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ON UNIQUENESS FOR A CHARACTERISTIC
CAUCHY PROBLEM

Victor Dévoué1

Abstract. Using our previous studies on the nonlinear characteristic
Cauchy problem for the Wave Equation in canonical form, we focus on
the uniqueness of the generalized solution. We show how uniqueness
may be recovered in the homogeneous case by searching for a solution in
the space of new tempered generalized functions GOM

(
R2

)
based on the

space of slowly increasing smooth functions in which pointwise character-
ization exists. In the same way as Biagioni, we can study the sections on
the closure of open sets like [0, T ]× [0,∞[ or [0,∞[. The uniqueness can
be proved in GOM ([0, T ]× [0,∞[) thanks to an extension of pointwise
characterization of elements in GOM ([0,∞[).
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1. Introduction

Solving characteristic Cauchy problem for partial differential equations can
meet some obstructions. Some existence results have been proved for charac-
teristic linear problems in distributional framework (Y. V. Egorov [25], Y. V.
Egorov and M. A. Shubin [26], L. Hörmander [29]), but uniqueness is still an
open question.

Here we consider the characteristic Cauchy problem formally written

(Pform) :
∂2u

∂x∂y
= F (·, ·, u), u|γ = φ,

∂u

∂y

∣∣∣∣
γ

= ψ,

where the line γ of equation x = 0 is globally characteristic for the Cauchy
problem, u and F are supposed to be smooth, F is a Lipschitz function and φ
and ψ are smooth functions defined in a neighbourhood of γ.

We reformulate it in the framework of generalized functions extending the
ideas developed in [17, 18, 20, 21, 22, 32]. We complete the study of [3] focusing
on uniqueness of the solution. This article extends the studies of [20], [21] and
[3]. The reader will find in [3] the notations and the concepts used in this paper.
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A general reference for the (C, E ,P)-algebras can be found in [30, 31, 32] and
[19].

The characteristic problem is approached by a one-parameter family of clas-
sical smooth problems (Pε) by deforming the characteristic curve into a family
of non-characteristic ones y = fε(x). Then we get a one-parameter family of
classical solutions which we interpret as a generalized function in a convenient
(C, E ,P)-algebra A

(
R2

)
[31]. We formalize this process by associating a well

formulated generalized problem, denoted (Pg). But this solution depends, a
priori, on the choice of de-characterization, namely the choice of (fε)ε. By im-
posing some restrictions on the asymptotical growth of the fε, we have proved
in [3] that the generalized solution depends solely on the class of (fε)ε as a
generalized function, not on the particular representative.

However this generalized solution in A
(
R2

)
fails to be, in general, unique.

We show how uniqueness may be recovered in the homogeneous case [2] by
working in the space of new tempered generalized functions GOM

(
R2

)
based

on the space of slowly increasing smooth functions [16] in which pointwise
characterization exists [36]. But, in that algebra, it is impossible to obtain
uniqueness for nonlinear case.

In recent years there have been a number of linear and nonlinear gener-
alizations of the Gronwall inequality [24], [28]. One of them is the Wendroff
inequality for two independent variables. In 1943 R. Bellman introduced the
fundamental inequality named Gronwall-Bellman’s inequality which is an im-
portant tool in the study of existence, uniqueness, boundedness, stability of
the solutions of some differential equations and some integral equations [8], [1].
Many Wendroff type inequalities plays a vital role in studying some properties
of solutions of differential equations [10], [4], [5]. We establish a inequality of
Wendroff type for our study of the characteristic Cauchy problem.

We remark that, in the same way as Biagioni [9], we can study the sections
under the open sets and even, on the closure of open sets like [0, T ]× [0,∞[ or
[0,∞[. If |F (x, y, u (x, y))| ≤ a (x, y)u (x, y) where a ∈ C0(R2), the uniqueness
can be proved in the algebra GOM

([0, T ]× [0,∞[) thanks to an extension of
pointwise characterization of elements in GOM

([0,∞[) [36] and some estimates
obtained by a inequality of Wendroff type.

The outline of this paper is as follows. Section 2 introduces the generalized
algebras. In section 3 we define a well-formulated generalized problem asso-
ciated to the ill-posed one and we recall some properties of the solutions. In
Section 4, we use the framework GOM (R2) to show the uniqueness in the homo-
geneous case. Next, in Section 5 we introduce the algebra GOM

([0, T ]× [0,∞[)
and we study the uniqueness for the non-homogeneous problem.

2. Algebras of generalized functions

2.1. The (C, E ,P)-algebras

2.1.1. Definitions

We recall the definition of the (C, E ,P)-algebras. Take
(1) Λ a set of indices left-filtering for a given partial order relation ≺.
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(2) A a solid subring of the ring KΛ, (K = R or C), that is A has the
following stability property: whenever (|sλ|)λ ≤ (rλ)λ (i.e. for any λ, |sλ| ≤
rλ) for any pair ((sλ)λ, (rλ)λ) ∈ KΛ × |A|, it follows that (sλ)λ ∈ A, with
|A| = {(|rλ|)λ : (rλ)λ ∈ A} and IA a solid ideal of A with the same property;

(3) E a sheaf of K-topological algebras on a topological space X, such that
for any open set Ω in X, the algebra E(Ω) is endowed with a family P(Ω) =
(pi)i∈I(Ω) of seminorms satisfying

∀i ∈ I(Ω), ∃(j, k, C) ∈ (I(Ω))
2 × R∗

+,∀f, g ∈ E(Ω) : pi(fg) ≤ Cpj(f)pk(g).

Assume that
(4) For any two open subsets Ω1, Ω2 of X such that Ω1 ⊂ Ω2, we have

I(Ω1) ⊂ I(Ω2) and if ρ21 is the restriction operator E(Ω2) → E(Ω1), then, for
each pi ∈ P(Ω1), the seminorm p̃i = pi ◦ ρ21 extends pi to P(Ω2);

(5) For any family F = (Ωh)h∈H of open subsets of X if Ω = ∪h∈HΩh,
then, for each pi ∈ P(Ω), i ∈ I(Ω), there exists a finite subfamily (Ωj)1≤j≤n(i)

of F and corresponding seminorms pj ∈ P(Ωj), 1 ≤ j ≤ n (i), such that, for

each u ∈ E(Ω), pi (u) ≤
j=n(i)∑
j=1

p1(u|Ωj
).

Set C = A/IA and

X(A,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω), ((pi(uλ))λ ∈ |A|},

N(IA,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω), (pi(uλ))λ ∈ |IA|}.

One can prove that X(A,E,P) is a sheaf of subalgebras of the sheaf EΛ and
N(IA,E,P) is a sheaf of ideals of X(A,E,P) [32]. Moreover, the constant sheaf
X(A,K,|.|)/N(IA,K,|.|) is exactly the sheaf C = A/IA, and if K = R, C will be

denoted R. We call presheaf of (C, E ,P)-algebra the factor presheaf of algebras
A = X(A,E,P)/N(IA,E,P) over the ring C = A/IA. We denote by [uλ] the class
in A(Ω) defined by the representative (uλ)λ∈Λ ∈ X(A,E,P)(Ω).

