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RANDOM BIPARTITE GRAPHS

Boris Šobot1

Abstract. In this paper we explore various properties of random bipartite graphs.
These structures naturally correspond to independent families, which are very
important in various set-theoretic constructions. We investigate their robustness,
universality, possibility of factorization and maximality.
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1. Introduction

In the last few decades independent families have frequently been used by set-
theorists in various constructions. On the other hand, random graphs (including vari-
ations like random digraphs, random tournaments etc.) were investigated in many
occasions and, since they lay somewhere on the borderline of several areas of mathe-
matics (graph theory, set theory, model theory), people from all of those areas showed
interest in them. Especially well known is the Rado graph, the unique countable ran-
dom graph. Many useful fact on the Rado graph can be found in [1].

There is a natural way to regard independent families as bipartite graphs (short:
bigraphs) that seems to be known, but is rarely mentioned explicitly. In [6] and [4]
certain aspects of such graphs were investigated. Here we look into some other prop-
erties of these structures, extending them to larger cardinalities when possible. Apart
from the benefit of getting results on independent families from the corresponding
results on graphs, we find random bigraphs interesting on their own account.

In the next two sections we will go through definitions and some basic proper-
ties of these structures, and describe the connection. In section 4 we will examine
random bigraphs more closely, proving some universality results and considering the
possibility of factorization.

Throughout the text κ, λ, µ and ν will denote infinite cardinals, and α, β, γ and
δ ordinals. ω is the set of natural numbers, and ℵ0 its cardinality. Most of our set-
theoretic and graph-theoretic notation is standard. With [X]µ we denote the set of
subsets of X of cardinality µ, and with [X]<µ the set of subsets of X of cardinality
less than µ. f [X] = {f(x) : x ∈ X} is the direct image of a set X under a function
f . The denotation of edges in graphs and digraphs will be simplified: we will write
xy for an edge ⟨x, y⟩ of a digraph (oriented graph).
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2. Definitions and basic properties

Definition 1. (κ, λ)-bigraph is a structure G = (X,Y,E), where (X ∪ Y,E) is a
digraph such that |X| = κ, |Y | = λ and E ⊆ {xy : x ∈ X, y ∈ Y }. We call (X,Y )
the bipartition of G, X the left side, and Y the right side.

For disjoint U,W ∈ [Y ]<µ we denote ΓG
U,W = {x ∈ X : ∀u ∈ U xu ∈ E∧∀w ∈

W xw /∈ E}. If it is clear from the context which bigraph we are considering, we
write only ΓU,W .

Definition 2. Let µ ≤ λ. A (κ, λ)-bigraph (X,Y,E) is (κ, λ, µ)-random if

(1) ∀U,W ∈ [Y ]<µ (U ∩W = ∅ ⇒ ΓG
U,W ̸= ∅).

If µ ≤ κ, a (κ, λ)-bigraph (X,Y,E) is (κ, λ, µ)-dense if

(2) ∀U,W ∈ [X]<µU ∩W = ∅ ⇒ ∃y ∈ Y (∀u ∈ Uuy ∈ E ∧ ∀w ∈ Wwy /∈ E)).

Hence a bigraph is (κ, λ, µ)-dense iff the bigraph obtained by reversing its edges
is (κ, λ, µ)-random. If G satisfies both (1) and (2) we will call it (κ, λ, µ)-random
dense. A (κ, λ,ℵ0)-random bigraph is called just (κ, λ)-random. First we have the
analogue of a well-known property for random graphs.

Lemma 3. (a) In a (κ, λ, µ)-random bigraph (X,Y,E) we can find for every disjoint
U,W ∈ [Y ]<µ µ-many vertices x ∈ X that satisfy xu ∈ E for all u ∈ U and xw /∈ E
for all w ∈ W .

(b) In a (κ, λ, µ)-dense bigraph (X,Y,E) we can find for every disjoint U,W ∈
[X]<µ µ-many vertices y ∈ Y that satisfy uy ∈ E for all u ∈ U and wy /∈ E for all
w ∈ W .

