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GENERALIZED NONLINEAR VARIATIONAL
INEQUALITIES

Balwant Singh Thakur1 and Suja Varghese2

Abstract. In this paper, we consider a generalized nonlinear variational
inequality problem involving single valued and multivalued nonlinear op-
erators. We also study criteria of its solvability. Iterative methods for
approximate solution are also proposed and a convergence result is estab-
lished. Further, we study iterative methods for finding common element
of fixed point set of nonexpansive mapping and solution set of the pro-
posed variational inequality problem.
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1. Introduction and preliminaries

Variational inequalities have emerged as a mathematical programming tool
for modeling a wide class of problems arising in different branches of pure
and applied sciences see [1, 4, 5, 6, 14, 15] and references therein. Verma [18]
studied a variational inequality problem involving a single valued and a set-
valued operator. Recently Qin and Shang [16] studied an iterative method to
approximate common element of fixed points set of nonexpansive mappings
and solution set of a variational inequality.

Let H be a Hilbert space and K be a nonempty closed subset of H. We
consider the following variational inequality problem : Find (x∗, w∗) ∈ H ×
T (x∗) such that g(x∗) ∈ K and

(1.1) ⟨Ax∗ + w∗, y∗ − g(x∗)⟩ ≥ 0 , ∀ y∗ ∈ K,

where A, g : H → H and T : H → 2H are nonlinear mappings.
We call inequality (1.1) as generalized nonlinear variational inequality prob-

lem and denote by V I(H, A, T, g).
We now recall some definitions:

Definition 1.1. A mapping T : H → H is said to be :
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(i) strongly monotone, if there exists a constant ν > 0 such that, for each
x ∈ H,

⟨T (x)− T (y), x− y⟩ ≥ ν ∥x− y∥2

holds, for all y ∈ H;

(ii) δ−cocoercive, if there exists a constant δ > 0 such that, for each x ∈ H,

⟨T (x)− T (y), x− y⟩ ≥ δ ∥T (x)− T (y)∥2

holds, for all y ∈ H;

(iii) relaxed δ−cocoercive, if there exists a constant δ > 0 such that, for each
x ∈ H,

⟨T (x)− T (y), x− y⟩ ≥ −δ ∥T (x)− T (y)∥2

holds, for all y ∈ H;

(iv) relaxed (δ, λ)−cocoercive or relaxed cocoercive with constant (δ, λ), if
there exist constants δ > 0 and λ > 0 such that, for each x ∈ H,

⟨T (x)− T (y), x− y⟩ ≥ −δ ∥T (x)− T (y)∥2 + λ ∥x− y∥2

holds, for all y ∈ H;

(v) µ−Lipschitz continuous or Lipschitz with constant µ, if there exists a
constant µ > 0 such that, for each x, y ∈ H,

∥T (x)− T (y)∥ ≤ µ ∥x− y∥ ,

(vi) nonexpansive, if for each x, y ∈ H,

∥T (x)− T (y)∥ ≤ ∥x− y∥ .

Let CB(H) denote the family of all nonempty closed bounded subsets of H. A
set valued mapping T : H → CB(H) is said to be :

(v) ζ − Ĥ−Lipschitz continuous if there exists a constant ζ > 0 such that

Ĥ(T (x), T (y)) ≤ ζ ∥x− y∥ , ∀x, y ∈ H ,

where Ĥ is the Hausdorff metric, i.e. for any two nonempty subsets A
and B of CB(H),

Ĥ(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
.

Lemma 1.2. [10] Let (X, d) be a complete metric space, T : X → CB(X) be
a set-valued mapping. Then for any ε > 0 and x, y ∈ X, u ∈ T (x), there exists
v ∈ T (y) such that

d(u, v) ≤ (1 + ε) Ĥ(T (x), T (y)) .
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Lemma 1.3. [10] Let (X, d) be a complete metric space, T : X → CB(X) be
a set-valued mapping satisfying

Ĥ(T (x), T (y)) ≤ k d(x, y) , ∀x, y ∈ X ,

where 0 ≤ k < 1 is a constant. Then the mapping T has a fixed point in X.

