ON LORENTZIAN α -SASAKIAN MANIFOLDS ADMITTING A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION

Ajit Barman¹

Abstract. The object of the present paper is to study a Lorentzian α -Sasakian manifold admitting a semi-symmetric metric connection.

AMS Mathematics Subject Classification (2010): 53C15, 53C25 Key words and phrases: Lorentzian α -Sasakian manifold, semi-symmetric metric connection, locally ϕ -symmetric, ξ -projectively flat

1. Introduction

In 1969, Tanno [21] classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. The sectional curvature of the manifolds of plain sections containing ξ is a constant, say c. The sectional curvature of plain sections can be divided into three classes:

- (1.1) homogeneous normal contact Riemannian manifolds with c > 0,
- (1.2) global Riemannian products of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature if c = 0 and
- (1.3) a warped product space $\mathbb{R} \times_f \mathbb{C}$ if c < 0.

The manifolds of class (1.1) are characterized by admitting a Sasakian structure. Kenmotsu [16] characterized the differential geometric properties of the manifolds of class (1.3); the structure so obtained is now known as Kenmotsu structure. In general, these structures are not Sasakian [16].

In 1980, Gray and Hervella [12], classification of almost Hermitian manifolds there appears a class, W_4 , of Hermitian manifolds which are closely related to locally conformal Kaehlerian manifolds [10]. An almost contact metric structure on the manifold M is called a trans-Sasakian structure [17] if the product manifold $M \times \mathbb{R}$ belongs to the class W_4 . The class $C_6 \oplus C_5$ ([15], [16]) coincides with the class of trans-Sasakian structure of type (α, β) . We note that trans-Sasakian structures of type (0,0), $(0,\beta)$ and $(\alpha,0)$ are cosymplectic [3], β -Kenmotsu [14] and α -Sasakian [14] respectively.

In 2005, Yildiz and Murathan [25] studied Lorentzian α -Sasakian manifolds and proved that conformally flat and quasi conformally flat Lorentzian α -Sasakian manifolds are locally isometric with a sphere.

 $^{^1\}mathrm{Department}$ of Mathematics, Assistant Professor, Kabi-Nazrul Mahavidyalaya, P.O.-Sonamura-799181, P.S.-Sonamura, Dist.- Sepahijala, Tripura, India, e-mail: ajitbarmanaw@yahoo.in

In 2012, Yadav and Suthar [23] studied Lorentzian α -Sasakian manifolds.

Hayden [13] introduced semi-symmetric linear connection on a Riemannian manifold. Let M be an n-dimensional Riemannian manifold of class C^{∞} endowed with the Riemannian metric g and ∇ be the Levi-Civita connection on (M^n, g) .

A linear connection $\bar{\nabla}$ defined on (M^n, g) is said to be semi-symmetric [11] if its torsion tensor T is of the form

(1.1)
$$T(X,Y) = \eta(Y)X - \eta(X)Y,$$

where η is a 1-form and ξ is a vector field given by

(1.2)
$$\eta(X) = g(X, \xi),$$

for all vector fields $X \in \chi(M^n)$, $\chi(M^n)$ is the set of all differentiable vector fields on M^n .

A semi-symmetric connection $\bar{\nabla}$ is called a semi-symmetric metric connection [13] if it further satisfies

$$(1.3) \bar{\nabla}g = 0.$$

A relation between the semi-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ on (M^n,g) has been obtained by Yano [24] which is given by

(1.4)
$$\bar{\nabla}_X Y = \nabla_X Y + \eta(Y) X - g(X, Y) \xi.$$

We also have

$$(1.5) \qquad (\bar{\nabla}_X \eta)(Y) = (\nabla_X \eta)Y - \eta(X)\eta(Y) + \eta(\xi)g(X,Y).$$