Proof. We will give only a proof of (a). Suppose the opposite, that |ΓG
U,W | = ν < µ

for some disjoint U,W ∈ [Y ]<µ. Choose an arbitrary set T ∈ [Y ]ν . Let θ : ΓG
U,W →

T be a bijection. By (1) there is x ∈ X such that xu ∈ E for all u ∈ U , xw /∈ E for
all w ∈ W and xθ(v) ∈ E ⇔ vθ(v) /∈ E for all v ∈ ΓG

U,W . Clearly, x ∈ ΓG
U,W but

x ̸= v for all v ∈ ΓG
U,W , a contradiction.

It is easy to see that every (κ, λ, µ)-random bigraph is right-extensional, meaning
that there are no different vertices y1, y2 ∈ Y such that for all x ∈ X xy1 ∈ E ⇔
xy2 ∈ E. Analogously, every (κ, λ, µ)-dense bigraph is left-extensional.

Lemma 4. Let G = (X,Y,E) be a (κ, λ, µ)-random bigraph. Then the degree of
every y ∈ Y is at least µ. Consequently, κ ≥ µ.

Proof. Let y ∈ Y and let {xγ : γ < ν} be the set of all his neighbors. Suppose the
opposite, that ν < µ. Let yγ , for γ < ν, be any elements of Y such that yγ ̸= y and
yγ ̸= yδ for γ ̸= δ. By (1) there is x ∈ X such that xy ∈ E and xyγ ∈ E ⇔ xγyγ /∈
E for γ < ν, so x must be different from all xγ . This is a contradiction.

Clearly, the same results hold for vertices in X if G is (κ, λ, µ)-dense. The fol-
lowing two lemmas contain some easy but useful robustness properties of (κ, λ, µ)-
random (dense) bigraphs.
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Lemma 5. Every bigraph obtained from a (κ, λ, µ)-random bigraph (X,Y,E) by
(a) adding ≤ κ vertices to X (connected with arbitrary vertices from Y )
(b) removing < µ vertices from X
(c) removing < λ vertices from Y
(d) replacing < µ edges with non-edges and < µ non-edges with edges

is also a (κ, λ, µ)-random bigraph.

Proof. Adding vertices to X and removing them from Y can not spoil the condition
(1). (b) and (d) follow from Lemma 3(a).

Of course, if we omit the condition ”≤ κ” from (a) we get a (κ′, λ, µ)-random
bigraph for some κ′ ≥ κ, and we omit ”< λ” from (c) we get a (κ, λ′, µ)-random
bigraph for some λ′ ≤ λ.

Lemma 6. Let µ be a regular cardinal. Every bigraph obtained from a (κ, λ, µ)-
random dense bigraph by deleting < µ edges from each vertex is also a (κ, λ, µ)-
random dense bigraph.

Proof. We prove for example that (1) still holds after deleting the edges. So let
U,W ∈ [Y ]<µ be disjoint. For every u ∈ U and every w ∈ W less than µ edges
are deleted, so by the regularity of µ the total number of deleted edges from all of
these vertices is also less than µ. But by Lemma 3 there are at least µ vertices x ∈ X
such that ∀u ∈ U xu ∈ E ∧ ∀w ∈ W xw /∈ E; hence at least one of them remains
after deleting the edges.

3. The connection with independent families

Definition 7. Let µ ≤ λ. A family A = {Aα : α < λ} of subsets of κ is called
(κ, λ, µ)-independent if

(3) ∀U,W ∈ [λ]<µ(U ∩W = ∅ ⇒
∩
α∈U

Aα ∩
∩

α∈W

(κ \Aα) ̸= ∅).

If µ = ℵ0, we call A a (κ, λ)-independent family. Concerning the existence of
independent families, we have the following (see [7], Exercise A6 of Chapter VIII and
[8]).

Proposition 8. If κ<µ = κ then there is a (κ, 2κ, µ)-independent family.

Definition 9. Let µ ≤ κ. A family A = {Aα : α < λ} of subsets of κ is called
(κ, λ, µ)-dense if

(4) ∀U,W ∈ [κ]<µ(U ∩W = ∅ ⇒ ∃α ∈ λ (U ⊆ Aα ∧W ∩Aα = ∅)).

In [3] and [2] the (κ, λ)-independent families such that the cardinality of intersec-
tions

∩
α∈U Aα ∩

∩
α∈W (κ \Aα) is larger than ℵ0 were investigated.

