open cover of a topological space X. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is upper contra- ω-continuous if and only if the restriction $F_{\mid U_{i}}: U_{i} \rightarrow Y$ is upper contra- ω-continuous for each $i \in \Delta$.

Proof. Suppose that F is upper contra- ω-continuous. Let $i \in \Delta$ and $x \in U_{i}$ and V be a closed set of Y containing $F_{\mid U_{i}}(x)$. Since F is upper contra- ω-continuous and $F(x)=F_{\mid U_{i}}(x)$, there exists $G \in \omega O(X, x)$ such that $F(G) \subset V$. Set $U=G \cap U_{i}$, then $x \in U \in \omega O\left(U_{i}, x\right)$ and $F_{\mid U_{i}}(U)=F(U) \subset V$. Therefore, $F_{\mid U_{i}}$ is upper contra- ω-continuous. Conversely, let $x \in X$ and $V \in \omega O(Y)$ containing $F(x)$. There exists $i \in \Delta$ such that $x \in U_{i}$. Since $F_{\mid U_{i}}$ is upper contra- ω-continuous and $F(x)=F_{\mid U_{i}}(x)$, there exists $U \in \omega O\left(U_{i}, x\right)$ such that $F_{\mid U_{i}}(U) \subset V$. Then we have $U \in \omega O(X, x)$ and $F(U) \subset V$. Therefore, F is upper contra- ω-continuous.

Theorem 3.21. Let X and X_{j} be topological spaces for $i \in I$. If a multifunction $F: X \rightarrow \prod_{i \in I} X_{i}$ is an upper (lower) contra- ω-continuous multifunction, then $P_{i} \circ F$ is an upper (lower) contra- ω-continuous multifunction for each $i \in I$, where $P_{i}: \prod_{i \in I} X_{i} \rightarrow X_{i}$ is the projection for each $i \in I$.

Proof. Let H_{i} be a closed subset of X_{j}. We have $\left(P_{i} \circ F\right)^{+}\left(H_{j}\right)=F^{+}\left(P_{j}^{+}\left(H_{j}\right)\right)=$ $F^{+}\left(H_{j} \times \prod_{i \neq j} X_{i}\right)$. Since F an upper contra- ω-continuous multifunction, $F^{+}\left(H_{j} \times\right.$ $\prod_{i \neq j} X_{i}$) is ω-open in X. Hence, $P_{i} \circ F$ is an upper (lower) contra- ω-continuous.

Corollary 3.22. Let X and X_{i} be topological spaces for $i \in I$. If a function $F: X \rightarrow \prod_{i \in I} X_{i}$ is a contra- ω-continuous, then $P_{i} \circ F$ is a contra- ω-continuous function for each $i \in I$, where $P_{i}: \prod_{i \in I} X_{i} \rightarrow X_{i}$ is the projection for each $i \in I$.

Definition 3.23. A topological space X is said to be:
(i) ω-normal [9$]$ if each pair of nonempty disjoint closed sets can be separated by disjoint ω-open sets.
(ii) ultranormal [IT] if each pair of nonempty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 3.24. If $F:(X, \tau) \rightarrow(Y, \sigma)$ is an upper contra- ω-continuous punctually closed multifunction and Y is ultranormal, then X is ω-normal.

Proof. The proof follows from the definitions.
Corollary 3.25. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a contra- ω-continuous closed multifunction and Y is ultranormal, then X is ω-normal.

Definition 3.26. [2] Let A be a subset of a space X. The ω-frontier of A denoted by $\omega \operatorname{Fr}(A)$, is defined as follows: $\omega \operatorname{Fr}(A)=\omega \mathrm{Cl}(A) \cap \omega \mathrm{Cl}(X \backslash A)$.

Theorem 3.27. The set of points x of X at which a multifunction $F:(X, \tau) \rightarrow$ (Y, σ) is not upper contra- ω-continuous (resp. upper contra- ω-continuous) is identical with the union of the ω-frontiers of the upper (resp. lower) inverse images of closed sets containing (resp. meeting) $F(x)$.