Further, a relation between the curvature tensor \bar{R} of the semi-symmetric metric connection $\bar{\nabla}$ and the curvature tensor R of the Levi-Civita connection ∇ is given by

$$\bar{R}(X,Y)Z = R(X,Y)Z + \gamma(X,Z)Y - \gamma(Y,Z)X + g(X,Z)QY - g(Y,Z)QX,$$
(1.6)

where γ is a tensor field of type (0,2) and a tensor field Q of type (1,1) is given by

(1.7)
$$\gamma(Y,Z) = g(QY,Z) = (\nabla_Y \eta)(Z) - \eta(Y)\eta(Z) + \frac{1}{2}\eta(\xi)g(Y,Z).$$

From (1.6) and (1.7), we obtain

$$\tilde{R}(X,Y,Z,W) = \tilde{R}(X,Y,Z,W) - \gamma(Y,Z)g(X,W) +$$

$$\gamma(X,Z)g(Y,W) - g(Y,Z)\gamma(X,W) +$$

$$(1.8) \qquad \qquad g(X,Z)\gamma(Y,W),$$

where

(1.9)
$$\tilde{R}(X,Y,Z,W) = g(\bar{R}(X,Y)Z,W)$$

$$and \quad \tilde{R}(X,Y,Z,W) = g(R(X,Y)Z,W).$$

The study of semi-symmetric metric connection was further developed by Amur and Pujar [1], Binh [2], Chaki and Konar [4], De ([5], [6]), De and Biswas [7], De and De [8], De and De [9], Prvanović [18], Sharfuddin and Hussain [19], Yano [24] and many others.

The Projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a (2n+1)-dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighbourhood of M and a domain in Euclidian space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1$, M is locally projectively flat if and only if the projective curvature tensor vanishes. Here the projective curvature tensor \bar{P} with respect to the semi-symmetric metric connection is defined by

(1.10)
$$\bar{P}(X,Y)Z = \bar{R}(X,Y)Z - \frac{1}{2n}[\bar{S}(Y,Z)X - \bar{S}(X,Z)Y],$$

for $X, Y, Z \in \chi(M)$, where \bar{S} is the Ricci tensor with respect to the semi-symmetric metric connection. In fact M is projectively flat if and only if it is of constant curvature. Thus the projective curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature.

The present paper is organized as follows: The section 2 is equipped with some prerequisites about Lorentzian α -Sasakian manifolds. In section 3, we establish the relation of the curvature tensor between the Levi-Civita connection and the semi-symmetric metric connection of a Lorentzian α -Sasakian manifold. Locally ϕ -symmetric Lorentzian α -Sasakian manifolds with respect to the semi-symmetric metric connection have been studied in section 4. In the next section we consider ξ -projectively flat Lorentzian α -Sasakian manifolds. Finally, we construct an example of a 3-dimensional Lorentzian α -Sasakian manifold with respect to the semi-symmetric metric connection which support the result obtained in section 4 and section 5.

2. Lorentzian α -Sasakian manifolds

A (2n + 1)-dimensional differentiable manifold M is called a Lorentzian α -Sasakian manifold if it admits a (1,1) tensor field ϕ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric g which satisfy [25]

(2.1)
$$\phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = -1, \quad g(X, \xi) = \eta(X),$$

(2.2)
$$\phi^2(X) = X + \eta(X)\xi,$$

$$(2.3) g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$

for any vector fields X, Y on M.

Also Lorentzian α -Sasakian manifolds satisfy [25],

$$(2.4) \nabla_X \xi = -\alpha \phi X,$$

$$(2.5) \qquad (\nabla_X \eta)(Y) = -\alpha g(\phi X, Y),$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric q and $\alpha \in \mathbb{R}$.

Further on a Lorentzian α -Sasakian manifold M the following relations hold ([25], [23]):

(2.6)
$$\eta(R(X,Y)Z) = \alpha^{2} [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)],$$

(2.7)
$$R(\xi, X)Y = \alpha^2[g(X, Y)\xi - \eta(Y)X],$$

$$(2.8) R(\xi, X)\xi = \alpha^2 [\eta(X)\xi + X],$$

(2.9)
$$R(X,Y)\xi = \alpha^2[\eta(Y)X - \eta(X)Y],$$

$$(2.10) S(X,\xi) = 2n\alpha^2 \eta(X),$$

$$(2.11) \qquad (\nabla_X \phi)(Y) = \alpha^2 [g(X, Y)\xi - \eta(Y)X],$$

where S is the Ricci tensor of the Levi-Civita connection.