Let us recall the following result, which is commonly used in the context of
solvability of nonlinear variational inequalities :

Lemma 1.4. [8] For an element z ∈ H, we have

x = PK(z)

if and only if
x ∈ K : ⟨x− z, y − x⟩ ≥ 0 , ∀ y ∈ K ,

where PK is a projection of H into K.

It is known that PK is a nonexpansive mapping, i.e. ∥PK(x)− PK(y)∥ ≤
∥x− y∥ , ∀x, y ∈ H.

Let K be a closed convex subset of H and ρ > 0 is fixed. Consider the
mapping F : K → 2H given by

(1.2) F (u) = u− g(u) + PK (g(u)− ρ (A(u)− T (u))) ,

with the convention x+ ∅ = x for every x ∈ H, and the orthogonal projection
of a set U ⊂ H on K is defined as PK(U) = {PK(u) : u ∈ U}.
A point x ∈ H is said to a fixed point of F if x ∈ F (x).

Using Lemma 1.4, we will establish the following important relation:

Lemma 1.5. (x∗, w∗) ∈ H × T (x∗) is a solution of (1.1) if and only if x∗ is
a fixed point of the mapping F given by (1.2).

Proof. Let x∗ ∈ H be a fixed point of the mapping F , i.e. x∗ ∈ F (x∗). Then
there exists w∗ ∈ T (x∗) such that

x∗ = x∗ − g(x∗) + PK (g(x∗)− ρ(A(x∗) + w∗)) ,

i.e.,
g(x∗) = PK (g(x∗)− ρ(A(x∗) + w∗)) ,

implies that

⟨g(x∗)− (g(x∗)− ρ(A(x∗) + w∗)) , y∗ − g(x∗)⟩ ≥ 0 ∀y∗ ∈ K .

Hence
⟨ρ(A(x∗) + w∗), y∗ − g(x∗)⟩ ≥ 0 ,

implies that

⟨A(x∗) + w∗, y∗ − g(x∗)⟩ ≥ 0 for some ρ > 0 .
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Conversely, let (x∗, w∗) ∈ H × T (x∗) be a solution of (1.1), then g(x∗) ∈ K
and

⟨A(x∗) + w∗, y∗ − g(x∗)⟩ ≥ 0 , ∀ y∗ ∈ K ,

hence, for some ρ > 0, we have

⟨ρ(A(x∗) + w∗), y∗ − g(x∗)⟩ ≥ 0 , ∀ y∗ ∈ K ,

or

⟨g(x∗)− (g(x∗)− ρ(A(x∗) + w∗)) , y∗ − g(x∗)⟩ ≥ 0 , ∀ y∗ ∈ K .

By Lemma 1.4, we have

g(x∗) = PK [g(x∗)− ρ(A(x∗) + w∗)] ,

i.e.,

x∗ = x∗ − g(x∗) + PK [g(x∗)− ρ(A(x∗) + w∗)]

∈ x∗ − g(x∗) + PK [g(x∗)− ρ(A(x∗) + T (x∗))]

⇒ x∗ ∈ F (x∗) .

i.e. x∗ is a fixed point of F .

Lemma 1.5 implies that the problem (1.1) is equivalent to the fixed point
problem (1.2). This alternative equivalent formulation provides a natural con-
nection between variational inequality problem (1.1) and the fixed point theory
which will be used to prove the existence result.

2. Main results

Theorem 2.1. Let K be a closed convex subset of a real Hilbert space H.
Let A, g : H → H be relaxed cocoercive with constants (δA, λA), (δg, λg) and
Lipschitz continuous mappings with constants µA, µg respectively. Let T : H →
CB(H) be a ζ − Ĥ-Lipschitz continuous mapping. Assume that the following
assumption holds:

(2.1)

∣∣∣∣ρ − Θ

(µ2
A − ζ2)

∣∣∣∣ <
√
Θ2 − 4(µ2

A − ζ2)κ(1− κ)

(µ2
A − ζ2)

,

|Θ| > 2
√
(µ2

A − ζ2)κ(1− κ) , µ2
A − ζ2 > 0 ,

where

Θ = λA − ζ(1− 2κ)− δAµ
2
A

κ =
√

1− 2λg + µ2
g(1 + 2δg) .