Now we describe how to observe independent families as random bigraphs and
vice versa, and list several easy consequences of various known results.

Let A = {Aα : α < λ} be a (κ, λ, µ)-independent family. Let X and Y be disjoint
sets of cardinalities κ and λ respectively. We enumerate them: X = {xβ : β < κ},
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Y = {yα : α < λ}, and define the relation E ⊆ X × Y : let xβyα ∈ E iff β ∈ Aα.
Then A∗ = (X,Y,E) is a (κ, λ, µ)-random bigraph.

On the other hand, let G = (X,Y,E) be a (κ, λ, µ)-random bigraph. We enu-
merate X = {xβ : β < κ} and Y = {yα : α < λ} and define, for each α ∈ λ,
Aα = {β ∈ κ : xβyα ∈ E}. Then G′ = {Aα : α < λ} is clearly a (κ, λ, µ)-
independent family.

Of course, the described two operations are mutually inverse i.e. (G′)∗ = G and
(A∗)′ = A.

A (κ, λ, µ)-independent family A is maximal if there is no (κ, λ′, µ)-independent
family A′ for some λ′ ≥ λ such that A ⊂ A′. Maximal independent families are those
that are most frequently used in set-theoretic constructions, so it may be interesting to
see how maximality affects the corresponding bigraphs.

Definition 10. A (κ, λ, µ)-random bigraph G = (X,Y,E) is maximal if for every
Z ⊆ X

(5) ∃U,W ∈ [Y ]<µ(U ∩W = ∅ ∧ (ΓG
U,W ⊆ Z ∨ ΓG

U,W ⊆ X \ Z)).

Lemma 11. A (κ, λ, µ)-independent family A is maximal iff the corresponding bi-
graph A∗ is maximal.

Proof. First suppose A = {Aα : α < λ} is maximal. Let (X,Y ) be the bipartition
of A∗ and let Z ⊆ X . If Z ∈ A, there is a vertex y ∈ Y connected exactly to
vertices in Z, so we can clearly take U = {y} and W = ∅. So let Z /∈ A. Then
A ∪ {Z} is not (κ, λ, µ)-independent, so there are U1,W1 ∈ [A ∪ {Z}]<µ such that∩

U1 ∩ (κ \
∪
W1) = ∅. If Z ∈ U1, then for the sets U = U1 \ {Z} and W = W1 we

have ΓA∗

U,W ⊆ X \ Z. Analogously, if Z ∈ W1, we take U = U1 and W = W1 \ {Z}
and get ΓA∗

U,W ⊆ Z.
The other direction is proved in a similar way.

In [5] Goldstern and Kojman introduced several small cardinals, among them r∞.
The following result is a direct consequence of their Theorem 3.1.

Corollary 12. Let λ < r∞ and let G be an (ℵ0, λ)-random bigraph. Then there is
an (ℵ0, λ

′)-random bigraph (for some λ′ ≥ λ) containing G as a proper subgraph.
Hence if G is a maximal (ℵ0, λ)-random bigraph, then λ ≥ r∞.

Maximal independent families do not always exist. Kunen in [8] proved the fol-
lowing.

Proposition 13. Let λ ≥ µ > ℵ0. If there is a maximal (κ, λ, µ)-independent family
then 2<µ = µ.

In the same paper Kunen mentions (without proof) a result that we prove in a
slightly different form, using bigraphs.

Theorem 14. If G = (X,Y,E) is a maximal (κ, λ, µ)-random bigraph, then for any
X1 ⊇ X the bigraph G1 = (X1, Y, E) is maximal (|X1|, λ, µ)-random. Hence, if
A is a maximal (κ, λ, µ)-independent family then for all κ′ > κ it is also maximal
(κ′, λ, µ)-independent.
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Proof. By Lemma 5(a) and the remark after it, G1 is (|X1|, λ, µ)-random. Suppose it
is not maximal, so that there is Z ⊆ X1 that doesn’t satisfy (5) for G1. We claim that
the set Z ∩ X doesn’t satisfy (5) for G. Otherwise there would be U,W ∈ [Y ]<ℵ0

such that either ΓG
U,W ⊆ Z ∩ X or ΓG

U,W ⊆ X \ Z. We can assume without loss of
generality that U ̸= ∅; otherwise we add arbitrary y /∈ W to U (of course, this does
not add new elements to ΓG

U,W ). Then the sets ΓG
U,W and ΓG1

U,W are same and they
are subsets of X (because G1 doesn’t have any ”new” edges), so either ΓG1

U,W ⊆ Z or
ΓG1

U,W ⊆ X1 \ Z must be true. This is a contradiction.