3. Curvature tensor of a Lorentzian α -Sasakian manifold with respect to the semi-symmetric metric connection

Using (2.1) and (2.5) in (1.7), we get

(3.1)
$$\gamma(X,Y) = g(QX,Y) = -\alpha g(\phi X,Y) - \eta(X)\eta(Y) - \frac{1}{2}g(X,Y).$$

From (3.1), it follows that

(3.2)
$$QX = -\alpha \phi X - \eta(X)\xi - \frac{1}{2}X.$$

Again using (3.1) and (3.2) in (1.6), we have

$$\bar{R}(X,Y)Z$$

$$=R(X,Y)Z - \alpha g(X,\phi Z)Y - \eta(X)\eta(Z)Y + \alpha g(Y,\phi Z)X + \eta(Y)\eta(Z)X - g(X,Z)Y + g(Y,Z)X - \alpha g(X,Z)\phi Y + \alpha g(Y,Z)\phi X - g(X,Z)\eta(Y)\xi + g(Y,Z)\eta(X)\xi.$$
(3.3)

Taking the inner product of (3.3) with W, it follows that

$$\tilde{R}(X, Y, Z, W) = \tilde{R}(X, Y, Z, W) - \alpha g(X, \phi Z) g(Y, W) - \eta(X) \eta(Z) g(Y, W) + \alpha g(Y, \phi Z) g(X, W) + \eta(Y) \eta(Z) g(X, W) - g(X, Z) g(Y, W) + g(Y, Z) g(X, W) - \alpha g(X, Z) g(\phi Y, W) + \alpha g(Y, Z) g(\phi X, W) - g(X, Z) \eta(Y) \eta(W) + g(Y, Z) \eta(X) \eta(W).$$

Taking a frame field from (3.3), we obtain

$$\bar{S}(Y,Z) = S(Y,Z) + (2n-1)\alpha g(Y,\phi Z) + (2n-1)\eta(Y)\eta(Z)$$
(3.5)
$$+[2n-1+\alpha trace\phi]g(Y,Z).$$

Putting $Z = \xi$ in (3.5) and using (2.1) and (2.10), we get

(3.6)
$$\bar{S}(Y,\xi) = [2n\alpha^2 + \alpha trace\phi]\eta(Y).$$

From the above discussions we can state the following theorem:

Theorem 3.1. For a Lorentzian α -Sasakian manifold M with respect to the semi-symmetric metric connection $\overline{\nabla}$

(i) The curvature tensor \bar{R} is given by

$$\begin{split} \bar{R}(X,Y)Z &= R(X,Y)Z - \alpha g(X,\phi Z)Y - \eta(X)\eta(Z)Y \\ &+ \alpha g(Y,\phi Z)X + \eta(Y)\eta(Z)X - g(X,Z)Y \\ &+ g(Y,Z)X - \alpha g(X,Z)\phi Y + \alpha g(Y,Z)\phi X \\ &- g(X,Z)\eta(Y)\xi + g(Y,Z)\eta(X)\xi, \end{split}$$

(ii) The Ricci tensor \bar{S} is given by

$$\bar{S}(Y,Z) = S(Y,Z) + (2n-1)\alpha g(Y,\phi Z) + (2n-1)\eta(Y)\eta(Z) + [2n-1+\alpha trace\phi]g(Y,Z),$$

- (iii) The Ricci tensor \bar{S} is symmetric.
- (iv) $\bar{S}(Y,\xi) = [2n\alpha^2 + \alpha trace\phi]\eta(Y).$

4. Locally ϕ -symmetric Lorentzian α -Sasakian manifolds with respect to the semi-symmetric metric connection

Definition 4.1. A Lorentzian α -Sasakian manifold M with respect to the semi-symmetric metric connection is called to be locally ϕ -symmetric if

(4.1)
$$\phi^{2}((\bar{\nabla}_{W}\bar{R})(X,Y)Z) = 0,$$

for all vector fields X,Y,Z,W orthogonal to ξ on M. This notion was introduced by Takahashi [20], for a Sasakian manifold.