Remark 2.1. (Overgenerated rings ) Let Bp =
{
(rn,λ)λ ∈ (R∗

+)
Λ : 1 ≤ n ≤ p

}
and B be the subset of (R∗

+)
Λ obtained as rational functions with coefficients

in R∗
+, of elements in Bp as variables. Define

A =
{
(aλ)λ ∈ KΛ | ∃ (bλ)λ ∈ B,∃λ0 ∈ Λ, ∀λ ≺ λ0 : |aλ| ≤ bλ

}
,

we say that A is overgenerated by Bp (and it is easy to see that A is a solid
subring of KΛ). If IA is some solid ideal of A, we also say that C = A/IA is
overgenerated by Bp, [18].

Remark 2.2. (Relationship with distribution theory) Let Ω be an open subset of
Rn. The space of distributions D′(Ω) can be embedded intoA(Ω). If (φλ)λ∈(0,1]

is a family of mollifiers φλ (x) = λ−nφ (x/λ), x ∈ Rn,
∫
φ (x) dx = 1 and if

T ∈ D′ (Rn), the convolution product family (T ∗ φλ)λ is a family of smooth
functions slowly increasing in 1/λ. So, for Λ = (0, 1], we shall choose the
subring A overgenerated by some Bp of (R∗

+)
Λ containing the family (λ)λ,

[13, 33]. We choose a special kind of mollifiers which moments of higher order
vanish.
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Remark 2.3. (An association process) Let Ω be an open subset of X, E be a
given sheaf of topological K-vector spaces containing E as a subsheaf, a be a
given map from Λ to K such that (a (λ))λ = (aλ)λ is an element of A. We also
assume that

N(IA,E,P)(Ω) ⊂
{
(uλ)λ ∈ X(A,E,P)(Ω) : lim

E(Ω),Λ
uλ = 0

}
.

We say that u = [uλ] and v = [vλ] ∈ E(Ω) are a-E associated if lim
E(Ω),Λ

aλ(uλ −

vλ) = 0. That is to say, for each neighborhood V of 0 for the E-topology, there

exists λ0 ∈ Λ such that λ ≺ λ0 =⇒ aλ(uλ − vλ) ∈ V . We write u
a∼

E(Ω)
v.

We can also define an association process between u = [uλ] and T ∈ E(Ω) by
writing simply u ∼ T ⇐⇒ lim

E(Ω),Λ
uλ = T . Taking E = D′, E = C∞, Λ = (0, 1],

we recover the association process defined in the literature [11, 12].

2.2. Algebraic framework

Set E = C∞, X = Rd for d = 1, 2, E = D′ and Λ a set of indices, λ ∈ Λ.
For any open set Ω, in Rd, E(Ω) is endowed with the P(Ω) topology of uniform
convergence of all derivatives on compact subsets of Ω. This topology may
be defined by the family of the seminorms PK,l(uλ) = sup|α|≤l PK,α(uλ) with

PK,α(uλ) = supx∈K |Dαuλ(x)|, K b Ω, where the notation K b R2 means
that K is a compact subset of R2 and l ∈ N, α ∈ Nd.

Let A be a subring of the ring RΛ of family of reals with the usual laws.
We consider a solid ideal IA of A. Then we have

X (Ω) = {(uλ)λ ∈ [C∞(Ω)]
Λ
: ∀K b Ω, ∀l ∈ N, (PK,l(uλ))λ ∈ |A|},

N (Ω) = {(uλ)λ ∈ [C∞(Ω)]
Λ
: ∀K b Ω, ∀l ∈ N, (PK,l(uλ))λ ∈ |IA|},

A(Ω) = X (Ω)/N (Ω).

The generalized derivation Dα : u(= [uε]) 7→ Dαu = [Dαuε] provides A(Ω)
with a differential algebraic structure [19].

Example 2.4. Set Λ = (0, 1]. Consider

A =
{
(mλ)λ ∈ RΛ : ∃p ∈ R∗

+, ∃C ∈ R∗
+, ∃µ ∈ (0, 1], ∀λ ∈ (0, µ], |mλ| ≤ Cλ−p

}
,

IA =
{
(mλ)λ ∈ RΛ : ∀q ∈ R∗

+, ∃D ∈ R∗
+, ∃µ ∈ (0, 1],∀λ ∈ (0, µ], |mλ| ≤ Dλq

}
.

In this case we denote X s(Ω) = X (Ω) and N s(Ω) = N (Ω). The sheaf of
factor algebras Gs (·) = X s(·)/N s(·) is called the sheaf of simplified Colombeau
algebras. Gs

(
Rd

)
is the simplified Colombeau algebra of generalized functions

[11], [12].

We have the analogue of theorem 1.2.3. of [27] for (C, E ,P)-algebras.

Proposition 2.5. Let B be the set introduced in 2.1 and assume that there
exists (aλ)λ ∈ B with lim

λ→0
aλ = 0. Consider (uλ)λ ∈ X (R2) such that: ∀K b

R2, (PK,0 (uλ))λ ∈ |IA|. Then (uλ)λ ∈ N (R2).
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We refer the reader to [18] and [14]. By the way, update ref. [18] if available.

Definition 2.6. Tempered generalized functions, [27], [34], [35]. For f ∈
C∞(Rn), r ∈ Z and m ∈ N, we put µr,m(f) = supx∈Rn,|α|≤m(1+ |x|)r |Dαf(x)|.
The space of functions with slow growth is

OM (Rn) =
{
f ∈ C∞(Rn) : ∀m ∈ N, ∃q ∈ N, µ−q,m(f) < +∞

}
.

Definition 2.7. We define

Xτ (Rn) = {(fε)ε ∈ OM (Rn)(0,1] : ∀m ∈ N, ∃q ∈ N,
∃N ∈ N, µ−q,m(fε) = O(ε−N ); ε→ 0},

Nτ (Rn) =

{(fε)ε ∈ OM (Rn)(0,1] : ∀m ∈ N,∃q ∈ N,∀p ∈ N, µ−q,m(fε) = O(εp); ε→ 0}.

Xτ (Rn) is a subalgebra of OM (Rn)(0,1] and Nτ (Rn) an ideal of Xτ (Rn). The
algebra Gτ (Rn) = Xτ (Rn) /Nτ (Rn) is called the algebra of tempered general-
ized functions.

The generalized derivation Dα : u = [uε] 7→ Dαu = [Dαuε] provides Gτ (Rn)
with a differential algebraic structure.

2.2.1. Generalized operators and general restrictions

Definition 2.8. Let Ω be an open subset of R2 and F ∈ C∞(Ω × R,R). We
say that the algebra A (Ω) is stable under F if for all (uε)ε ∈ X (Ω) and (iε)ε ∈
N (Ω), we have (F (·, ·, uε))ε ∈ X (Ω) and (F (·, ·, uε + iε)− F (·, ·, uε))ε ∈ N (Ω).
If A

(
R2

)
if stable under F , the operator

F : A
(
R2

)
→ A

(
R2

)
, u = [uε] 7→ [F (., ., uε)]

is called the generalized operator associated to F . See [18].

Proposition 2.9. Let Ω be an open subset of R2 and F ∈ C∞(Ω×R,R). We
say that F is smoothly tempered if the following two conditions are satisfied:
(i) For each K b R2, l ∈ N and u ∈ C∞(Ω,R), there is a positive finite

sequence (Cj)0≤i≤l, such that PK,l(F (·, ·, u)) ≤
l∑

i=0

Ci (PK,l(u))
i
,

(ii) For each K b R2, l ∈ N, u, v ∈ C∞(Ω,R), there is a positive finite sequence

(Dj)1≤j≤l, such that PK,l(F (·, ·, v)− F (·, ·, u)) ≤
l∑

j=1

Dj (PK,l(v − u))
j
.

