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AN ASYMPTOTIC NUMERICAL METHOD FOR
SINGULARLY PERTURBED WEAKLY COUPLED
SYSTEM OF CONVECTION-DIFFUSION TYPE
DIFFERENTIAL DIFFERENCE EQUATIONS

V. Subburayan1 and N. Ramanujam2

Abstract. In this paper an asymptotic numerical method is sug-
gested to solve singularly perturbed weakly coupled system of convection-
diffusion type second order ordinary differential equations with delay
(negative shift) terms. An error estimate is derived in the supremum
norm and it is found to be of order O(N−1 lnN) provided that ε ≤ CN−1,
where ε is small perturbation parameter and N is the discretization
parameter. Numerical results are provided to illustrate the theoretical
results.
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1. Introduction

In many applications, one assumes the system under consideration is gov-
erned by a principle of causality; that is, the future state of the system is
independent of the past states and is determined solely by the present. How-
ever, under closer scrutiny, it becomes apparent that the principle of causality is
often a first order approximation to the true situation and more realistic model
would involve some of the past states of the system. This kind of systems are
governed by differential equations with delay arguments.

A subclass of these equations consists of singularly perturbed ordinary dif-
ferential equations with a delay, that is an ordinary differential equation in
which the highest derivative is multiplied by a small parameter and involv-
ing at least one delay term. Such type of equations arise frequently in the
mathematical modeling of various practical phenomena, for example, in the
modeling of the human pupil-light reflex [17], the mathematical model of the
determination of expected time for generation of action potentials in nerve cell
by random synaptic inputs in the dendrites [14] and variational problems in
control theory [8], etc. For a fixed ε > 0, the existence and uniqueness of solu-
tions of the boundary value problems for delay differential equations of second
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order ordinary differential equations have been well studied in the literature.
For more details one may refer to [3, 4].

It is well known that standard discretization methods for solving singularly
perturbed non delay differential equations are sometimes unstable and fail to
give accurate results when the perturbation parameter ε is small. Therefore,
it is important to develop suitable numerical methods to solve this type of
equations, whose accuracy does not depend on the parameter ε, that is the
methods are uniformly convergent with respect to the parameter. For more
details of this type of numerical methods one may refer to [2, 5, 6, 7, 19, 23,
15, 16].

In [9, 20] and the references therein the authors presented various numerical
methods for the following Singularly Perturbed Delay Differential Equations
(SPDDEs)

εy′′ + a(x)y′(x− δ) + b(x)y′(x) + c(x)y(x− δ) + e(x)y(x) = f(x),(1.1)

y(x) = φ(x), x ∈ [−δ, 0], y(1) = γ, δ = o(ε).(1.2)

In fact, for various combinations of conditions on the coefficients a, b, c and
e (for an example a 6= 0, b = c = 0, e 6= 0 [9]) they suggested suitable
numerical methods. In all these methods first they applied Taylor’s expansion
for y′(x− δ) or y(x− δ) and reduced the DDEs to non DDEs. For the resulting
non DDEs they applied standard numerical methods available in the literature.
Following this procedure some authors [10, 18] suggested numerical methods
to the following Boundary Value Problem (BVP):

εy′′ + c(x)y(x− δ) + d(x)y(x+ η) + e(x)y(x) = f(x),(1.3)

y(x) = φ(x), x ∈ [−δ, 0], y(x) = γ(x), x ∈ [1, 1 + η],(1.4)

where δ = o(ε), η = o(ε). Some authors [11] considered the above DDE (1.1)-
(1.2) with a 6= 0, b = 0, c = 0 and suggested numerical methods without
applying Taylor’s expansion, that is, reducing the DDE to non DDE. Using the
Taylor’s series expansion procedure as mentioned above and Newton’s quasi
linearization process some authors [12] solved nonlinear problems numerically.
Subburayan and Ramanujam [21, 22] suggested a numerical method namely
initial value technique for the following BVP

{
−εu′′ + a(x)u′(x) + b(x)u(x) + c(x)u(x− 1) = f(x), x ∈ (0, 1) ∪ (1, 2),

u(x) = φ(x), [−1, 0], u(2) = l,

(1.5)

where a can be either continuous throughout the domain [0, 2] or continuous
except at x = 1. In [21, 22], the authors considered single second order delay
differential equation and applied initial value technique, whereas the present
paper considers system and applied asymptotic numerical method which is
different from the initial value technique. The motivation for the consideration
of the above SPDDE (1.5) and below (2.1) has come from the paper of Lange
and Miura [13].
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In the present paper, as mentioned in the abstract, we consider the following
weakly coupled system of singularly perturbed boundary value problem (2.1)
for second order ordinary differential equations of convection-diffusion type
with a negative shifts and suggest an asymptotic numerical method. It is
proved that this method is convergent of order O(N−1 lnN).