Taking covariant differentiation of (3.3) with respect to W and using (1.3), (2.1), (2.4), (2.5) and (2.11), we have

$$(\bar{\nabla}_{W}\bar{R})(X,Y)Z = (\nabla_{W}R)(X,Y)Z - \eta(X)R(W,Y)Z - \eta(Y)R(X,W)Z - \eta(Z)R(X,Y)W - \acute{R}(X,Y,Z,W)\xi + 2\eta(X)\eta(Z)\eta(W)Y - 2\eta(Y)\eta(Z)\eta(W)X + 2\eta(Y)\eta(W)g(X,Z)\xi - 2\eta(X)\eta(W)g(Y,Z)\xi - (\alpha^{3} + \alpha^{2} - 1)g(X,Z)g(Y,W)\xi + (\alpha^{3} + \alpha^{2} - 1)g(X,W)g(Y,Z)\xi + (\alpha^{3} - \alpha^{2} + 1)\eta(Y)g(X,Z)W - (\alpha^{3} - \alpha^{2} + 1)\eta(X)g(Y,Z)W - \alpha^{2}\eta(Z)g(X,W)Y + \alpha^{2}\eta(Z)g(Y,W)X + \alpha^{2}\eta(Y)g(Z,W)X - \alpha^{2}\eta(X)g(Z,W)Y + \alpha\eta(Z)g(X,\phi W)Y + \alpha\eta(X)g(Z,\phi W)Y + \eta(X)g(Z,W)Y - \alpha\eta(Z)g(Y,\phi W)X - \alpha\eta(Y)g(Z,\phi W)X - \eta(Z)g(Y,W)X - \eta(Y)g(Z,W)X + 2\alpha g(X,Z)g(Y,\phi W)\xi - 2\alpha g(Y,Z)g(X,\phi W)\xi + 2\alpha \eta(Y)g(X,Z)\phi W$$

$$(4.2) \qquad -2\alpha \eta(X)g(Y,Z)\phi W + \eta(X)g(Z,W)Y.$$

Now applying ϕ^2 on both sides of (4.2) and using (2.1) and (2.2), it follows that

$$\begin{split} &\phi^{2}((\bar{\nabla}_{W}\bar{R})(X,Y)Z) \\ &= \phi^{2}((\nabla_{W}R)(X,Y)Z) - \eta(X)R(W,Y)Z - \eta(X)\eta(R(W,Y)Z)\xi \\ &- \eta(Y)R(X,W)Z - \eta(Y)\eta(R(X,W)Z)\xi - \eta(Z)R(X,Y)W \\ &- \eta(Z)\eta(R(X,Y)W)\xi + 2\eta(X)\eta(Z)\eta(W)Y - 2\eta(Y)\eta(Z)\eta(W)X \\ &+ (\alpha^{3} - \alpha^{2} + 1)\eta(Y)g(X,Z)W + (\alpha^{3} - \alpha^{2} + 1)\eta(Y)\eta(W)g(X,Z)\xi \\ &- (\alpha^{3} - \alpha^{2} + 1)\eta(X)g(Y,Z)W - (\alpha^{3} - \alpha^{2} + 1)\eta(X)\eta(W)g(Y,Z)\xi \\ &- \alpha^{2}\eta(Z)g(X,W)Y - \alpha^{2}\eta(Z)\eta(Y)g(X,W)\xi \\ &+ \alpha^{2}\eta(Z)g(Y,W)X + \alpha^{2}\eta(X)\eta(Z)g(Y,W)\xi + (\alpha^{2} - 1)\eta(Y)g(Z,W)X \\ &- (\alpha^{2} - 1)\eta(X)g(Z,W)Y + \alpha\eta(Z)g(X,\phi W)Y \end{split}$$