Then the problem (1.1) has a solution.
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Proof. By Lemma 1.5, it is enough to show that the mapping F defined by
(1.2) has a fixed point. Let x, y ∈ H be given. For any p ∈ F (x), there exists
w1 ∈ T (x) such that

p = x− g(x) + PK (g(x)− ρ (A(x) + w1)) .

Since w1 ∈ T (x), for any ε > 0, it follows from Lemma 1.2 that there exists
w2 ∈ T (y) such that

∥w1 − w2∥ ≤ (1 + ε)Ĥ(Tx, Ty) .

Taking q = y − g(y) + PK (g(y)− ρ (A(y) + w2)), we have q ∈ F (y).
Hence,

∥p− q∥
≤∥x− y − (g(x)− g(y))∥
+ ∥PK (g(x)− ρ(A(x) + w1))− PK (g(y)− ρ(A(y) + w2))∥

≤∥x− y − (g(x)− g(y))∥
+ ∥g(x)− g(y)− ρ {(A(x) + w1)− (A(y) + w2)}∥

≤2 ∥x− y − (g(x)− g(y))∥+ ∥x− y − ρ {(A(x) + w1)− (A(y) + w2)}∥
≤2 ∥x− y − (g(x)− g(y))∥+ ∥x− y − ρ {A(x)−A(y)}∥+ ρ ∥w1 − w2∥
≤2 ∥x− y − (g(x)− g(y))∥+ ∥x− y − ρ {A(x)−A(y)}∥

+ ρ(1 + ε)Ĥ(Tx, Ty)

≤2 ∥x− y − (g(x)− g(y))∥+ ∥x− y − ρ {A(x)−A(y)}∥
+ ρ(1 + ε)ζ ∥x− y∥ .(2.2)

Since g is relaxed (δg, λg)−cocoercive and µg-Lipschitz mapping, we can com-
pute the following:

∥x− y − (g(x)− g(y))∥2

= ∥x− y∥2 − 2 ⟨g(x)− g(y), x− y⟩+ ∥g(x)− g(y)∥2

≤ (1 + µ2
g) ∥x− y∥2 + 2δg ∥g(x)− g(y)∥2 − 2λg ∥x− y∥2

≤
(
1− 2λg + µ2

g(1 + 2δg)
)
∥x− y∥2 .(2.3)

Also, since A is relaxed (δA, λA)−cocoercive and µA-Lipschitz mapping, we get

∥x− y − ρ {A(x)−A(y)}∥2

= ∥x− y∥2 − 2ρ ⟨A(x)−A(y), x− y⟩+ ρ2 ∥A(x)−A(y)∥2

≤ ∥x− y∥2 − 2ρ
{
−δA ∥A(x)−A(y)∥2 + λA ∥x− y∥2

}
+ ρ2 ∥A(x)−A(y)∥2

≤ ∥x− y∥2 + 2ρδAµ
2
A ∥x− y∥2 − 2ρλA ∥x− y∥2

+ ρ2µ2
A ∥x− y∥2

=
[
1 + 2ρ

(
δAµ

2
A − λA

)
+ ρ2µ2

A

]
∥x− y∥2(2.4)
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Substituting (2.3), (2.4) into (2.2), we have

(2.5) ∥p− q∥ ≤ θ(ε) ∥x− y∥

where
θ(ε) = 2κ+ f(ρε) ,

κ =
√

1− 2λg + µ2
g(1 + 2δg) ,

f(ρε) =
√
1 + 2ρ (δAµ2

A − λA) + ρ2µ2
A + ρ(1 + ε)ζ .

By using (2.5), we get that

d(p, F (y)) = inf
q∈F (y)

∥p− q∥ ≤ θ(ε) ∥x− y∥ ,

since p ∈ F (x) is arbitrary, we get

(2.6) sup
p∈F (x)

d(p, F (y)) ≤ θ(ε) ∥x− y∥ .

Similarly, we get that

(2.7) sup
q∈F (y)

d(q, F (x)) ≤ θ(ε) ∥x− y∥ .

From the definition of Hausdorff metric Ĥ, it follows from (2.6) and (2.7) that

Ĥ(F (x), F (y)) ≤ θ(ε) ∥x− y∥ , ∀x, y ∈ H .