The present paper is organized as follows. In Section 2, the problem under
study is stated. A maximum principle for the DDE is established in Section
3. Further a stability result is derived. Some analytical results are derived in
Section 4. In Section 5, a mesh selection strategy is explained. Further the
fourth order Runge Kutta method with piecewise cubic Hermite interpolation
on this mesh for a system of first order delay differential equations and an up-
wind finite difference scheme for weakly coupled system of singularly perturbed
second order ordinary differential equations are described. Also their error es-
timates are given. Section 6 presents the asymptotic numerical method and its
error analysis. Section 7 presents numerical results.

2. Statement of the problem

Throughout the paper, it is assumed that ε ≤ CN−1 and C1, C denote
generic positive constants independent of the singular perturbation parameter
ε and the discretization parameter N of the discrete problem. The supremum
norm is used for studying the convergence of the numerical solution to the
exact solution of a singular perturbation problem:

‖w‖D = max{‖w1‖D, ‖w2‖D},

where w = (w1, w2), ‖wi‖D = sup
x∈D
{| wi(x) |}, i = 1, 2.

We consider the following Boundary Value Problem (BVP).
Find u = (u1, u2), u1, u2 ∈ Y = C0(Ω) ∩ C1(Ω) ∩ C2(Ω∗) such that

(2.1)



−εu′′1(x) + a1(x)u′1(x) +
∑2
k=1 b1k(x)uk(x)

+
∑2
k=1 c1k(x)uk(x− 1) = f1(x), x ∈ Ω∗,

−εu′′2(x) + a2(x)u′2(x) +
∑2
k=1 b2k(x)uk(x)

+
∑2
k=1 c2k(x)uk(x− 1) = f2(x), x ∈ Ω∗,

u1(x) = φ1(x), x ∈ [−1, 0], u1(2) = l1,

u2(x) = φ2(x), x ∈ [−1, 0], u2(2) = l2,

where 0 < ε � 1, ai(x) ≥ αi > 0, i = 1, 2, 0 < α < min{α1, α2}, b11(x) ≥ 0,
b12(x) ≤ 0, b21(x) ≤ 0, b22(x) ≥ 0, cij(x) ≤ 0, i, j = 1, 2, bi1(x) + bi2 ≥ βi ≥
0, i = 1, 2, ci1(x) + ci2(x) ≥ γi, i = 1, 2, 2αi + 5βi + 5γi ≥ ηi > 0, i = 1, 2,
and ai, bij , cij , fi, i = 1, 2, j = 1, 2 are sufficiently smooth functions on Ω,
Ω = (0, 2), Ω = [0, 2], Ω∗ = Ω− ∪ Ω+, Ω− = (0, 1), Ω+ = (1, 2) and φi, i = 1, 2
are smooth on [−1, 0].
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The above problem is equivalent to

(2.2) P1u(x) : =


−εu′′1(x) + a1(x)u′1(x) +

∑2
k=1 b1k(x)uk(x)

= f1(x)−
∑2
k=1 c1k(x)φk(x− 1), x ∈ Ω−,

−εu′′1(x) + a1(x)u′1(x) +
∑2
k=1 b1k(x)uk(x)

+
∑2
k=1 c1k(x)uk(x− 1) = f1(x), x ∈ Ω+,

(2.3) P2u(x) : =


−εu′′2(x) + a2(x)u′2(x) +

∑2
k=1 b2k(x)uk(x)

= f2(x)−
∑2
k=1 c2k(x)φk(x− 1), x ∈ Ω−,

−εu′′2(x) + a2(x)u′2(x) +
∑2
k=1 b2k(x)uk(x)

+
∑2
k=1 c2k(x)uk(x− 1) = f2(x), x ∈ Ω+,

u1(0) = φ1(0), u1(1−) = u1(1+), u′1(1−) = u′1(1+), u1(2) = l1,

u2(0) = φ2(0), u2(1−) = u2(1+), u′2(1−) = u′2(1+), u2(2) = l2,

where u1(1−) and u1(1+) denote the left and right limits of u1 at x = 1 and
the similar expressions are true for other functions. The above problem (2.1)
has a solution [4].