$$+\alpha\eta(Z)\eta(Y)g(X,\phi W)\xi + \eta(Z)g(X,W)Y +\eta(Z)\eta(Y)g(X,W)\xi + \alpha\eta(X)g(Z,\phi W)Y -\alpha\eta(Z)g(Y,\phi W)X - \alpha\eta(Z)\eta(X)g(Y,\phi W)\xi - \eta(Z)g(Y,W)X -\eta(Z)\eta(X)g(Y,W)\xi - \alpha\eta(Y)g(Z,\phi W)X (4.3) +2\alpha\eta(Y)g(X,Z)\phi W - 2\alpha\eta(X)g(Y,Z)\phi W.$$

Now taking X, Y, Z, W orthogonal to ξ , the equation (4.3) gives

(4.4)
$$\phi^{2}((\bar{\nabla}_{W}\bar{R})(X,Y)Z) = \phi^{2}((\nabla_{W}R)(X,Y)Z).$$

Hence we state the following theorem:

Theorem 4.1. A (2n+1)-dimensional Lorentzian α -Sasakian manifold is locally ϕ -symmetric with respect to the semi-symmetric metric connection if and only if the manifold is also locally ϕ -symmetric with respect to the Levi-Civita connection.

5. ξ -projectively flat Lorentzian α -Sasakian manifolds with respect to the semi-symmetric metric connection

Definition 5.1. A Lorentzian α -Sasakian manifold M with respect to the semi-symmetric metric connection is said to be ξ -projectively flat if

$$(5.1) \bar{P}(X,Y)\xi = 0,$$

for all vector fields X, Y on M. This notion was first defined by Tripathi and Dwivedi [22]. If equation (5.1) just holds for X, Y orthogonal to ξ , we called such a manifold a horizontal ξ -projectively flat manifold.

Using (3.3) in (1.10), we get

$$\bar{P}(X,Y)Z = R(X,Y)Z - \alpha g(X,\phi Z)Y - \eta(X)\eta(Z)Y + \alpha g(Y,\phi Z)X + \eta(Y)\eta(Z)X - g(X,Z)Y + g(Y,Z)X - \alpha g(X,Z)\phi Y + \alpha g(Y,Z)\phi X - g(X,Z)\eta(Y)\xi + g(Y,Z)\eta(X)\xi - \frac{1}{2n}[\bar{S}(Y,Z)X - \bar{S}(X,Z)Y].$$
(5.2)

Putting $Z = \xi$ and using (2.1), (2.9) and (3.6) in (5.2), we get

$$\bar{P}(X,Y)\xi = [\alpha^2 - \frac{2n - 1 + \alpha trace\phi}{2n}][\eta(Y)X - \eta(X)Y]$$

$$(5.3) \qquad -\alpha[\eta(X)\phi Y - \eta(Y)\phi X].$$

From (5.3), implies that

(5.4)
$$\bar{P}(X,Y)\xi = 0; \forall X, Y \text{ orthogonal to } \xi,$$

we called such a manifold a horizontal ξ -projectively flat manifold. Hence we state the following theorem:

Theorem 5.1. A (2n+1)-dimensional Lorentzian α -Sasakian manifold is horizontal ξ -projectively flat with respect to the semi-symmetric metric connection.

Again using (3.5) in (5.2), we have

$$\bar{P}(X,Y)Z = P(X,Y)Z - \frac{1}{2n}\alpha g(X,\phi Z)Y - \frac{1}{2n}\eta(X)\eta(Z)Y$$

$$+ \frac{1}{2n}\alpha g(Y,\phi Z)X + \frac{1}{2n}\eta(Y)\eta(Z)X + \left[\frac{\alpha trace\phi - 1}{2n}\right]g(X,Z)Y$$

$$-\left[\frac{\alpha trace\phi - 1}{2n}\right]g(Y,Z)X - \alpha g(X,Z)\phi Y + \alpha g(Y,Z)\phi X$$

$$-g(X,Z)\eta(Y)\xi + g(Y,Z)\eta(X)\xi,$$

$$(5.5)$$

where P be the projective curvature tensor with respect to the Levi-Civita connection.