Letting ε → 0, we get that

Ĥ(F (x), F (y)) ≤ θ ∥x− y∥ , ∀x, y ∈ H ,

where,
θ = 2κ+ f(ρ) ,

f(ρ) =
√

1 + 2ρ (δAµ2
A − λA) + ρ2µ2

A + ρζ .

From (2.1), we get that θ < 1, thus F is a set valued contraction mapping,
by Lemma 1.3 it has a fixed point in H, i.e. there exist a point x∗ ∈ H such
that x∗ ∈ F (x∗). Lemma 1.5 implies that (x∗, w∗) ∈ H × T (x∗) is a solution
of variational inequality problem (1.1).

2.1. Iterative algorithm and convergence

For a given x0 ∈ H, w0 ∈ T (x0), let

x1 = x0 − g(x0) + PK (g(x0)− ρ(A(x0) + w0)) .

By Lemma 1.3 there exists w1 ∈ T (x1) such that

∥w0 − w1∥ ≤ (1 + 1)Ĥ(Tx0, Tx1) .
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Let x2 = x1 − g(x1) + PK (g(x1)− ρ(A(x1) + w1)), then by Lemma 1.3 there
exists w2 ∈ T (x2) such that

∥w1 − w2∥ ≤
(
1 +

1

2

)
Ĥ(Tx1, Tx2) .

By induction, we can get an iterative algorithm, as follows :

Algorithm 1. For a given x0 ∈ H, w0 ∈ T (x0), define sequences {xn} and
{wn} satisfying

(2.8)

xn+1 = xn − g(xn) + PK (g(xn)− ρ(A(xn) + wn)) ,

wn ∈ T (xn) , ∥wn − wn+1∥ ≤
(
1 +

1

n+ 1

)
Ĥ (T (xn), T (xn+1) .


Now, we define Ishikawa type [7] iterative algorithm for approximate solv-

ability of variational inequality problem (1.1).

Algorithm 2. For a given x0 ∈ H, compute xn+1 by the scheme

(2.9)
yn = (1− βn)xn + βn [xn − g(xn) + PK (g(xn)− ρ(A(xn) + wn))] ,

xn+1 = (1− αn)xn + αn [xn − g(xn) + PK (g(yn)− ρ(A(yn) + un))] ,

where wn ∈ T (xn), un ∈ T (yn) , n = 0, 1, 2, . . . and {αn}, {βn} are sequences
in [0, 1], satisfying certain conditions.

We need following result to prove the next result :

Lemma 2.2. [20] Let {an} be a non negative sequence satisfying

an+1 ≤ (1− cn)an + bn ,

with cn ∈ [0, 1],
∑∞

n=0 cn = ∞, bn = o(cn). Then limn→∞ an = 0.

Theorem 2.3. Let A, T, g satisfy all the assumptions of Theorem 2.1, and let
{αn}, {βn} be sequences in [0, 1] for all n ≥ 0 such that

∑∞
n=0 αn = ∞. Then

the approximate sequences {xn}, {wn} constructed by the Algorithm 2 converge
strongly to a solution (x∗, w∗) ∈ H × T (x∗) of the problem (1.1).

Proof. Let (x∗, w∗) ∈ H× T (x∗) is a solution of (1.1), by Lemma 1.5, we have

x∗ = x∗ − g(x∗) + PK (g(x∗)− ρ(A(x∗) + w∗)) .
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Using (2.9), we have

∥xn+1 − x∗∥
= ∥(1− αn)xn + αn [xn − g(xn) + PK (g(yn)− ρ(A(yn) + un))]− x∗∥
≤ (1− αn) ∥xn − x∗∥

+ αn ∥[xn − g(xn) + PK (g(yn)− ρ(A(yn) + un))]− (x∗)∥
≤ (1− αn) ∥xn − x∗∥

+ αn ∥(xn − g(xn) + PK [g(yn)− ρ(A(yn) + un)])− x∗∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥xn − x∗ − (g(xn)− g(x∗))∥

+ αn ∥PK [g(yn)− ρ(A(yn) + un)]− PK [g(x∗)− ρ(A(x∗) + w∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥xn − x∗ − (g(xn)− g(x∗))∥