3. Stability Result

In the following, the function s̄ defined by s̄(x) = (s1(x), s2(x)), where

(3.1) s1(x) = s2(x) =

{
1
8 + x

2 , x ∈ [0, 1],
3
8 + x

4 , x ∈ [1, 2]

is used. The following theorem states a maximum principle for the BVP (2.1).

Theorem 3.1. (Maximum principle) Let w = (w1, w2), w1, w2 ∈ C0(Ω) ∩
C2(Ω∗) be any function satisfying wi(0) ≥ 0, wi(2) ≥ 0, Piw(x) ≥ 0, ∀x ∈ Ω∗,
i = 1, 2 and w′i(1+) − w′i(1−) = [w′i](1) ≤ 0, i = 1, 2. Then wi(x) ≥ 0,
∀x ∈ Ω, i = 1, 2.

Proof. Let s̄ be a test function defined by (3.1). It is easy to see that, Pis(x) >
0, ∀x ∈ Ω∗, i = 1, 2, [s′i](1) < 0, i = 1, 2, si(x) > 0,∀x ∈ Ω, i = 1, 2. Let

µ = max

{
max
x∈Ω
{−w1(x)

s1(x)
}, max

x∈Ω
{−w2(x)

s2(x)
}
}
.

Then there exists at least one point x0 ∈ Ω such that w1(x0) + µs1(x0) = 0
or w2(x0) + µs2(x0) = 0 or both and wi(x) + µsi(x) ≥ 0, ∀x ∈ Ω, i = 1, 2.
Without the loss of generality we assume that, w1(x0)+µs1(x0) = 0. Therefore
the function (w1 + µs1) attains its minimum at x = x0. Suppose the theorem
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does not hold true then µ > 0.
Let x0 ∈ Ω−.

0 < P1(w + µs)(x0) =− ε(w1 + µs1)′′(x0) + a1(x0)(w1 + µs1)′(x0)

+ b11(x0)(w1 + µs1)(x0) + b12(x0)(w2 + µs2)(x0) ≤ 0.

It is a contradiction.
Similarly one can consider the case x0 ∈ Ω+ and get a contradiction.
Let x0 = 1.

0 ≤ [(w1 + µs1)′](1) = [w′1](1) + µ[s′1](1) < 0.

It is a contradiction. Hence the proof of the theorem.

Theorem 3.2. (Stability Result) Let u = (u1, u2), u1, u2 ∈ Y be any function.
Then

| ui(x) |≤ C max

{
max
j=1,2

{| uj(0) |}, max
j=1,2

{| uj(2) |}, max
j=1,2

{ sup
ζ∈Ω∗

| Pju(ζ) |}
}
,

∀ x ∈ Ω, i = 1, 2.

Proof. Define ψ
±

(x) = (ψ±1 (x), ψ±2 (x)) as ψ±i (x) = C C1si(x) ± ui(x), x ∈
Ω, i = 1, 2, where C1 = max

{
max
j=1,2

{| uj(0) |}, max
j=1,2

{| uj(2) |}, max
j=1,2

{ sup
ζ∈Ω∗

|

Pju(ζ) |}
}

and s̄ defined above. Further, we have ψ±i (0) = C C1si(0)±ui(0) >

0, i = 1, 2 and ψ±i (2) = C C1si(2) ± ui(2) > 0, i = 1, 2 by a proper choice of
C.
Let x ∈ Ω−.

P1ψ
±

(x) = C C1P1s(x)± P1u(x) ≥ C C1

8
(4α1 + β1)± P1u(x) ≥ 0,

by a proper choice of C.

It is easy to show that P1ψ
±

(x) ≥ 0 in Ω+. Therefore P1ψ
±

(x) ≥ 0 in Ω∗.

Similarly one can prove that P2ψ
±

(x) ≥ 0 in Ω∗.
Let x = 1.

[ψ±
′

i ](1) = C C1[s′i](1) + [u′i](1) < 0, i = 1, 2.

Then by Theorem 3.1 we have ψ±i (x) ≥ 0, x ∈ Ω, i = 1, 2. Therefore

| ui(x) |≤ C max

{
max
j=1,2

{| uj(0) |}, max
j=1,2

{| uj(2) |}, max
j=1,2

{ sup
ζ∈Ω∗

| Pju(ζ) |}
}
,

∀ x ∈ Ω, i = 1, 2.

Hence the proof.