Proof. Let x be a point of X at which F is not upper contra- ω-continuous. Then there exists a closed set V of Y containing $F(x)$ such that $U \cap\left(X \backslash F^{+}(V)\right) \neq \emptyset$ for each $U \in \omega O(X, x)$. Then $x \in \omega \mathrm{Cl}\left(X \backslash F^{+}(V)\right)$. Since $x \in F^{+}(V)$, we have $x \in \omega \mathrm{Cl}\left(F^{+}(Y)\right.$ and hence $x \in \omega \operatorname{Fr}\left(F^{+}(A)\right)$. Conversely, let V be any closed set of Y containing $F(x)$ and $x \in \omega F r\left(F^{+}(V)\right)$. Now, assume that F is upper contra- ω-continuous at x, then there exists $U \in \omega O(X, x)$ such that $F(U) \subset V$. Therefore, we obtain $x \in U \subset \omega \operatorname{Int}\left(F^{+}(V)\right.$. This contradicts that $x \in \omega F r\left(F^{+}(V)\right)$. Thus, F is not upper contra- ω-continuous. The proof of the second case is similar.

Corollary 3.28. [包] The set of all points x of X at which $f:(X, \tau) \rightarrow(Y, \sigma)$ is not contra- ω-continuous is identical with the union of the ω-frontiers of the inverse images of closed sets of Y containing $f(x)$.

Definition 3.29. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to have a contra ω-closed graph if for each pair $(x, y) \in(X \times Y) \backslash G(F)$ there exist $U \in \omega O(X, x)$ and a closed set V of Y containing y such that $(U \times V) \cap G(F)=\emptyset$.

Lemma 3.30. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following holds:
(i) $G_{F}^{+}(A \times B)=A \cap F^{+}(B)$;
(ii) $G_{F}^{-}(A \times B)=A \cap F^{-}(B)$
for any subset A of X and B of Y.
Theorem 3.31. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be an u. ω-c. multifunction from a space X into a T_{2} space Y. If $F(x)$ is α-paracompact for each $x \in X$, then $G(F)$ is ω-closed.

Proof. Suppose that $\left(x_{0}, y_{0}\right) \notin G(F)$. Then $y_{0} \notin F\left(x_{0}\right)$. Since Y is a T_{2} space, for each $y \in F\left(x_{0}\right)$ there exist disjoint open sets $V(y)$ and $W(y)$ containing y and y_{0}, respectively. The family $\left\{V(y): y \in F\left(x_{0}\right)\right\}$ is an open cover of $F\left(x_{0}\right)$. Thus, by α-paracompactness of $F\left(x_{0}\right)$, there is a locally finite open cover $\Delta=\left\{U_{\beta}: \beta \in I\right\}$ which refines $\left\{V(y): y \in F\left(x_{0}\right)\right\}$. Therefore, there exists an open neighborhood W_{0} of y_{0} such that W_{0} intersects only finitely many members $U_{\beta_{1}}, U_{\beta_{2}}, \ldots . . U_{\beta_{n}}$ of Δ. Choose $y_{1}, y_{2}, \ldots . . y_{n}$ in $F\left(x_{0}\right)$ such that $U_{\beta_{i}} \subset V\left(y_{i}\right)$ for each $1 \leq i \leq n$, and set $W=W_{0} \cap\left(\bigcap_{i=1}^{n} W\left(y_{i}\right)\right)$. Then W is an open neighborhood of y_{0} such that $W \cap\left(\cup_{\beta \in I} V_{\beta}\right) \stackrel{i=1}{=} \emptyset$. By the upper ω-continuity of F, there is a $U \in \omega O\left(X, x_{0}\right)$ such that $U \subset F^{+}\left(\cup_{\beta \in I} V_{\beta}\right)$. It follows that $(U \times W) \cap G(F)=\emptyset$. Therefore, $G(F)$ is ω-closed.

Theorem 3.32. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be a multifunction from a space X into a ω-compact space Y. If $G(F)$ is ω-closed, then F is u. ω-c..

Proof. Suppose that F is not $u . \omega-c$. . Then there exists a nonempty closed subset C of Y such that $F^{-}(C)$ is not ω-closed in X. We may assume $F^{-}(C) \neq$ \emptyset. Then there exists a point $x_{0} \in \omega \mathrm{Cl}\left(F^{-}(C)\right) \backslash F^{-}(C)$. Hence for each point $y \in C$, we have $\left(x_{0}, y\right) \notin G(F)$. Since F has a ω-closed graph, there are
ω-open subsets $U(y)$ and $V(y)$ containing x_{0} and y, respectively such that $(U(y) \times V(y)) \cap G(F)=\emptyset$. Then $\{Y \backslash C\} \cup\{V(y): y \in C\}$ is a ω-open cover of Y, and thus it has a subcover $\{Y \backslash C\} \cup\left\{V\left(y_{i}\right): y_{i} \in C, 1 \leq i \leq n\right\}$. Let $U=\bigcap_{i=1}^{n} U\left(y_{i}\right)$ and $V=\bigcup_{i=1}^{n} V\left(y_{i}\right)$. It is easy to verify that $C \subset V$ and $(U \times V) \cap G(F)=\emptyset$. Since U is a ω-neighborhood of $x_{0}, U \cap F^{-}(C) \neq \emptyset$. It follows that $\emptyset \neq(U \times C) \cap G(F) \subset(U \times V) \cap G(F)$. This is a contradiction. Hence the proof is completed.