If F is smoothly tempered then A
(
R2

)
if stable under F .

Consider (fε)ε ∈ C∞ (R)Λ. Set

Rε : C
∞ (

R2
)
→ C∞ (R) , g 7→ Rε (g) with Rε (g) : R → R, t 7→ g(t, fε(t)).

The family (Rε)ε maps C∞ (
R2

)Λ
into C∞ (R)Λ.
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Definition 2.10. The family of smooth function (fε)ε is compatible with second
side restriction if for all (uε)ε ∈ X ((R2) and all (iε)ε ∈ N (R2), (uε (·, fε(·)))ε ∈
X (R) and (iε (·, fε(·)))ε ∈ N (R). The map

R : A
(
R2

)
→ A (R) , u = [uε] 7→ [uε (·, fε(·))] = [Rε (uε)]

is called the generalized second side restriction mapping associated to the family
(fε)ε.

Clearly, if u = [uε] ∈ A(R2) then [uε (·, fε(·))] is a well defined element of
A(R) (i.e. not depending on the representative of u).

Remark 2.11. The previous process generalizes the standard one defining the
restriction of the generalized function u = [uε] ∈ A

(
R2

)
to a net of the mani-

folds {y = f (x)} obtained when taking fε = f for each ε ∈ Λ.

Definition 2.12. [27] Let (fε)ε be a family of C∞(Rn) functions. This family
is c-bounded if for all compact set K ⊂ Rn there exists another compact set
L ⊂ Rn such that fε(K) ⊂ L for all ε (L is independent of ε).

Proposition 2.13. Assume that for each K b R, there exists K ′ b R such
that, for all ε ∈ Λ, fε(K) ⊂ K ′ and that (fε)ε belongs to X (R). Then the
family (fε)ε is compatible with second side restriction.

(See [3]).

3. Solutions for a characteristic Cauchy problem
in (C, E ,P)-algebras

3.1. Assumptions

We will use the notations found in [20], [3]. Consider a family of smooth
functions (fε)ε such that, for all ε, fε ∈ C∞(R), fε strictly increasing, fε(R) =
R, for any x ∈ R, f ′ε(x) ̸= 0, (fε)ε, (f

−1
ε )ε ∈ Xτ (R), (fε)ε is c-bounded and

lim
ε →
D′(R)

0
fε = f . Consider the family of smooth non-characteristic curves γε whose

equation is y = fε(x), such that γε is diffeomorphic to γ. We approach the
Cauchy problem (Pform) by a family of non-characteristic ones by replacing
the characteristic curve γ by the family of smooth non-characteristic curves γε.

Each compact set K b R2 is contained in some product [−a, a] × [−b, b].
We define

βK,ε = max(a, f−1
ε (b)), αK,ε = min(−a, f−1

ε (−b)),
aK,ε = 2max(βK,ε, |αK,ε|), Kε = K1ε ×K2

with K1ε = [−aK,ε/2, aK,ε/2] and K2 = [−b, b] = [−c/2, c/2] .

Then, by construction we have K ⊂ Kε. Set F ∈ C∞(R3,R). We make
the following assumptions to generate a convenient (C, E ,P)-algebra to our
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problem.

(H1)


∀ε,∈ (0, 1], ∀K b R2,∀l ∈ N, ∃µK,l > 0, ∃Mε > 0,

sup
(x,y,z)∈Kε×R, |α|≤l

|DαF (x, y, z)| =MK,ε,l ≤ µK,lMε.

∀ε ∈ (0, 1], ∀K b R2,∃νK > 0, ∃aε > 0, aK,ε ≤ νKaε.

(H2) : φ,ψ ∈ OM (R).

(H3)

{
C = A/IA is overgenerated by the following elements of R(0,1]

∗

(ε)ε , (Mε)ε , (expMεaε)ε.

(H4)

{
A
(
R2

)
= X (R2)/N (R2) is built on C;

(E ,P) = (C∞(R2), (PK,l)KbR2,l∈N).

From hypothesis (H1) it follows that A
(
R2

)
is stable under F relatively to C

[21].

Remark 3.1. When F = 0 and φ and ψ polynomials, hypotheses (H1), (H3)
are obviously verified and A

(
R2

)
is simply the Colombeau algebra G

(
R2

)
.

Moreover, in general, the algebra A
(
R2

)
is not the Colombeau algebra even

if only one parameter is used to de-characterize the problem. The (C, E ,P)-
algebra A

(
R2

)
can be of Colombeau-type (See [3]).

3.2. Well-posed problem

To the characteristic Cauchy problem formally written as (Pform) is asso-
ciated the well formulated one

(Pg) :
∂2u

∂x∂y
= F(u),R (u) = φ,R

(
∂u

∂y

)
= ψ

where u lies in the algebra A
(
R2

)
and F , R are defined as previously by

taking into account the family (fε)ε [3]. In terms of representatives solving
(Pg) amounts finding a family (uε)ε ∈ X (R2) such that

∂2uε
∂x∂y

(x, y)− F (x, y, uε (x, y)) = iε (x, y) ,

uε (x, fε(x))− φ (x) = jε (x) ,
∂uε
∂y

(x, fε(x))− ψ (x) = lε (x) ,

where (iε)ε ∈ N
(
R2

)
, (jε)ε, (lε)ε ∈ N (R).

Suppose we can find uε ∈ C∞ (
R2

)
verifying

(Pε)


∂2uε
∂x∂y

(x, y) = F (x, y, uε (x, y)),

uε (x, fε(x)) = φ (x) ,
∂uε
∂y

(x, fε(x)) = ψ (x) ,

then if we can prove that (uε)ε ∈ X (R2), u = [uε] is a solution of (Pg).
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3.3. Solution to (Pg)

Theorem 3.1. Set F ∈ C∞(R3,R). Assume that

(H)


fε ∈ C∞(R), fε strictly increasing, fε(R) = R,
∀x ∈ R, f ′ε(x) ̸= 0,
∀ε,∈ (0, 1], ∀K b R2, sup

(x,y,z)∈K×R
|∂zF (x, y, z)| <∞,

then the Problem (Pε) has a unique solution uε in C∞(R2) which satisfies the
following integral equation

(Int) uε(x, y) = u0,ε(x, y)−
∫∫

D(x,y,fε)

F (ξ, η, uε(ξ, η))dξdη,

with u0,ε(x, y) = φ(x)− χε (fε (x)) + χε (y), where χε is a primitive of ψ ◦ f−1
ε

and

D(x, y, fε) =

{ {
(ξ, η)/x ≤ ξ ≤ f−1

ε (y) , fε(ξ) ≤ η ≤ y
}
, if y ≥ fε (x) ,{

(ξ, η)/f−1
ε (y) ≤ ξ ≤ x, y ≤ η ≤ fε(ξ)

}
, if y ≤ fε (x) .

See [20] Section 1, for a detailed proof.

Theorem 3.2. With the notations and the hypotheses of the above subsection,
the generalized function u ∈ A(R2), represented by the family (uε)ε of solutions
to Problems (Pε), is a solution to the Problem (Pg) and does not depend on the
choice of the representative (fε)ε of the class f = [fε] ∈ Gτ (R).

See [3] for a detailed proof.