4. More on random bigraphs

The existence od certain random bigraphs can be obtained as a direct consequence
of Proposition 8.

Corollary 15. If κ<µ = κ then there is a (κ, 2κ, µ)-random bigraph.

In [4] the homogeneity of bigraphs was investigated, and more results on their
existence were obtained. We list some of them in the proposition below.

Definition 16. Let G1 = (X1, Y1, E1) and G2 = (X2, Y2, E2) be bigraphs. A map-
ping f : X1 ∪ Y1 → X2 ∪ Y2 is a homomorphism if for all x ∈ X1, y ∈ Y1: xy ∈ E1

iff f(x)f(y) ∈ E2.

Since the edges in bigraphs are oriented, homomorphisms preserve sides (f [X1] ⊆
X2 and f [Y1] ⊆ Y2).

Definition 17. A (κ, λ)-bigraph G = (X,Y,E) is homogeneous if every partial iso-
morphism f : U → X ∪ Y (where U ∈ [X ∪ Y ]<ℵ0 ) can be extended to an automor-
phism of G.

Proposition 18. (a) There is exactly one (up to isomorphism) (ℵ0,ℵ0)-random dense
bigraph, and it is homogeneous.

(b) Every homogeneous (κ, λ)-bigraph which is neither empty nor complete is
either a perfect matching or its complement or a (κ, λ)-random dense bigraph (of
course, when κ ̸= λ, only the latter option remains).

(c) There is a (κ, 2κ)-random dense bigraph for every infinite cardinal κ.
(d) (¬CH∧MA) For every κ < c there is a unique (ℵ0, κ)-random dense bigraph

(up to isomorphism).
(e) (2κ

+

> 2κ) There are 2κ
+

-many nonisomorphic (κ, κ+)-random dense bi-
graphs.

Unlike (a), (ℵ0,ℵ0)-random bigraph is not unique up to isomorphism. To see
this, we use Lemma 5: if G is an (ℵ0,ℵ0)-random bigraph without isolated vertices
in X , we can add one and get another (ℵ0,ℵ0)-random bigraph. If G has finitely
many isolated vertices, we can exclude one of them, and if it has infinitely many, we
can exclude all but finitely many of them. Either way, we get two nonisomorphic
(ℵ0,ℵ0)-random bigraphs.

It is well-known that Rado graph is universal for the class of all finite and countable
graphs. For bigraphs we have the following two results.
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Theorem 19. Every (κ1, λ1)-bigraph for κ1 ≤ µ and λ1 < µ can be embedded in
any (κ, λ, µ)-random bigraph.

Proof. Let G1 = (X1, Y1, E1) be a (κ1, λ1)-bigraph. We will define an embedding of
G1 into any (κ, λ, µ)-random bigraph G = (X,Y,E). First, enumerate X1 = {xγ :
γ < κ1} and choose an arbitrary set Z ∈ [Y ]λ1 . Let φ : Y1 → Z be a bijection. Now
proceed by recursion on γ < κ1.

Suppose we defined, for all δ < γ, elements ϕ(xδ) ∈ X . Now let ϕ(xγ) ∈ X
be different from all ϕ(xδ) and such that for all y = φ(y1) ∈ Z: ϕ(xγ)y ∈ E iff
xγy1 ∈ E1. (Such an element exists because of Lemma 3(a).) It is now easy to check
that ϕ ∪ φ is an embedding of G1 into G.

Theorem 20. Every (κ1, λ1)-bigraph for κ1 ≤ µ and λ1 ≤ µ can be embedded in
any (κ, λ, µ)-random dense bigraph.

Proof. First, if λ1 < µ, then the result follows from the previous theorem. If κ1 < µ,
then we do the same construction as in the previous theorem, but reversing the roles
of the sides of the bigraph.