+ αn ∥g(yn)− g(x∗)− ρ ((A(yn) + un)− (A(x∗) + w∗))∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥xn − x∗ − (g(xn)− g(x∗))∥

+ αn ∥yn − x∗ − (g(yn)− g(x∗))∥
+ αn ∥yn − x∗ − ρ (A(yn)−A(x∗))∥+ αnρ ∥un − w∗∥

≤ (1− αn) ∥xn − x∗∥+ αn

√
1− 2λg + µ2

g(1 + 2δg) ∥xn − x∗∥

+ αn

√
1− 2λg + µ2

g(1 + 2δg) ∥yn − x∗∥

+ αn

√
1 + 2ρ (δAµ2

A − λA) + ρ2µ2
A ∥yn − x∗∥

+ αnρ(1 + ε)ζ ∥yn − x∗∥
= (1− αn) ∥xn − x∗∥+ αnκ ∥xn − x∗∥+ αn (κ+ f(ρε)) ∥yn − x∗∥ ,(2.10)

where κ and f(ρε) are as in the Theorem 2.1.
Similarly, we have

∥yn − x∗∥
≤ (1− βn) ∥xn − x∗∥+ βn ∥xn − x∗ − (g(xn)− g(x∗))∥

+ βn ∥PK (g(xn)− ρ (A(xn) + wn))− PK (g(x∗)− ρ (A(x∗)− w∗))∥
≤ (1− βn) ∥xn − x∗∥+ βnκ ∥xn − x∗∥

+ βn ∥g(xn)− g(x∗)− ρ {(A(xn) + wn)− (A(x∗)− w∗)}∥
≤ (1− βn) ∥xn − x∗∥+ βnκ ∥xn − x∗∥

+ βn ∥xn − x∗ − (g(xn)− g(x∗))∥
+ βn ∥xn − x∗ − ρ (A(xn)−A(x∗))∥+ βnρ ∥wn − w∗∥

≤ (1− βn) ∥xn − x∗∥+ 2βnκ ∥xn − x∗∥+ βnf(ρε) ∥xn − x∗∥

= (1− βn) ∥xn − x∗∥+ βnθ(ε) ∥xn − x∗∥
(2.11)

Substituting (2.11) into (2.10), yields that

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnκ ∥xn − x∗∥
+ αn(κ+ f(ρε)) {(1− βn) + βnθ(ε)} ∥xn − x∗∥
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letting ε → 0, we get that

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnκ ∥xn − x∗∥
+ αn(κ+ f(ρ)) {(1− βn) + βnθ} ∥xn − x∗∥

≤ [1− αn {1− θ}] ∥xn − x∗∥ .(2.12)

By virtue of Lemma 2.2, we get from (2.12) that, limn→∞ ∥xn+1 − x∗∥ = 0,
i.e. xn → x∗, as n → ∞.
Since

∥wn − w∗∥ ≤ (1 + ε)ζ ∥xn − x∗∥

letting n → ∞, we get that wn → w∗. This completes the proof.

2.2. Iterative algorithm for common element

If (x∗, w∗) ∈ H× T (x∗) is a solution of (1.1), then by the relation (1.2), we
have

(2.13) x∗ = x∗ − g(x∗) + PK (g(x∗)− ρ(A(x∗) + w∗)) .

Now, if x∗ is a common element of the fixed point set F (S) of a mapping
S and solution set of V I(H, A, T, g), we can see from relation (2.13) that

(2.14) x∗ = Sx∗ = S [x∗ − g(x∗) + PK (g(x∗)− ρ(A(x∗) + w∗))] .

Using the fixed point formulation (2.14), we now suggest and analyze the
following Ishikawa type [7] iterative methods:

Algorithm 3. For a given x0 ∈ H, find the approximate solution xn+1 by the
iterative scheme
(2.15)

yn = (1− βn)xn + βnS [xn − g(xn) + PK (g(xn)− ρ(A(xn) + wn))] ,

xn+1 = (1− αn)xn + αnS [xn − g(xn) + PK (g(yn)− ρ(A(yn) + un))] ,

where wn ∈ T (xn), un ∈ T (yn) , n = 0, 1, 2, . . . and {αn}, {βn} are sequences
in [0, 1], satisfying certain conditions.