Remark 3.2. However, following a remark of Michael Oberguggenberger (pri-
vate communication), we not have here uniqueness of the solution.

Example 3.3. Let us now treat the problem (Pform) with F = 0 and γ =
(Ox). Consider the non-characteristic problems (Pε)ε with the line γε of equa-
tion y = fε (x) = εx. With the previous notations and hypotheses, C = A/IA
is overgenerated by (ε)ε, element of R]0,1]

∗ . Moreover A
(
R2

)
is simply the

Colombeau algebra G
(
R2

)
. If uε is the solution to the problem (Pε) then

problem (Pg) admits u = [uε]A(R2) as solution. The solution of (Pε) has a

priori the form uε(x, y) = H(x) +G(y), with H and G in C∞(R). We can find
them by

H(x) +G(εx) = φ(x), Gy(εx) = ψ(x).

Then

uε(x, y) = φ(x)− ε

∫ x

0

ψ(t)dt+ ε

∫ y
ε

0

ψ(t)dt = φ(x)− εΨ(x) + εΨ
(y
ε

)
,

where we have set Ψ = (x 7→
∫ x

0
ψ(t)dt). So, u = [uε] = [εu2] +

[
ε2u3,ε

]
with

u1 = 1y ⊗ φ ∈ C∞(R2);u2 = − (1y ⊗Ψ) ∈ C∞(R2);

[u3,ε] ∼ (1x ⊗ δy) = δγ ∈ D′ (R2
)

where ∼ means association in D′ and δγ is the Dirac distribution of the char-
acteristic line {y = 0} [3].
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4. The framework GOM
(R2) and uniqueness in the homo-

geneous case

The natural topology of OM allows us to define a new algebra of tempered
generalized function, GOM

(
Rd

)
(see [16]), which differs from Gτ

(
Rd

)
but still

admits a point value characterization (see [36]). As GOM

(
Rd

)
is of (C,E ,P)-

type and endowed with the sharp topology (see [15]), our goal is to recover
uniqueness of the solution of (Pg) in this context (see [2]).

4.1. Point values in GOM

(
Rd

)
We define GOM

(
Rd

)
as the quotient algebra MOM

(
Rd

)
/NOM

(
Rd

)
where

MOM
(Rd) = {(uε)ε ∈ OM (Rd)(0,1] : ∀φ ∈ S(Rd), ∀α ∈ Nd,

∃M ∈ N, ∃ε0, ∀ε < ε0, supx∈Rd |φ (x) ∂αuε (x)| ≤ ε−M} ;

NOM
(Rd) = {(uε)ε ∈ OM (Rd)(0,1] : ∀φ ∈ S(Rd), ∀α ∈ Nd,

∀m ∈ N, ∃ε0, ∀ε < ε0, supx∈Rd |φ (x) ∂αuε (x)| ≤ εm}.

On one hand, we have MOM

(
Rd

)
= Mτ

(
Rd

)
(see [16, Prop. 3.2]). However,

we only have NOM

(
Rd

)
! Nτ

(
Rd

)
. Thus GOM

(
Rd

)
differs from Gτ

(
Rd

)
. On

the other hand (see [16, Prop. 3.2]), we get

NOM
(Rd) = {(uε)ε ∈ (OM (Rd)(0,1] : ∀α ∈ Nd, ∀m ∈ N,
∃p ∈ N, ∃ε0, ∀ε < ε0, supx∈Rd(1 + |x|)−p|∂αuε(x)| ≤ εm}.

By the same Taylor argument as in (see [27, Thm. 1.2.25]), we find (see [2])

NOM (Rd) = {(uε)ε ∈ Mτ (Rd) : ∀m ∈ N, ∃p ∈ N,
∃ε0, ∀ε < ε0, supx∈Rd(1 + |x|)−p|uε(x)| ≤ εm}.

We use the properties about generalized points and point values of GOM

(
Rd

)
presented in [2]. Let us recall that K̃ = MK/NK is the ring of Colombeau

generalized numbers (K = R,C) and similarly K̃d = K̃d the set of generalized
points.

Definition 4.1. An element x̃ = [(xε)ε] ∈ R̃d is of slow scale if for all n ∈ N
there exists ε0 such that, for all ε < ε0, we have |xε| ≤ ε−1/n.

Theorem 4.1. Take u = [(uε)ε] ∈ GOM (Rd). From [2, theorem 5], we get

that, for x̃ = [(xε)ε] of slow scale, the point value u(x̃) := [(uε(xε))ε] ∈ K̃ is
well-defined. Moreover u = 0 if and only if u(x̃) = 0 for each slow scale point
x̃ [2, theorem 6].

4.2. Uniqueness in the homogeneous case

Theorem 4.2. Suppose that (fε)ε is taken in the subset LOM (R) in MOM (R)
of families (gε)ε such that g′ε > 0,

(
g−1
ε

)
ε
∈ MOM

(R), (gε)ε and
(
g−1
ε

)
ε
pre-

serves slow scale points, limε→0,D′(R) gε = 0. Then, if φ ∈ OM (R), ψ ∈ OM (R)
and F = 0, the solution u = [uε]GOM

(R2) of (Pg) is unique in GOM

(
R2

)
and

depends only on f = [fε]GOM
(R).
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Proof. We have

∂2uε
∂x∂y

(x, y) = 0, uε (x, fε(x)) = φ(x),
∂uε
∂y

(x, fε(x)) = ψ(x).

Then
uε(x, y) = u0,ε(x, y) = φ(x)− χε (fε (x)) + χε (y) ,

where χε is a primitive of ψ ◦f−1
ε . Let u = [uε] (with (uε) ∈ MOM (R2)) be the

solution of (Pg) obtained in Theorem 3.2. Let v = [vε] (with (vε) ∈ MOM
(R2))

be another solution to (Pg). There are (iε)ε ∈ NOM (R2), (αε)ε ∈ NOM (R),
(βε)ε ∈ NOM

(R), such that

(Pε)


∂2vε
∂x∂y

(x, y) = iε(x, y),

vε (x, fε(x)) = φ(x) + αε(x),
∂vε
∂y

(x, fε(x)) = ψ(x) + βε(x).

The uniqueness of the solution to (Pg) will be the consequence of (vε − uε)ε ∈
NOM

(R2). We have v0,ε(x, y) = u0,ε(x, y) + θε(x, y), where

θε(x, y) = αε(x)−Bε(fε (x)) +Bε(y)

and Bε is a primitive of βε ◦ f−1
ε . Furthermore, as (βε)ε ∈ NOM

(R), (fε)ε is
taken in LOM

(R) (it preserves slow scale points), then
(
βε ◦ f−1

ε

)
ε
∈ NOM

(R)
and (Bε)ε ∈ NOM (R). As (αε)ε ∈ NOM (R), so (θε)ε belongs to NOM (R2). We
have

vε(x, y) = v0,ε(x, y) +

∫∫
D(x,y,f)

iε(ξ, η)dξdη.

We set, for all ε,

jε (x, y) =

∫∫
D(x,y,f)

iε(ξ, η)dξdη.