Putting $Z = \xi$ in (5.5) and using (2.1), it follows that

$$\bar{P}(X,Y)\xi = P(X,Y)\xi + \eta(X)\left[\frac{\alpha trace\phi}{2n}Y - \alpha\phi Y\right]$$

$$-\eta(Y)\left[\frac{\alpha trace\phi}{2n}X - \alpha\phi X\right].$$
(5.6)

From (5.6), implies that

(5.7)
$$\bar{P}(X,Y)\xi = P(X,Y)\xi; \,\forall \, X,Y \text{ orthogonal to } \xi.$$

In view of above discussions we state the following theorem:

Theorem 5.2. A (2n+1)-dimensional Lorentzian α -Sasakian manifold is horizontal ξ -projectively flat with respect to the semi-symmetric metric connection if and only if the manifold is ξ -projectively flat with respect to the Levi-Civita connection.

6. Example

In this section we construct an example of locally ϕ - symmetric and ξ projectively flat on a Lorentzian α -Sasakian manifold with respect to the semisymmetric metric connection which verifies the result of section 4 and section
5.

We consider a 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3\}$, where (x, y, z) are the standard coordinate in \mathbb{R}^3 . We choose the vector fields

$$e_1 = e^z \frac{\partial}{\partial y}, \ e_2 = e^z (\frac{\partial}{\partial x} + \frac{\partial}{\partial y}), \ e_3 = \alpha \frac{\partial}{\partial z}$$

which are linearly independent at each point of M and α is constant.

Let g be the Lorentzian metric defined by

$$g(e_1, e_3) = g(e_2, e_3) = g(e_1, e_2) = 0$$

and

$$g(e_1, e_1) = g(e_2, e_2) = 1, g(e_3, e_3) = -1,$$

that is, the form of the metric becomes

$$g = \frac{1}{(e^z)^2} (dy)^2 - \frac{1}{\alpha^2} (dz)^2,$$

which is a Lorentzian metric.

Let η be the 1-form defined by

$$\eta(Z) = g(Z, e_3)$$

for any $Z \in \chi(M)$.

Let ϕ be the (1,1)-tensor field defined by

$$\phi e_1 = -e_1, \ \phi e_2 = -e_2, \ \phi e_3 = 0.$$

Using the linearity of ϕ and g, we have

$$\eta(e_3) = -1$$

$$\phi^2(Z) = Z + \eta(Z)e_3$$

and

$$g(\phi Z,\phi W)=g(Z,W)+\eta(Z)\eta(W)$$

for any $U, W \in \chi(M)$.

Then we have

$$[e_1, e_2] = 0, \ [e_1, e_3] = -\alpha e_1, \ [e_2, e_3] = -\alpha e_2.$$

The Riemannian connection ∇ of the metric tensor g is given by Koszul's formula which is given by

$$2g(\nabla_X Y, W) = Xg(Y, W) + Yg(X, W) - Wg(X, Y) - g(X, [Y, W])$$

$$(6.1) -g(Y, [X, W]) + g(W, [X, Y]).$$

Using Koszul's formula we get the following

$$\nabla_{e_1} e_1 = -\alpha e_3, \ \nabla_{e_1} e_2 = 0, \ \nabla_{e_1} e_3 = -\alpha e_1,$$

$$\nabla_{e_2} e_1 = 0, \ \nabla_{e_2} e_2 = -\alpha e_3, \ \nabla_{e_2} e_3 = -\alpha e_2,$$