An immediate application of the above Theorem 3.2 is that, the solution of
the BVP (2.1) is unique.
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4. Analytical Results

Let u0(x) = (u01(x), u02(x)), u0i ∈ C0(Ω) ∩ C1(Ω ∪ {2}), i = 1, 2, be the
solution of the reduced problem of (2.1) given by

a1(x)u′01(x) +
∑2
k=1 b1k(x)u0k(x)

+
∑2
k=1 c1k(x)u0k(x− 1) = f1(x), x ∈ Ω ∪ {2},

a2(x)u′02(x) +
∑2
k=1 b2k(x)u0k(x)

+
∑2
k=1 c2k(x)u0k(x− 1) = f2(x), x ∈ Ω ∪ {2},

u01(x) = φ1(x), x ∈ [−1, 0],

u02(x) = φ2(x), x ∈ [−1, 0].

(4.1)

Further, we assume that ‖ u′′0i ‖Ω∗≤ C, i = 1, 2.

Theorem 4.1. Let u be the solution of (2.1) and u0 be its reduced problem

solution defined by (4.1). Then, | ui(x)− u0i(x) |≤ Cε+C exp
(−α(2−x)

ε

)
, x ∈

Ω, i = 1, 2.

Proof. Consider the barrier function ϕ±(x) = (ϕ±1 (x), ϕ±2 (x)), where

ϕ±i (x) = C1εsi(x) + C1 exp

(
−α(2− x)

ε

)
± (ui(x)− u0i(x)), x ∈ Ω, i = 1, 2.

It is easy to see that ϕ±i ∈ C0(Ω)∩C2(Ω− ∪Ω+). Further, ϕ±i (0) ≥ 0, i = 1, 2
and ϕ±i (2) ≥ 0, i = 1, 2 for a suitable choice of C1 > 0.

Case (i): (x ∈ Ω−)

P1ϕ
±(x) = C1ε[a1(x)s′1(x) + b11(x)s1(x) + b12(x)s2(x)]

+ C1

[α
ε

(a1(x)− α) + (b11(x) + b12(x))
]

exp(−α(2− x)/ε)

± P1(u(x)− u0(x))

≥ C1ε[α1/2 + β1/8] + C1

[α
ε

(α1 − α) + β1

]
exp(−α(2− x)/ε)∓ Cε

≥ 0,

for a suitable choice of C1 > 0.
Case (ii):(x ∈ Ω+)

P1ϕ
±(x) = C1ε[a1(x)s′1(x) + b11(x)s1(x) + b12(x)s2(x) + c11(x)s1(x− 1)

+ c12(x)s2(x− 1)] + C1

[α
ε

(a1(x)− α) + (b11(x) + b12(x))
]

× exp(−α(2− x)/ε) +

[
(c11(x) + c12(x)) exp(

−α
ε

)

]
× exp(−α(2− x)/ε)± P1(u(x)− u0(x))

≥ C1ε[α1/4 + 5β0/8 + 5γ0/8] + C1

[α
ε

(α1 − α) + β1 + γ1 exp(
−α
ε

)
]

× exp(−α(2− x)/ε)∓ Cε ≥ 0,
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for a suitable choice of C1 > 0.
Similarly one can prove that P2ϕ

±(x) ≥ 0, x ∈ Ω∗. Further, [ϕ±
′

i ](1) < 0,
i = 1, 2.

Then by the Theorem 3.1, we have ϕ±i (x) ≥ 0, x ∈ Ω, i = 1, 2. That is,

| ui(x)− u0i(x) |≤ Cε+ C exp

(
−α(2− x)

ε

)
, x ∈ Ω, i = 1, 2.

Hence the proof of the theorem.

Note 4.2. From the above Theorem 4.1, it is clear that the solution u of the
BVP (2.1) exhibits a strong boundary layer at x = 2 and further, away from
the boundary layer and in particular on [0, 1], we have

| ui(x)− u0i(x) |≤ C
(
ε+ exp

(
−α
ε

))
≤ Cε, x ∈ [0, 1], i = 1, 2.

Now we define an auxiliary problem to (2.1). Find u∗(x) = (u∗1(x), u∗2(x)),
u∗1, u

∗
2 ∈ Y ∗ = C0(Ω) ∩ C2(Ω) such that

P ∗j u
∗(x) : = −εu∗

′′

j (x) + aj(x)u∗
′

j (x) +

2∑
k=1

bjk(x)u∗k(x) = f∗j (x),(4.2)

x ∈ Ω, j = 1, 2,

u∗j (0) = uj(0), u∗j (2) = uj(2), j = 1, 2,

where

f∗j (x) =

{
fj(x)−

∑2
k=1 cjk(x)φk(x− 1), x ∈ Ω− ∪ {1},

fj(x)−
∑2
k=1 cjk(x)u0k(x− 1), x ∈ Ω+, j = 1, 2.