Now we have to check that (jε)ε ∈ NOM

(
R2

)
. Let [(xε, yε)ε] ∈ R̃2 be a slow

scale point. Then [(xε)ε] ∈ R̃, [(zε)ε] = [(fε (xε))ε] ∈ R̃ and
[(
f−1
ε (yε)

)
ε

]
∈ R̃

are also slow scale points.
We define Aε(xε, yε) = area of D(xε, yε, fε). According to the mean value

theorem, for each ε, there exists (cε, dε) ∈ D(xε, yε, fε) such that

|jε (xε, yε)| =

∣∣∣∣∣
∫∫

D(xε,yε,fε)

iε(ξ, η))dξdη

∣∣∣∣∣ = |iε(cε, dε)|Aε(xε, yε).

Where iε(cε, dε) is the average value of iε on D(xε, yε, fε). As

|cε| ≤ max(|xε| ,
∣∣f−1

ε (yε)
∣∣), |dε|) ≤ max(|fε (xε)| , |yε|)

then [(cε)ε] and [(dε)ε] are slow scale points. Thus [(cε, dε)ε] is a slow scale

point of R̃2. As (iε)ε ∈ NOM

(
R2

)
we obtain that (iε(cε, dε))ε ∈ NR and

(jε)ε ∈ NOM

(
R2

)
. Thus there is (σε)ε ∈ NOM

(
R2

)
(σε = θε + jε) such that

vε = uε + σε.
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Remark 4.2. However, if F ̸= 0, we cannot prove the existence of a solution
to (Pg) in GOM

(
R2

)
as can be seen by taking F (x, y, u(x, y) = −4xyu(x, y),

φ (x) = 1, ψ (x) = −2x. Thus we have

(Pε) :
∂2uε
∂x∂y

(t, x) = −4xyuε (x, y) , uε (x, εx) = 1,
∂uε
∂y

(x, εx) = −2x.

The solution to (Pε) is given by uε (x, y) = exp(−y2/ε) exp(εx2) which does
not belong to MOM

(
R2

)
.

This remark shows that in order to prove the existence and the uniqueness
to the characteristic Cauchy problem for the wave equation in canonical form
we need another strategy. We may look for solution defined for large but finite
x.

5. Uniqueness for the non-homogeneous problem

5.1. The framework of GOM ([0, T ]× [0,∞[)

5.1.1. The algebra GOM

(
Ω
)

Thanks to the results of H. A. Biagioni [9], J. Aragona [6], [7] and J-A. Marti
(private communication: Generalized functions on the closure of an open set)
and using the study of [23], we can define Colombeau spaces on the closure Ω
of an open set Ω ⊂ Rn, such that O ⊂ Ω ⊂ O, where O is an open subset of
Rn and O the closure of O.

We can easily define C∞(Ω) as the space of restrictions to Ω of functions in
C∞(O) for any open set O ⊃ Ω. C∞ being a sheaf, the definition is independent
of the choice of O. The usual topology of C∞(Ω) involve the family of compact
set K b Ω. Define now

OM

(
Ω
)
=

{
f ∈ C∞(Ω), ∃g ∈ OM (O), O ⊃ Ω, f = g |Ω

}
S
(
Ω
)
=

{
f ∈ C∞(Ω), ∃g ∈ S(O), O ⊃ Ω, f = g |Ω

}
.

The function pφ,α : OM

(
Ω
)
→ R+

f 7→ pφ,α (f) = sup
x∈Ω

|φ (x)Dαf (x)| ,

where φ ∈ S
(
Ω
)
and α ∈ Nn, is a semi-norm on OM

(
Ω
)
and the family

P =(pφ,α)φ,α∈S(Ω)×Nn endows the algebraOM

(
Ω
)
with a locally convex topol-

ogy. Then, we can define GOM

(
Ω
)
as the quotient algebraMOM

(
Ω
)
/NOM

(
Ω
)

where

MOM (Ω) = {(uε)ε ∈ OM (Ω)(0,1] : (∀φ ∈ S(Ω)) (∀α ∈ Nn)

(∃M ∈ N) (∃ε0) (∀ε < ε0) (pφ,α (uε) ≤ ε−M )} ;

NOM
(Ω) = {(uε)ε ∈ OM (Ω)(0,1] : (∀φ ∈ S(Ω)) (∀α ∈ Nn)

(∀m ∈ N) (∃ε0) (∀ε < ε0) (pφ,α (uε) ≤ εm)}.

This definition is consistent. We can involve, for example, the framework of
(C, E ,P)-algebra with E = OM (Ω), P =(pφ,α) and C generated by (ε)ε.
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5.1.2. Point values in GOM

(
Rd

+

)
On

ΩM =
{
(xε)ε ∈

(
Ω
)(0,1]

(∃N ∈ N)
(
|xε| = O

(
ε−N

))
(ε→ 0)

}
we introduce an equivalence relation by

(xε)ε ∼ (yε)ε ⇐⇒ (∀m ∈ N)
(
|xε − yε| = O

(
ε−N

))
(ε→ 0)

and denote by Ω̃ := ΩM/ ∼ the set of generalized points in Ω.
We restrict to the case where Ω is a box, i.e. a Cartesian product of closed

(bounded or unbounded) intervals.

MOM (Ω) =

{(uε)ε ∈ OM (Ω)(0,1] | (∀α ∈ Nd) (∃m ∈ N) (∃p ∈ N)
(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|∂αuε(x)| ≤ ε−m)}.

NOM
(Ω) =

{(uε)ε ∈ OM (Ω)(0,1] | (∀α ∈ Nd) (∀m ∈ N) (∃p ∈ N)
(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|∂αuε(x)| ≤ εm)}.

Moreover, we have (see [23])

NOM (Ω) = {(uε)ε ∈ OM (Ω)(0,1] |(∀m ∈ N) (∃p ∈ N)
(∃ε0) (∀ε < ε0) (supx∈Ω(1 + |x|)−p|uε(x)| ≤ εm)}.

Thus

NOM
(Rd

+) = {(uε)ε ∈ Mτ (Rd
+) |(∀m ∈ N) (∃p ∈ N)

(∃ε0) (∀ε < ε0) (supx∈Rd(1 + |x|)−p|uε(x)| ≤ εm)}.

Replacing R2 by R2
+ we obtain analogous definitions and theorems as in 2.2.

Thus F can be defined as a mapping of GOM
([0, T ]× [0,∞[) into itself and

R as a mapping GOM
([0, T ]× [0,∞[) −→ GOM

([0,∞[) then problem (Pg) is
correctly formulated.

Replacing Rd by Rd
+ we obtain also analogous definitions and theorems as

in 4.1.
We recall two technical lemmas, the proof of the first one being a simple

adaptation of [27, Thm 1.2.29].

Lemma 5.1. Let (fε), (gε), (f̃ε), (g̃ε) ∈ MOM
(R+) be such that [fε] = [f̃ε] and

[gε] = [g̃ε]. We have that [fε ◦ gε] = [fε ◦ g̃ε]. If moreover [gε] preserves slow
scale points then [f̃ε ◦ gε] = [fε ◦ gε].
Lemma 5.2. Let (fε)ε, (gε)ε ∈ MOM

(R+) be such that fε and gε are bijective,
(fε − gε)ε ∈ NOM

(R+) and (f−1
ε )ε, (g

−1
ε )ε ∈ MOM

(R+). Suppose moreover
that

[
g−1
ε

]
preserves slow scale points. Then (f−1

ε − g−1
ε )ε ∈ NOM

(R+).