$$\nabla_{e_2} e_1 = 0, \ \nabla_{e_2} e_2 = 0, \ \nabla_{e_2} e_3 = 0.$$

Using (1.4) in above equation, we obtain

$$\bar{\nabla}_{e_1}e_1 = -(1+\alpha)e_3, \ \bar{\nabla}_{e_1}e_2 = 0, \ \bar{\nabla}_{e_1}e_3 = -(1+\alpha)e_1,$$

$$\bar{\nabla}_{e_2} e_1 = 0, \ \bar{\nabla}_{e_2} e_2 = -(1+\alpha)e_3, \ \bar{\nabla}_{e_2} e_3 = -(1+\alpha)e_2,$$
$$\bar{\nabla}_{e_3} e_1 = 0, \ \bar{\nabla}_{e_3} e_2 = 0, \ \bar{\nabla}_{e_3} e_3 = 0.$$

Therefore the manifold is a Lorentzian α -Sasakian manifold with respect to the semi-symmetric metric connection.

By using the above results, we can easily obtain the components of the curvature tensor as follows:

$$R(e_1, e_2)e_2 = -\alpha^2 e_2, \quad R(e_1, e_3)e_3 = -\alpha^2 e_1, \quad R(e_2, e_1)e_1 = \alpha^2 e_2,$$

$$R(e_2, e_3)e_3 = -\alpha^2 e_2, \quad R(e_3, e_1)e_1 = \alpha^2 e_3, \quad R(e_3, e_2)e_2 = \alpha^2 e_3,$$

$$R(e_1, e_2)e_3 = 0, \quad R(e_2, e_3)e_2 = -\alpha^2 e_3, \quad R(e_1, e_2)e_2 = \alpha^2 e_1,$$

and

$$\begin{split} \bar{R}(e_1,e_2)e_2 &= (1+\alpha)^2 e_1, \ \bar{R}(e_3,e_1)e_1 = \alpha(1+\alpha)e_3, \\ \bar{R}(e_3,e_2)e_2 &= \alpha(1+\alpha)e_3, \ \bar{R}(e_2,e_1)e_1 = (1+\alpha)^2 e_2, \\ \bar{R}(e_1,e_2)e_3 &= 0, \ \bar{R}(e_1,e_3)e_3 = -\alpha(1+\alpha)e_2, \\ \bar{R}(e_2,e_3)e_2 &= -\alpha(1+\alpha)e_3, \ \bar{R}(e_1,e_2)e_1 = -(1+\alpha)^2 e_2, \end{split}$$

$$\bar{R}(e_2, e_3)e_3 = -\alpha(1+\alpha)e_2.$$

From the above expression of the curvature tensor which it follows that

$$\phi^2((\bar{\nabla}_W \bar{R})(X, Y)Z) = \phi^2((\nabla_W R)(X, Y)Z) = 0.$$

Therefore, this example supports Theorem 4.1.

Using the expressions of the curvature tensors with respect to the semisymmetric metric connection we find the values of the Ricci tensors as follows:

$$\bar{S}(e_1, e_1) = \bar{S}(e_2, e_2) = 1 + \alpha, \bar{S}(e_3, e_3) = -\alpha(1 + \alpha),$$

 $\bar{S}(e_1, e_2) = \bar{S}(e_1, e_3) = \bar{S}(e_2, e_3) = 0.$

Let X and Y are any two vector fields given by $X = a_1e_1 + a_2e_2 + a_3e_3$ and $Y = b_1e_1 + b_2e_2 + b_3e_3$. Using (1.10) and above relations, we get

$$\bar{P}(X,Y)e_3 = \alpha(\alpha+1)\left[\frac{1}{2n}(a_1b_3 - a_3b_1)e_1 + (\frac{1}{2n}a_2b_3 + a_3b_2 - a_1b_3 + a_3b_1 - a_2b_3 - \frac{1}{2n}a_3b_2)e_2\right].$$
(6.2)

Therefore, the manifold will be ξ -projectively flat on a Lorentzian α -Sasakian manifold with respect to the semi-symmetric metric connection if $\alpha = -1$ which verifies the Theorem 5.1.

Acknowledgement

The author is thankful to the referee for his valuable suggestions in the improvement of the paper.