Now suppose κ1 = λ1 = µ. So let G1 = (X1, Y1, E1) be a (µ, µ)-bigraph and
we will define an embedding of G1 into any (κ, λ, µ)-random dense bigraph G =
(X,Y,E). Enumerate X1 = {xγ : γ < µ} and Y1 = {yγ : γ < µ}. Define by
recursion one-to-one functions φ : X1 → X and θ : Y1 → Y as follows. If we
already defined φ(xδ) and θ(yδ) for δ < γ, let φ(xγ) be different from all φ(xδ) and
such that φ(xγ)θ(yδ) ∈ E ⇔ xγyδ ∈ E1 for all δ < γ, and let θ(yγ) be different
from all θ(yδ) and such that φ(xδ)θ(yγ) ∈ E ⇔ xδyγ ∈ E1 for all δ ≤ γ.

In the end, φ ∪ θ is an embedding of G1 into G.

Hence the (ℵ0,ℵ0)-random dense bigraph is universal for the class of all finite and
countable bigraphs.

Theorem 21. (a) Every (κ, κ, κ)-random dense bigraph has a perfect matching, i.e.
a sub-bigraph with the same set of vertices in which every vertex is of degree 1.

(b) Every (κ, κ, κ)-random dense bigraph has a 1-factorization, i.e. its set of edges
can be partitioned into disjoint perfect matchings.

Proof. (a) We use the back-and-forth method. Enumerate both sides of the bipartition:
X = {xα : α < κ} and Y = {yα : α < κ}. Now define a sequence ⟨Gα : 0 <
α < κ⟩ of sub-bigraphs of G, each of cardinality less than κ, in the following way by
recursion: let X0 = Y0 = E0 = ∅ and suppose Gβ = (Xβ , Yβ , Eβ) are defined for
β < α. If α is limit, let Xα =

∪
β<α Xβ , Yα =

∪
β<α Yβ and Eα =

∪
β<α Eβ . If

α = β + 1, there are several cases.
First let xβ /∈ Xβ , yβ /∈ Yβ and xβyβ /∈ E. Then by Lemma 3 there is x′ ∈ X

such that x′yβ ∈ E and x′ ̸= x for all x ∈ Xβ . Analogously we find y′ ∈ Y \ Yβ

such that xβy
′ ∈ E. Now we put Xα = Xβ ∪ {xβ , x

′}, Yα = Yβ ∪ {yβ , y′} and
Eα = Eβ ∪ {xβy

′, x′yβ}.
The other cases (xβ ∈ Xβ , yβ ∈ Yβ or xβyβ ∈ E) are simpler and they are

handled analogously. In the end (
∪

α<κ Xα,
∪

α<κ Yα,
∪

α<κ Eα) is a sub-bigraph of
G that is a perfect matching.
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(b) In this part of the proof we will abuse our notation a little, identifying a perfect
matching of G with a bijection f : X → Y such that xf(x) ∈ E for all x ∈ X .

We enumerate all the edges of G: E = {eα : α < κ} (by Lemma 4 there is
exactly κ of them). Now we iterate the construction from (a) κ-many times, defining
a sequence ⟨Sα : α < κ⟩ of spanning sub-bigraphs of G by recursion.

Let E0 = ∅ and suppose Sβ = (X,Y,Eβ) are defined for β < α in such way that

(6) the degree of every vertex in Sβ is less than κ.

By Lemma 6 this will mean that (X,Y,E \ Eβ) are all (κ, κ, κ)-random dense.
If α = β+1 then we repeat the construction from (a) in the graph (X,Y,E \Eβ)

with an additional condition: if eβ = xy /∈ Eβ , we let x0 = x and y0 = y. In this way
we get a perfect matching fβ including the edge eβ . Now we define Sα = (X,Y,Eα)
with Eα = Eβ ∪ fβ . Clearly, Sα satisfies (6).

If α is a limit ordinal, we put Eα =
∪

β<α Eβ . Again we have (6), since in every
of α < κ steps we added exactly one edge to each of the vertices.

In the end E =
∪

α<κ Eα, so the bigraph G is the disjoint union of matchings fα
for α < κ.
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