Proof. We have (f−1
ε − g−1

ε ) ◦ gε = f−1
ε ◦ gε − Id ∈ NOM (R+) because gε −

fε ∈ NOM
(R+) which implies that [f−1

ε ◦ gε] = [f−1
ε ◦ fε] = [Id]. But, as

f−1
ε − g−1

ε =
(
(f−1

ε − g−1
ε ) ◦ gε

)
◦ g−1

ε and
[
g−1
ε

]
∈ GOM (R+) preserves slow

scale points, using the preceding lemma we find that f−1
ε −g−1

ε ∈ NOM
(R+).
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5.2. The non-homogeneous case

Consider the well formulated generalized problem

(Pg) :
∂2u

∂x∂y
= F(u),R (u) = φ,R

(
∂u

∂y

)
= ψ,

where F , R are defined as previously by taking into account a family (lε)ε,
φ ∈ OM (R+) ⊂ GOM

(R+), ψ ∈ OM (R+). The solution u is in the algebra
A
(
R2

)
.

Lemma 5.3. Let u,w and a be non-negative continuous functions defined for
(x, y) ∈ R2

+ and let w be non-decreasing in each variable x, y. Define, for
(x, y) ∈ R2

+,

D(x, y, f) =

{ {
(ξ, η)/x ≤ ξ ≤ f−1 (y) , fε(ξ) ≤ η ≤ y

}
, if y ≥ f (x) ,{

(ξ, η)/f−1 (y) ≤ ξ ≤ x, y ≤ η ≤ fε(ξ)
}
, if y ≤ f (x) .

n(x, y) =

∫∫
D(x,y,f)

a(ξ, η)u(ξ, η) dξ dη.

If, for each (x, y) ∈ R2
+,

(A1) u(x, y) ≤ w(x, y) + n(x, y)

then, for each (x, y) ∈ R2
+,

u(x, y) ≤ w(x, y)+

w(x, y)(

∫∫
D(x,y,f)

a(s, t) exp(

∫∫
D(x,y,f)

a(ξ, η) dξ dη −
∫∫

D(s,t,f)

a(ξ, η) dξ dη)dtds).

Proof. See [1]. We treat the case y ≥ f (x), the other can be solved similarly.
Then

n(x, y) =

∫∫
D(x,y,f)

a(ξ, η)u(ξ, η)dξdη =

∫ f−1(y)

x

(

∫ y

f(ξ)

a(ξ, η)u(ξ, η)dη)dξ

=

∫ y

f(x)

(

∫ f−1(η)

x

a(ξ, η)u(ξ, η)dξ)dη.

We have, for(x, y) ∈ R2
+, u(x, y) ≤ w(x, y) + n(x, y), and

nxy(x, y) = −a(x, y)u(x, y),

thus we have

−nxy(x, y)− a(x, y)n(x, y) = a(x, y)u(x, y)− a(x, y)n(x, y)

= a(x, y) [u(x, y)− n(x, y)]

≤ a(x, y)w(x, y)
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Take

k(x, y) =

∫ f−1(y)

x

(

∫ y

f(ξ)

a(ξ, η)dξ)dη =

∫ y

f(x)

(

∫ f−1(η)

x

a(ξ, η)dξ)dη.

Then

ky(x, y) =

∫ f−1(y)

x

a(ξ, y)dξ; kx(x, y) = −
∫ y

f(x)

a(x, η)dη; kxy(x, y) = −a(x, y).

Thus

−nxy(x, y)− a(x, y)n(x, y) ≤ a(x, y)w(x, y)− nx(x, y)ky(x, y)

− ny(x, y)kx(x, y) + n(x, y)ky(x, y)kx(x, y).

That is

[−nxy(x, y)− a(x, y)n(x, y) + ny(x, y)kx(x, y)]

+ [nx(x, y)ky(x, y)− n(x, y)ky(x, y)kx(x, y)]

≤ a(x, y)w(x, y).

By multiplication with exp (−k(x, y)), we obtain

[−nxy(x, y)− a(x, y)n(x, y) + ny(x, y)kx(x, y)] exp (−k(x, y))
+ [nx(x, y)ky(x, y)− n(x, y)ky(x, y)kx(x, y)] exp (−k(x, y))
≤ a(x, y)w(x, y) exp (−k(x, y)) .

That is

∂

∂y
[(−nx(x, y) + n(x, y)kx(x, y)) exp (−k(x, y))]

≤ a(x, y)w(x, y) exp(−k(x, y)).

By keeping x fixed in the above inequality, setting y = t and then integrating
with respect to t from f(x) to y we obtain

(−nx(x, y) + n(x, y)kx(x, y)) exp (−k(x, y))

≤
∫ y

f(x)

a(x, t)w(x, t) exp(−k(x, t))dt.

because nx(x, f(x)) = 0. That is

∂

∂x
(−n(x, y) exp(−k(x, y))) ≤

∫ y

f(x)

a(x, t)w(x, t) exp(−k(x, t))dt.

Now, by keeping y fixed in the above inequality, setting x = s and then inte-
grating with respect to s from x to f−1(y), we have

− n(f−1(y), y) exp(−k(f−1(y), y)) + n(x, y) exp(−k(x, y))

≤
∫ f−1(y)

x

(

∫ y

f(s)

a(s, t)w(s, t) exp(−k(s, t))dt)ds.
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Thus

n(x, y) exp(−k(x, y)) ≤
∫ f−1(y)

x

(

∫ y

f(s)

a(s, t)w(s, t) exp(−k(s, t))dt)ds.

Then ∫ f−1(y)

x

(

∫ y

f(ξ)

a(ξ, η)u(ξ, η)dη)dξ

≤ exp(k(x, y))

∫ f−1(y)

x

(

∫ y

f(s)

a(s, t)w(s, t) exp(−k(s, t))dt)ds.

We have

exp(k(x, y))

∫ f−1(y)

x

(

∫ y

f(s)

a(s, t)w(s, t) exp(−k(s, t))dt)ds

=

∫ f−1(y)

x

(

∫ y

f(s)

a(s, t)w(s, t) exp(k(x, y)) exp(−k(s, t))dt)ds

=

∫ f−1(y)

x

∫ y

f(s)

a(s, t)w(s, t) exp(k(x, y)− k(s, t))dtds.

So ∫ f−1(y)

x

(

∫ y

f(ξ)

a(ξ, η)u(ξ, η)dη)dξ(A3)

≤
∫ f−1(y)

x

∫ y

f(s)

a(s, t)w(s, t) exp(k(x, y)− k(s, t))dtds.(5.1)

From A1 and A3 we have

u(x, y) ≤ w(x, y) +

∫ f−1(y)

x

∫ y

f(s)

a(s, t)w(s, t) exp(k(x, y)− k(s, t))dtds.

Since w(x, y) is non-negative and non-decreasing in each variable x, y, we have

u(x, y) ≤ w(x, y)(1 +

∫ f−1(y)

x

∫ y

f(s)

a(s, t) exp(k(x, y)− k(s, t))dtds).

Moreover,

exp(k(x, y)−k(s, t)) = exp(

∫ f−1(y)

x

∫ y

f(ξ)

a(ξ, η)dξdη−
∫ f−1(t)

s

∫ t

f(ξ)

a(ξ, η)dξdη)

hence the result

u(x, y) ≤ w(x, y)+

≤ w(x, y)(

∫∫
D(x,y,f)

a(s, t) exp(

∫∫
D(x,y,f)

a(ξ, η)dξdη −
∫∫

D(s,t,f)

a(ξ, η)dξdη)dtds).
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Corollary 5.4. With the previous assumptions, for(x, y) ∈ R2
+, we have

u(x, y) ≤ w(x, y) exp(

∫∫
D(x,y,f)

a(s, t)dtds.)