References

- [1] Amur, K., Pujar, S.S., On submanifolds of a Riemannian manifold admitting a metric semi-symmetric connection. Tensor, N.S. 32 (1978), 35-38.
- [2] Binh, T.Q., On semi-symmetric connections. Periodica Math. Hungerica 21 (1990), 101-107.
- [3] Blair D.E., Contact manifolds in Riemannian geometry. Lecture Note in Mathematics, 509, Springer-Verlag Berlin 1976.
- [4] Chaki, M.C., Konar, A., On a type of semi-symmetric connection on a Riemannian manifold. J. Pure Math., Calcutta University (1981), 77-80.
- [5] De, U.C., On a type of semi-symmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 21 (1990), 334-338.
- [6] De, U.C., On a type of semi-symmetric metric connection on a Riemannian manifold. Analele Stiintifice Ale Universitatii, "AL. I. CUZA" DIN IASI, Math., Tomul XXXVIII, Fasc. 38 (1991), 105-108.
- [7] De, U.C., Biswas, S.C., On a type of semi-symmetric metric connection on a Riemannian manifold. Pub. De L' Institut Math., N. S. 61 (1997), 90-96.
- [8] De, U.C., De, B.K., On a type of semi-symmetric connection on a Riemannian manifold. Ganita 47 (1996), 11-14.
- [9] De, U.C., De, K., On trans-Sasakian manifold admitting a semi-symmetric metric connection. Bull. Pure. Appl. Math. 5 (2011),360-366.
- [10] Dragomir, S., Ornea, L., Locally conformal Keahler geometry. In: Progress in Mathematics, 155, Birkhauser Boston, Inc. M.A. 1998.
- [11] Friedmann A, Schouten J.A., Über die Geometric der halbsymmetrischen Übertragung. Math. Zeitschr. 21 (1924), 211-223.
- [12] Gray A., Hervella L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pure Appl. 123 (1980), 35-58.
- [13] Hayden H.A., Subspaces of space with torsion. Proc. London Math. Soc. 34 (1932), 27-50.
- [14] Kenmotsu K., A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93-103.
- [15] Marrero J.C., The local structure of trans-Sasakian manifolds. Ann. Mat. Pure Appl. 162 (1992), 77-86.
- [16] Marrero J.C., Chinea D., On trans-Sasakian manifolds. Proceeding of the XIVth Spanish-Portuguese Conference on Mathematics. I-III, (Spanish) (Puerto de la Cruz, 1989), Univ. La Laguna, La Laguna, (1990), 655-659.
- [17] Oubina, J.A., New classes of contact metric structures. Publ. Math. Debrecen (32) (1985), 187-193.

- [18] Prvanović, M., On pseudo metric semi-symmetric connections, Pub. De L' Institut Math., Nouvelle serie 32 (1975), 157-164.
- [19] Sharfuddin, A., Hussain, S.I., Semi-symmetric metric connexions in almost contact manifolds. Tensor, N. S. 30 (1976), 133-139.
- [20] Takahashi, T., Sasakian ϕ -symmetric spaces. $T\hat{o}hoku$ Math. J. 29 (1977), 91-113.
- [21] Tanno S., The automorphisam groups of almost contact Riemannian manifolds. Tohoku Math. J. 21 (1969), 21-38.
- [22] Tripathi, M.M., Dwivedi, M.K., The structure of some classes of K-contact manifolds. Proc. Indian Acad. Sci. Math. Sci. 118 (2008), 371-379.
- [23] Yadav, S., Suthar, D.L., Certain derivation on Lorentzian α -Sasakian manifolds. Mathematics and Decision Science 12 (2012).
- [24] Yano K., On semi-symmetric connection. Revue Roumaine de Math. Pure et Appliques 15 (1970), 1570-1586.
- [25] Yildiz A, Murathan C., On Lorentzian α -Sasakian manifolds. Kyungpook Math. J. 45 (2005), 95-103.

Received by the editors July 13, 2013