Theorem 4.3. Let w(x) = (w1(x), w1(x)), w1, w2 ∈ C0(Ω) ∩ C2(Ω∗) be any
function satisfying wi(0) ≥ 0, wi(2) ≥ 0, i = 1, 2, P ∗j w(x) ≥ 0, x ∈ Ω∗,

j = 1, 2 and [w′i](1) ≤ 0, i = 1, 2. Then, wi(x) ≥ 0, x ∈ Ω, i = 1, 2.

Proof. See [23].

Theorem 4.4. Let u and u∗ be the solutions of the problems (2.1) and (4.2),
respectively. Then, | ui(x)− u∗i (x) |≤ Cε, x ∈ Ω, i = 1, 2.

Proof. Consider the barrier function ϕ±(x) = (ϕ±1 (x), ϕ±2 (x)), where

ϕ±i (x) = C1εsi(x)± (ui(x)− u∗i (x)), x ∈ Ω, i = 1, 2,

C1 is a positive constant. Note that ϕ±i ∈ C0(Ω) ∩ C2(Ω− ∪ Ω+), i = 1, 2.
Further, ϕ±i (0) ≥ 0, i = 1, 2 and ϕ±i (2) ≥ 0, i = 1, 2 for a suitable choice of
C1 > 0.
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Case (i): (x ∈ Ω−)

P1ϕ
±(x) = C1ε[a1(x)s′1(x) + b11(x)s1(x) + b12(x)s2(x)]± 0

≥ C1ε[α1/2 + β1/8]± 0 ≥ 0,

for a suitable choice of C1 > 0.
Case (ii):(x ∈ Ω+)

P1ϕ
±(x) = C1ε[a1(x)s′1(x) + b11(x)s1(x) + b12(x)s2(x)

+ c11(x)s1(x− 1) + c12(x)s2(x− 1)]

± c11(x)(u01(x− 1)− u1(x− 1)) + c12(x)(u02(x− 1)− u2(x− 1))

≥ C1ε[α1/4 + 5β0/8 + 5γ0/8]∓ Cε ≥ 0,

for a suitable choice of C1 > 0.
Similarly one can prove that P2ϕ

±(x) ≥ 0, x ∈ Ω∗. Further, [ϕ±
′

i ](1) < 0,
i = 1, 2.

Then by the Theorem 3.1, we have ϕ±i (x) ≥ 0, x ∈ Ω, i = 1, 2. That is,

| ui(x)− u∗i (x) |≤ Cε, x ∈ Ω, i = 1, 2.

Hence the proof of the theorem.

5. Discrete Problem

In this section, first a mesh selection strategy is explained. Then the fourth
order Runge Kutta method with piecewise cubic Hermite interpolation on this
mesh for initial value problem (4.1) and an upwind finite difference scheme for
the BVP (4.2) are presented. Further error estimates of these methods are
given.

5.1. Mesh Selection Strategy

The BVP (2.1) and the auxiliary problem (4.2) exhibit a strong boundary
layer at x = 2 and the functions f∗1 and f∗2 are continuous in [0, 2] but not
differentiable at x = 1. Further, x = 1 is a primary discontinuity point [1].
Therefore, we choose a piece-wise uniform Shishkin mesh on [0, 2]. In fact,
we divide the interval [0, 2] into four subintervals, namely Ω1 = [0, 1 − τ ],
Ω2 = [1− τ, 1], Ω3 = [1, 2− τ ], Ω4 = [2− τ, 2], where τ = min

{
0.5, 2ε lnN

α

}
.

Let h = 2N−1τ & H = 2N−1(1− τ). The mesh Ω
2N

= {x0, x1, . . . , x2N}
is defined by

x0 = 0.0, xi = x0 + iH, i = 1(1)
N

2
, xi+ N

2
= xN

2
+ ih, i = 1(1)

N

2
,

xi+N = xN + iH, i = 1(1)
N

2
, xi+ 3N

2
= x 3N

2
+ ih, i = 1(1)

N

2
.
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5.2. Numerical Solution for (4.1)

In order to obtain a numerical solution for the problem (4.1), we apply the
fourth order Runge-Kutta method with piecewise cubic Hermite interpolation

on Ω
2N

[1]. In fact, the numerical solution is given by

U0(xi) = (U01(xi), U02(xi)), i = 0(1)2N,(5.1)