Proof. We consider the case y ≥ f (x). For(x, y) ∈ R2
+, we have

u(x, y) ≤ w(x, y)(1 +

∫∫
D(x,y,f)

a(s, t) exp(k(x, y)− k(s, t))dtds).

Take

M = 1 +

∫∫
D(x,y,f)

a(s, t) exp(k(x, y)− k(s, t))dtds.

then

M ≤ 1 + exp(k(x, y))

∫∫
D(x,y,f)

a(s, t) exp(−k(s, t))dtds,

hence

M ≤ 1 + exp(k(x, y))

∫∫
D(x,y,f)

exp(−k(s, t))(− d2

dsdt

∫∫
D(s,t,f)

a(ξ, η)dξdη)dtds.

Thus

M ≤ 1 + exp(k(x, y))

∫∫
D(x,y,f)

exp(−k(s, t))( d2

dsdt
k(s, t))dtds

≤ 1 + exp(k(x, y))(1− exp(−k(x, y))).

We deduce that

M ≤ 1 + exp(k(x, y))− exp(k(x, y)) exp(−k(x, y))
≤ 1 + exp(k(x, y))− 1.

Then we have M ≤ exp(k(x, y)), but w is non-negative and non-decreasing in
each variable x, y, then we obtain u(x, y) ≤ w(x, y) exp(k(x, y)), that is

u(x, y) ≤ w(x, y) exp(

∫∫
D(x,y,f)

a(s, t)dtds).

Corollary 5.5. Let a be non-negative continuous function defined on R2
+. As-

sume that, for each (x, y) ∈ R2
+, we have |F (x, y, u (x, y))| ≤ a (x, y)u (x, y).

Let LOM (R+) be the subset in MOM (R+) of families (gε)ε such that g′ε > 0
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and
[
g−1
ε

]
∈ MOM

(R+) preserves slow scale points, limε→0,D′(R) gε = 0. As-

sume that Φ ∈ OM (R+), Ψ ∈ OM (R+), (Lε)ε ∈ LOM
(R+), [Uε] ∈ G

(
R2

+

)
is

a solution to(
P ∗
g

)
:

∂2U

∂x∂y
= F(U) ; R (U) = Φ; R

(
∂U

∂y

)
= ψ.

and |U0,ε| is non-decreasing in each variable x, y. Then, for each (x, y) ∈ R2
+,

we have

|Uε(x, y)| ≤ |U0,ε(x, y)|+
∫∫

D(x,y,fε)

a(ξ, η) |Uε(ξ, η)| dξdη,

thus

|Uε(x, y)| ≤ |U0,ε(x, y)| exp(
∫ f−1

ε (y)

x

∫ y

fε(s)

a(s, t)dtds).

Definition 5.6. The generalized function [uε] is a solution to Problem
(
P ∗∗
g

)
if there are U = [Uε] ∈ G

(
R2

+

)
, Φ,Ψ ∈ OM (R+), (Lε)ε ∈ LOM

(R+) such that

(1) U is solution to
(
P ∗
g

)
;

(2)


uε = Uε|[0,T ]×[0,∞[ ; lε = Lε|[0,T ] ;

uε (x, lε(x)) = Φ|[0,T ] (x) = φ(x);
∂uε
∂y

(x, lε(x)) = Ψ|[0,T ] (x) = ψ (x) ;

(3) {[uε] ∈ GOM ([0, T ]× [0,+∞[).

Moreover, for (t, x) ∈ R2
+, we have

Uε(t, x) = U0,ε(x, y)−
∫∫

D(x,y,Lε)

F (ξ, η, Uε(ξ, η))dξdη.

Theorem 5.1. Suppose that (lε)ε is taken in LOM
([0, T ]). If φ ∈ OM ([0, T ]),

ψ ∈ OM ([0, T ]), the generalized function u = [uε]GOM
([0,T ]×[0,∞[), where uε

is defined in Definition 5.6, depends only on l = [lε]GOM
([0,T ]). Let a be non-

negative continuous function defined on R2
+. Assume that, for each (x, y) ∈ R2

+,
|F (x, y, u (x, y))| ≤ a (x, y)u (x, y), M1 = sup

(x,y)∈(R+)2
(a(x, y)) < +∞ and |U0,ε|

is non-decreasing in each variable x, y. Then u is the unique solution to
(
P ∗∗
g

)
in GOM

([0, T ]× [0,∞[).

Proof. The first step is to prove the existence, and it is not possible to do that
in GOM

(R2) if F ̸= 0 ([2], Remark 3).We have

U0,ε(x, y) = Ξε (y)− Ξε(Lε(x)) + φε(x)

and Ξε denotes a primitive of Ψ ◦ L−1
ε . Furthermore, as Ψ ∈ OM (R+),

Lε is taken in LOM (R+) (it preserve slow scale points), then
(
Ψ ◦ L−1

ε

)
ε
∈
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MOM
(R+) and (Ξε)ε ∈ MOM

(R+). As Φ ∈ OM (R+), so (U0,ε)ε belongs to

MOM

(
(R+)

2
)
.

Thus ∃m ∈ N, ∃p ∈ N, ∃ε0, ∀ε < ε0,

sup
(x,y)∈(R+)2

(1 + |x|+ |y|)−pU0,ε(t, x) ≤ ε−m.

From the above Corollary 5.5

Uε(x, y) ≤ U0,ε(x, y) exp(

∫ x

f−1
ε (y)

∫ y

fε(s)

a(s, t)dtds).

Let (x, y) ∈ R2
+, define Aε(x, y) = area of D(x, y, fε). According to the

mean value theorem, for each ε, there exists (cε, dε) ∈ D(x, y, fε) such that∫∫
D(x,y,fε)

a(s, t)dtds = |a(cε, dε)|Aε(x, y).

Then
Uε(x, y) ≤ U0,ε(x, y) exp (|a(cε, dε)|Aε(x, y)) .

Take uε = Uε|[0,T ]×[0,∞[. So, we have

sup
(x,y)∈[0,T ]×[0,∞[

(1 + |x|+ |y|)−p |uε(x, y)|

≤ sup
(x,y)∈[0,T ]×[0,∞[

(1 + |x|+ |y|)−p |u0,ε(x, y)| e(−|a(cε,dε)|Aε(x,y))

≤ sup
(x,y)∈(R+)2

(
(1 + |x|+ |y|)−p |U0,ε(x, y)|

)
sup

(x,y)∈[0,T ]×[0,∞[

eM1|x−L−1
ε (y)||y−Lε(x)|

≤ ε−m sup
(x,y)∈[0,T ]×[0,∞[

e−M1|x−L−1
ε (y)||y−Lε(x)|.

As (Lε)ε ∈ LOM
(R+), we know that

(
L−1
ε

)
ε
∈ MOM

(R+) .

Take lε = Lε|[0,T ]. Then, for (lε)ε ∈ LOM
([0, T ]), we have y = lε

(
l−1
ε (y)

)
and

sup
(x,y)∈[0,T ]×[0,∞[

e−M1|x−L−1
ε (y)||y−Lε(x)| = sup

(x,y)∈[0,T ]×[0,∞[

e−M1|x−l−1
ε (y)||y−lε(x)|

≤ sup
(x,y)∈[0,T ]×[0,∞[

e−M1Tlε(T ).