Corollary 3.33. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be a multifunction into a ω-compact T_{2} space Y such that $F(x)$ is ω-closed for each $x \in X$. Then F is u. ω-c. if and only if it has a ω-closed graph.

Theorem 3.34. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be an u. ω-c. multifunction into a $\omega-T_{2}$ space Y. If $F(x)$ is α-paracompact for each $x \in X$, then $G(F)$ is ω-closed.

Proof. The proof is clear.
Theorem 3.35. Let $F:(X, \tau) \rightarrow(Y, \sigma)$ be a multifunction and X be a connected space. If the graph multifunction of F is upper contra- ω-continuous (resp. lower contra- ω-continuous), then F is upper contra- ω-continuous (resp. lower contra- ω-continuous).

Proof. Let $x \in X$ and V be any open subset of Y containing $F(x)$. Since $X \times V$ is a ω-open set of $X \times Y$ and $G_{F}(x) \subset X \times V$, there exists a ω-open set U containing x such that $G_{F}(U) \subset X \times V$. By Lemma B.30, we have U $\subset G_{F}^{+}(X \times V)=F^{+}(V)$ and $F(U) \subset V$. Thus, F is $u . \omega-c .$. The proof of the $l . \omega-c$. of F can be done using a similar argument.

References

[1] Al-Zoubi, K., Al-Nashef, B., The topology of ω-open subsets. Al-Manarah. 9 (2003), 169-179.
[2] Al-Omari, A., Noorani, M. S. M., Contra- ω-continuous and almost ω-continuous functions. Int. J. Math. Math. Sci. 9 (2007), 169-179.
[3] Banzaru, T., Multifunctions and M-product spaces. Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl. 17(31)(1972), 17-23.
[4] Carpintero, C., Rajesh, N., Rosas, E., Saranyasri, S., Some properties of upper/lower almost ω-continuous multifunctions. Scientific Studies and Research Series Mathematics and Informatics 23 (2) (2013), 35-55.
[5] , C., Rajesh, N., Rosas, E., Saranyasri, S., Properties of faintly ω-continuous functions. Boletin de Matematicas 20(2) (2013), 135-143.
[6] Carpintero, C., Rajesh, N., Rosas, E., Saranyasri, S., On slightly ω-continuous multifunctions. Punjab University Journal of Mathematics. 46 (1) (2014), 51-57.
[7] Dontchev, J., Contra-continuous functions and strongly S-closed spaces. Internat. J. Math. Math. Sci. 19 (1996), 303-310.
[8] Hdeib, H. Z., ω-closed mappings. Revista Colombiana Mat. 16 (1982), 65-78.
[9] Noiri, T., Al-omari, A., Noorani, M. S. M., Slightly ω-continuous functions. Fasc. Math. 41 (2009), 97-106.
[10] Staum, R., The algebra of bounded continuous fuctions into a nonarchimedean field. Pacific J. Math. 50 (1974), 169-185.
[11] Stone, M., Applications of the theory of boolean rings to general topology. Trans. Amer. Math. Soc. 41 (1937), 374-381.
[12] Velicko, N. V., H-closed topological spaces. Amer. Math. Soc. Transl. 78 (1968), 103-118.
[13] Zorlutuna, I., ω-continuous multifunctions. Filomat. 27(1) (2013), 155-162.

Received by the editors November 28, 2013

[^0]: ${ }^{1}$ Department of Mathematics, Universidad De Oriente, Núcleo De Sucre Cumaná, Venezuela and Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia, e-mail: carpintero.carlos@gmail.com
 ${ }^{2}$ Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India, e-mail: nrajesh_topology@yahoo.co.in
 ${ }^{3}$ Department of Mathematics, Universidad De Oriente, Núcleo De Sucre Cumaná, Venezuela and Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia, e-mail: ennisratael@gmail.com
 ${ }^{4}$ Department of Mathematics, M. R. K. Institute of Technology, Kattumannarkoil, Cuddalore -608 301, Tamilnadu, India, e-mail: srisaranya_2010@yahoo.com