U0j(x0) = φj(x0), j = 1, 2,

U0j(xi+1) = U0j(xi) +
1

6
(Kj1 + 2Kj2 + 2Kj3 +Kj4),

i = 0(1)2N − 1, j = 1, 2,

where

Kj1 = h∗
[
fj(xi)
aj(xi)

−
∑2

l=1 bjl(xi)U0l(xi)

aj(xi)
−

∑2
l=1 cjl(xi)U

h∗
0l (xi)

aj(xi)

]
,

Kj2 = h∗
[
fj(xi+

h∗
2 )

aj(xi+
h∗
2 )
−

∑2
l=1 bjl(xi+

h∗
2 )(U0l(xi)+

Kl1
2 )

aj(xi+
h∗
2 )

−
∑2

l=1 cjl(xi+
h∗
2 )Uh∗

0l (xi+
h∗
2 )

aj(xi+
h∗
2 )

]
,

Kj3 = h∗
[
fj(xi+

h∗
2 )

aj(xi+
h∗
2 )
−

∑2
l=1 bjl(xi+

h∗
2 )(U0l(xi)+

Kl2
2 )

aj(xi+
h∗
2 )

−
∑2

l=1 cjl(xi+
h∗
2 )Uh∗

0l (xi+
h∗
2 )

aj(xi+
h∗
2 )

]
,

Kj4 = h∗
[
fj(xi+h

∗)
aj(xi+h∗)

−
∑2

l=1 bjl(xi+h
∗)(U0l(xi)+Kl3)

aj(xi+h∗)

−
∑2

l=1 cjl(xi+h
∗)Uh∗

0l (xi+h
∗)

aj(xi+h∗)

]
,

h∗ =

{
H, i = 0(1)N2 − 1, i = N(1) 3N

2 − 1,

h, i = N
2 (1)N − 1, i = 3N

2 (1)2N − 1,

Uh
∗

0l (x) =


φl(x− 1), x ∈ [xi, xi+1], i = 0(1)N − 1,

U0l(xm)Am(x− 1) + U0l(xm+1)Am+1(x− 1)

+Bm(x− 1)f̃l(xm) +Bm+1(x− 1)f̃l(xm+1), x ∈ [xi, xi+1],

i = N(1)2N − 1, m = i−N, l = 1, 2,

Am(x)=
[
1− 2(x− xm)

xm − xm+1

] (x− xm+1)2

(xm − xm+1)2
,

Am+1(x)=
[
1− 2(x− xm+1)

xm+1 − xm

] (x− xm)2

(xm+1 − xm)2
,

Bm(x)=
(x− xm)(x− xm+1)2

(xm − xm+1)2
, Bm+1(x) =

(x− xm+1)(x− xm)2

(xm+1 − xm)2
,

f̃j(xm)=
fj(xm)

aj(xm)
−
∑2
l=1 bjl(xm)U0l(xm)

aj(xm)
−
∑2
l=1 cjl(xm)φl(xm − 1)

aj(xm)
, j = 1, 2.

The following theorem gives an error estimate for the above method.
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Theorem 5.1. Let u0(x) be the solution of the problem (4.1). Further, let
U0(xi) = (U01(xi), U02(xi)) be its numerical solution defined by (5.1). Then,
‖ u0 − U0 ‖Ω2N≤ CH4.

Proof. See [1].

5.3. A Finite Difference Method for the BVP (4.2)

On Ω
2N

, we define the following scheme for the BVP (4.2):
(5.2)

P ∗Nj U
∗
(xi) = −εδ2U∗j (xi) + aj(xi)D

−U∗j (xi) +
∑2
k=1 bjk(xi)U

∗
k (xi)

= F ∗j (xi), j = 1, 2, i = 1(1)N − 1, N + 1(1)2N − 1,

D−U∗j (xN ) = D+U∗j (xN ), j = 1, 2,

U∗j (x0) = u∗j (0), U∗j (x2N ) = u∗j (2), j = 1, 2,

where

δ2U∗j (xi) =
2

xi+1 − xi−1

[
D+U∗j (xi)−D−U∗j (xi)

]
,

D−U∗j (xi) =
U∗j (xi)− U∗j (xi−1)

xi − xi−1
, D+U∗j (xi) =

U∗j (xi+1)− U∗j (xi)

xi+1 − xi
,

(5.3) F ∗j (xi) = f∗j (xi), xi ∈ Ω
2N \ {x0, xN , x2N},

or

(5.4) F ∗j (xi) =

{
fj(xi)−

∑2
k=1 cjk(xi)φk(xi − 1), xi ∈ Ω− ∩ Ω

2N
,

fj(xi)−
∑2
k=1 cjk(xi)U0k(xi−N ), xi ∈ Ω+ ∩ Ω

2N
.