So ∃k ∈ N, ∃p ∈ N, ∃ε1, ∀ε < ε1,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |uε(t, x)| ≤ ε−k.

Thus
(uε)ε ∈ MOM

([0, T ]× [0,∞[)

and the class of (uε,)ε in GOM
([0, T ][× [0,∞[) is a solution to problem

(
P ∗∗
g

)
in GOM ([0, T ]× [0,∞[).
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Let us show that u is the unique solution to
(
P ∗∗
g

)
. Let

v = [vε] ∈ GOM ([0, T ]× [0,∞[)

be another solution to
(
P ∗∗
g

)
. That is to say there are [Vε] ∈ G

(
R2

+

)
, Φ ∈

OM (R+), Ψ ∈ OM (R+), (Lε)ε ∈ LOM
(R+), (Iε)ε ∈ NOM

(
R2

+

)
, (αε)ε ∈

NOM [0, T ]), (βε)ε ∈ NOM [0, T ]), (iε)ε ∈ NOM ([0, T ]× [0,∞[), such that

(1)


∂2Vε
∂x∂y

(x, y) = F (t, x, Vε(x, y)) + Iε(x, y);

Vε (x, Lε(x)) = Φ (x) +Aε (x) ;
∂Vε
∂y

(x, Lε(x)) = Ψε(x) +Bε(x).

(2)


vε = Vε|[0,T ]×[0,∞[ ; lε = Lε|[0,T ] ;φ = Φ|[0,T ] ;ψ = Ψ|[0,T ] ;

vε (x, lε(x)) = Φ|[0,T ] (x) + A|[0,T ] (x) = φ(x) + αε (x) ;
∂vε
∂y

(x, Lε(x)) = Ψ|[0,T ] (x) + Bε|[0,T ] (x) = ψ(x) + βε|[0,T ] (x) .

(3) {[vε] ∈ GOM ([0, T ]× [0,∞[).

The uniqueness of the solution to (Pg) will be consequence of

(vε − uε)ε ∈ NOM
([0, T ]× [0,∞[).

We have V0,ε(x, y) = U0,ε(x, y) + θε(x, y), where

θε(x, y) = Aε(x)−Πε(Lε (x)) + Πε(y)

and Πε denotes a primitive of Bε ◦ L−1
ε . Furthermore, as (Bε)ε ∈ NOM

(R+),
(Lε)ε is taken in LOM (R+) (it preserves slow scale points), then

(
Bε ◦ L−1

ε

)
ε
∈

NOM
(R+) and (Πε)ε ∈ NOM

(R+). As (Aε)ε ∈ NOM
([0, T ]), so (θε)ε belongs

to NOM ([0, T ]× [0,∞[). We have

Vε(x, y) = V0,ε(x, y) +

∫∫
D(x,y,Lε)

Iε(ξ, η)dξdη

−
∫∫

D(x,y,Lε)

F (ξ, η, Vε (ξ, η))dξdη.

We set, for all ε,

Jε (x, y) =

∫∫
D(x,y,Lε)

Iε(ξ, η)dξdη.

Now we have to check that

(Jε)ε ∈ NOM
([0, T ]× [0,∞[) .

Let (x, y) ∈ R2
+, recall that Aε(x, y) = area of D(x, y, fε). Let [(xε, yε)ε] ∈ R̃+

2

be a slow scale point. Then [(xε)ε] ∈ R̃+, [(zε)ε] = [(Lε (xε))ε] ∈ R̃+ and
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L−1
ε (yε)

)
ε

]
∈ R̃+ are also slow scale points. According to the mean value

theorem, for each ε, there exists (cε, dε) ∈ D(xε, yε, Lε) such that

|Jε (xε, yε)| =

∣∣∣∣∣∣∣
∫∫

D(x,y,Lε)

Iε(ξ, η))dξdη

∣∣∣∣∣∣∣ = |Iε(cε, dε)|Aε(xε, yε).

Where Iε(cε, dε) is the average value of Iε on D(xε, yε, fε). As

|cε| ≤ max(|xε| ,
∣∣L−1

ε (yε)
∣∣), |dε| ≤ max(|Lε (xε)| , |yε|)

then [(cε)ε] and [(dε)ε] are slow scale points. Thus [(cε, dε)ε] is a slow scale

point of R̃+

2
. As (Iε)ε ∈ NOM

(
R2

+

)
we obtain that (Iε(cε, dε))ε ∈ NR+ and

(Jε)ε ∈ NOM

(
R2

+

)
. Thus there is (σε)ε ∈ NOM

(
R2

+

)
, σε = θε + Jε, such that

vε(x, y) = U0,ε(x, y) + σε(x, y)−
∫∫

D(x,y,Lε)

F (ξ, η, Vε(ξ, η))dξdη.

Take Wε = (Vε − Uε) and show that (wε)ε ∈ NOM

(
R2

+

)
. We have

Wε(x, y) =

∫∫
D(x,y,Lε)

(−F (ξ, η, Vε(ξ, η)) + F (ξ, η, Uε(ξ, η))) dξdη + σε(x, y),

but

F (ξ, η, Vε(ξ, η))− F (ξ, η, Uε(ξ, η))

= (Vε(ξ, η)− Uε(ξ, η))

1∫
0

∂F

∂z
(ξ, η, Uε(ξ, η) + ρ(Wε(ξ, η))) dρ ,

so

Wε(x, y) = σε(x, y)

−
∫∫

D(x,y,Lε)

Wε(ξ, η)(

1∫
0

∂F

∂z
(ξ, η, Uε(ξ, η) + ρ(Wε(ξ, η)))dρdξ)dη.

But M1 = sup
(t,x,z)∈R2

+×R

∂F

∂z
(t, x, z) = sup

(x,y)∈(R+)2
(a(x, y)), thus

|Wε(x, y)| ≤ σε(x, y) +

∫∫
D(x,y,Lε)

M1 |Wε(ξ, η)| dξdη.

From the above Corollary 5.5, for any (x, y) ∈ R2
+, we have

|Wε(t, x)| ≤ σε(x, y) exp(

∫∫
D(x,y,Lε)

M1dtds) ≤ σε(x, y) exp(M1Aε(x, y)).
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But, as (σε)ε ∈ NOM

(
R2

+

)
, we have ∀m ∈ N, ∃p ∈ N, ∃ε0, ∀ε < ε0,

sup
(x,y)∈[0,T ]×[0,∞[

(1+ |x|+ |y|)−pσε(t, x) ≤ sup
(x,y)∈R2

+

(1+ |x|+ |y|)−pσε(x, y) ≤ εm.

Take lε = Lε|[0,T ]. Then, for (lε)ε ∈ LOM
([0, T ]), we have

sup
(t,x)∈[0,T ]×[0,∞[

exp(M1Aε(x, y)) = sup
(t,x)∈[0,T ]×[0,∞[

exp(M1Aε(x, y)) ≤ eM1Tfε(T )

so, ∀k ∈ N, ∃p ∈ N, ∃ε1, ∀ε < ε1,

sup
(t,x)∈[0,T ]×[0,∞[

(1 + |t|+ |x|)−p |wε(t, x)| ≤ εk.

We deduce that
(wε)ε ∈ NOM

([0, T ]× [0,∞[) .

Thus the solution is unique in GOM
([0, T ]× [0,∞[).
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