Theorem 2.4. Let A, T, g satisfy all the assumptions of Theorem 2.1 and let S
be a nonexpansive mapping from K into itself such that F (S)∩V I(H, A, T, g) ̸=
∅. Let {αn}, {βn} are sequences in [0, 1] for all n ≥ 0 such that

∑∞
n=0 αn = ∞.

Then the approximate sequence {xn} constructed by the Algorithm 3 converges
strongly to a solution x∗ ∈ F (S) ∩ V I(H, A, T, g).

Proof. Let x∗ be an element of F (S) ∩ V I(H, A, T, g), then using (2.15), we
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have

∥xn+1 − x∗∥
= ∥(1− αn)xn + αnS [xn − g(xn) + PK (g(yn)− ρ(A(yn) + un))]− x∗∥
≤ (1− αn) ∥xn − x∗∥

+ αn ∥S [xn − g(xn) + PK (g(yn)− ρ(A(yn) + un))]− S(x∗)∥
≤ (1− αn) ∥xn − x∗∥

+ αn ∥(xn − g(xn) + PK (g(yn)− ρ(A(yn) + un)))− x∗∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥xn − x∗ − (g(xn)− g(x∗))∥

+ αn ∥PK (g(yn)− ρ(A(yn) + un))− PK (g(x∗)− ρ(A(x∗) + w∗))∥

By the similar arguments as in the proof of Theorem 2.3, we get that

lim
n→∞

∥xn+1 − x∗∥ = 0,

i.e. xn → x∗, as n → ∞. This completes the proof.

We now discuss some special cases of Variational inequality problem (1.1) :

1. If T is single valued, then the problem (1.1) is equivalent to finding x∗ ∈ H
such that g(x∗) ∈ K and

(2.16) ⟨Ax∗ + Tx∗, y∗ − g(x∗)⟩ ≥ 0 , ∀ y∗ ∈ K .

Inequality (2.16) is studied by Noor et al. [13].

2. If g is identity mapping, then the problem (1.1) is equivalent to finding
(x∗, w∗) ∈ H × T (x∗) such that

(2.17) ⟨Ax∗ + w∗, y∗ − x∗⟩ ≥ 0 , ∀ y∗ ∈ K .

Inequality (2.17) is studied by Verma [18], Qin et al. [16].

3. If T is single valued and g is identity mappings, then the problem (1.1)
is equivalent to finding x∗ ∈ H, such that

(2.18) ⟨Ax∗ + Tx∗, y∗ − x∗⟩ ≥ 0 , ∀ y∗ ∈ K .

Inequality (2.18) is studied by Noor [11, 12].

4. If A = 0, then the problem (1.1) is equivalent to finding (x∗, w∗) ∈
H × T (x∗) such that g(x∗) ∈ K and

(2.19) ⟨w∗, y∗ − g(x∗)⟩ ≥ 0 , ∀ y∗ ∈ K .

Inequality (2.19) is studied by Verma [19].
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5. If A = 0 and g is identity mappings, then the problem (1.1) is equivalent
to finding (x∗, w∗) ∈ H × T (x∗) such that

(2.20) ⟨w∗, y∗ − x∗⟩ ≥ 0 , ∀ y∗ ∈ K .

Inequality (2.20) is studied by Bruck [2], Fang et.al [3] and Siddiqi et.al
[17].

6. If T = 0 and g is identity mappings, then the problem (1.1) is equivalent
to finding x∗ ∈ H, such that

(2.21) ⟨Ax∗, y∗ − x∗⟩ ≥ 0 , ∀ y∗ ∈ K .

Inequality (2.21) is studied by Lions and Stampacchia [9].

Conclusion

Results presented in the paper are significant improvement and extension of
the results obtained previously by many authors. Especially, our Theorem 2.1,
extends the existence of solution in the literature to the case of generalized non-
linear variational inequality (1.1). Algorithm 2 is a very general and unified
algorithm for finding the approximate solution of the problem (1.1). Theo-
rem 2.4 provides convergence to common point of fixed point set of nonex-
pansive mapping and the solution set of the generalized nonlinear variational
inequality problem (1.1).
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