Theorem 5.2. (Discrete maximum principle) Suppose a mesh function Z(xi)

satisfies Zj(x0) ≥ 0, Zj(x2N ) ≥ 0, j = 1, 2, P ∗Nj Z(xi) ≥ 0, xi ∈ Ω
2N

\{x0, xN , x2N}, j = 1, 2 and [D]Zj(xN ) = D+Zj(xN ) − D−Zj(xN ) ≤ 0,

j = 1, 2. Then, Zj(xi) ≥ 0, ∀xi ∈ Ω
2N
, j = 1, 2.

Proof. See [23].

A consequence of this theorem is the following stability result.

Theorem 5.3. Let U
∗
(xi) be a numerical solution of the problem (4.2) defined

by (5.2) either with (5.3) or (5.4). Then,

| U∗k (xi) |

≤ C max

{
max
j=1,2

{| U∗j (x0) |}, max
j=1,2

{| U∗j (x2N ) |}, max
j=1,2

{max
l∈J
| P ∗j U

∗
(xl) |}

}
,

∀ xi ∈ Ω
2N
, k = 1, 2, J = {1, 2, · · · , N − 1, N + 1, · · · , 2N − 1}.
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Theorem 5.4. Let u∗ be the solution of the auxiliary problem (4.2) and let

U
∗
(xi) be the corresponding numerical solution defined by (5.2) and (5.3).

Then,

| u∗j (xi)− U∗j (xi) |≤ CN−1 lnN, xi ∈ Ω
2N
, j = 1, 2.

Proof. See [23].

Theorem 5.5. Let U
∗
(xi) be a numerical solution of (4.2) defined by (5.2)

and (5.4). If ε ≤ CN−1, then we have

| u∗j (xi)− U∗j (xi) |≤ CN−1 lnN, xi ∈ Ω
2N
, j = 1, 2.

Proof. Using the Theorems 5.1 and 5.3 and the result given in [23] one can
derive the desired result. It may be noted that, the result derived in [23] is true
only when ε ≤ CN−1.

6. Asymptotic Numerical Method

We now explain how to obtain a numerical solution for the BVP (2.1) by the
asymptotic numerical method. First we solve the reduced problem (4.1) either
exactly or numerically. Then we solve numerically the auxiliary problem (4.2)
by using the scheme (5.2) with either (5.3) or (5.4). This numerical solution
is taken as an approximation to the exact solution of the BVP (2.1). An error
estimate for this approximation is given in the following theorem.

Theorem 6.1. Let u be the solution of the problem (2.1) and let U
∗
(xi) be

a numerical solution defined by (5.2) with either (5.3) or (5.4) . If ε ≤ CN−1,

then we have, ‖ u− U∗ ‖
Ω

2N≤ CN−1 lnN.

Proof. Then by the Theorems 4.4 and 5.4 or 5.5 we have,

| uj(xi)− U∗j (xi) | ≤| uj(xi)− u∗j (xi) | + | u∗j (xi)− U∗j (xi) |, xi ∈ Ω
2N
,

≤ Cε+ CN−1 lnN

≤ CN−1 + CN−1 lnN ≤ CN−1 lnN, j = 1, 2

since ε ≤ CN−1. Hence the proof of the theorem.

7. Numerical Results

In this section, three examples are given to illustrate the numerical tech-
nique discussed in this paper. We use the double mesh principle to estimate
the error and compute the experiment rate of convergence in our computed
solution. For this we put

DM
k,ε = max

0≤i≤M
| UMk (xi)− U2M

k (x2i) |, k = 1, 2,
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where UMk (xi) and U2M
k (x2i) are the ith and 2ith components of the numerical

solutions on meshes of M and 2M points, respectively. Here M = 2N. We
compute the error and rate of convergence as

DM
k = max

ε
DM
k,ε, p

M
k = log2

(
DM
k

D2M
k

)
, k = 1, 2.

For the following examples the numerical results are presented using the ex-
pression (5.4) and the range of the perturbation parameter is from ε = 2−4 to
2−23.

Example 7.1. (Variable Coefficient Problem)

−εu′′1(x) + 11u′1(x) + 6u1(x)− 2u2(x)− (x2 + 1)u1(x− 1)

− (x+ 1)u2(x− 1) = 0,

−εu′′2(x) + 16u′2(x)− 2u1(x) + 5u2(x)− xu1(x− 1)− xu2(x− 1) = 0,

u1(x) = 1, x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1, x ∈ [−1, 0], u2(2) = 1.

Table 1 presents the values of DM
k , pMk , i = 1, 2 and Figure 1 represents

the numerical solution of this Example 7.1.

Example 7.2. (Constant Coefficient Problem)

−εu′′1(x) + 11u′1(x) + 6u1(x)− 2u2(x)− u1(x− 1) = 0,

−εu′′2(x) + 16u′2(x)− 2u1(x) + 5u2(x)− u2(x− 1) = 0,

u1(x) = 1, x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1, x ∈ [−1, 0], u2(2) = 1.

Table 2 presents the values of DM
k , pMk , i = 1, 2 and Figure 2 represents

the numerical solution of this Example 7.2.

Example 7.3.

−εu′′1(x) + 11u′1(x) + 6u1(x)− 2u2(x)− u1(x− 1) = exp(x),

−εu′′2(x) + 16u′2(x)− 2u1(x) + 5u2(x)− u2(x− 1) = x2,

u1(x) = exp(x), x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1 + x, x ∈ [−1, 0], u2(2) = 1.

Table 3 presents the values of DM
k , pMk , i = 1, 2 and Figure 7 represents the

numerical solution of this Example 7.3.
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Figure 1: Numerical solution of the above Example 7.1.
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Figure 2: Numerical solution of the above Example 7.2.

Table 1: Numerical Results for the Example 7.1
N (Number of mesh points)

32 64 128 256 512 1024 2048

DM
1 7.4709e-3 3.8838e-3 1.9843e-3 9.9963e-4 5.0116e-4 2.5084e-4 1.2548e-4

pM1 9.4383e-1 9.6884e-1 9.8915e-1 9.9611e-1 9.9850e-1 9.9937e-1 -

DM
2 1.3064e-2 9.8093e-3 6.9348e-3 4.4954e-3 2.8118e-3 1.6521e-3 9.4091e-4

pM2 4.1336e-1 5.0029e-1 6.2540e-1 6.7693e-1 7.6721e-1 8.1218e-1 -

8. Conclusion

A BVP for one type of SPDDEs is considered. To obtain an approximate
solution for this type of problems, an asymptotic numerical method is pre-
sented. The method is shown to be convergent of order O(N−1 lnN). This is
very much reflected in the numerical results given in Tables 1-3. The problem
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Figure 3: Numerical solution of the above Example 7.3.

Table 2: Numerical Results for the Example 7.2
N (Number of mesh points)

32 64 128 256 512 1024 2048

DM
1 1.4853e-2 1.0525e-2 6.6142e-3 4.2351e-3 2.5371e-3 1.4828e-3 8.4244e-4

pM1 4.9694e-1 6.7014e-1 6.4316e-1 7.3920e-1 7.7484e-1 8.1571e-1 -

DM
2 9.2969e-3 7.2360e-3 5.3258e-3 3.5093e-3 2.1976e-3 1.2987e-3 7.4206e-4

pM2 3.6154e-1 4.4221e-1 6.0182e-1 6.7523e-1 7.5888e-1 8.0745e-1 -

Table 3: Numerical Results for the Example 7.3
N (Number of mesh points)

32 64 128 256 512 1024 2048

DM
1 7.4709e-3 3.8838e-3 1.9843e-3 9.9963e-4 5.0116e-4 2.5084e-4 1.2548e-4

pM1 9.4383e-1 9.6884e-1 9.8915e-1 9.9611e-1 9.9850e-1 9.9937e-1 -

DM
2 1.3064e-2 9.8093e-3 6.9348e-3 4.4954e-3 2.8118e-3 1.6521e-3 9.4091e-4

pM2 4.1336e-1 5.0029e-1 6.2540e-1 6.7693e-1 7.6721e-1 8.1218e-1 -

(4.2) is solved numerically by the scheme (5.2). This gives only almost first
order accuracy. It is true that, it is enough to apply Euler finite difference
scheme with linear interpolation to get first order accuracy. One can improve
this using the higher order schemes for the problem (4.2). Only for this reason,
we have used fourth-order Runge-Kutta method and piecewise cubic Hermite
interpolation.
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