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Abstract. We give several applications of the thick distributional cal-
culus. We consider homogeneous thick distributions, point source fields,
and higher order derivatives of order 0.
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1. Introduction

The aim of this note is to give several applications of the recently introduced
calculus of thick distributions in several variables [16], generalizing the thick
distributions of one variable [3]. The thick distributional calculus allows us to
study problems where a finite number of special points are present; it is the
distributional version of the analysis of Blanchet and Faye [1], who employed
the concepts of Hadamard finite parts as developed by Sellier [13] to study
dynamics of point particles in high post-Newtonian approximations of general
relativity. We give a short summary of the theory of thick distributions in
Section 2.

Our first application, given in Section 3, is the computation of the distri-
butional derivatives of homogeneous distributions in Rn by first computing the
thick distributional derivatives and then projecting onto the space of standard
distributions. Our analysis makes several delicate points quite clear.

Next, in Section 4, we consider an application to point source fields. In [2],
Bowen computed the derivative of the distribution

(1.1) gj1,...,jk (x) =
nj1 · · ·njk

r2
,

of D′
(
R3
)
, where r = |x| and n = (ni) is the unit normal vector to a sphere

centered at the origin, that is, ni = xi/r. Following the notation introduced
by the late Professor Farassat [8] of denoting distributional derivatives with an
overbar, Bowen’s result can be written as,

(1.2)
∂

∂xi
gj1,...,jk =

{
k∑

q=1

δijq
nj1 · · ·njk

njq
− (k + 2)ninj1 · · ·njk

}
1

r3
+Aδ (x) ,
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where ninj1 · · ·njk = na1n
b
2n

c
3, and A = 0 if a, b, or c is odd, while

(1.3) A =
2Γ ((a+ 1) /2) Γ ((b+ 1) /2) Γ ((c+ 1) /2)

Γ ((a+ b+ c+ 3) /2)
,

if the three exponents are even. Interestingly, he observes that if one tries to
compute this formula by induction, employing the product rule for derivatives,
the result obtained is wrong. In this article we show that one can actually
apply the product rule in the space of thick distributions, obtaining (1.2) by
induction; furthermore, our analysis shows why the wrong result is obtained
when applying the product rule in [2].

Finally in Section 5 we show how the thick distributional calculus allows
one to avoid mistakes in the computation of higher order derivatives of thick
distributions of order 0.

2. Thick distributions

We now recall the basic ideas of the thick distributional calculus [16]. If a
is a fixed point of Rn, then the space of test functions with a thick point at
x = a is defined as follows.

Definition 2.1. Let D∗,a (Rn) denote the vector space of all smooth functions
φ defined in Rn \ {a} , with support of the form K \ {a} , where K is compact
in Rn, that admit a strong asymptotic expansion of the form

(2.1) φ (a + x) = φ (a + rw) ∼
∞∑

j=m

aj (w) rj , as x→ 0 ,

where m is an integer (positive or negative), and where the aj are smooth

functions of w, that is, aj ∈ D (S) . The subspace D[m]
∗,a (Rn) consists of those

test functions φ whose expansion (2.1) begins at m. For a fixed compact K

whose interior contains a, D[m;K]
∗,a (Rn) is the subspace formed by those test

functions of D[m]
∗,a (Rn) that vanish in Rn \K.

Observe that we require the asymptotic development of φ (x) as x →
a to be “strong”. This means [7, Chapter 1] that for any differentiation
operator (∂/∂x)

p
= (∂p1 ...∂pn) /∂xp1

1 ...∂x
pn
n , the asymptotic development of

(∂/∂x)
p
φ (x) as x→ a exists and is equal to the term-by-term differentiation

of
∑∞

j=m aj (w) rj . Observe that saying that the expansion exists as x → 0 is
the same as saying that it exists as r → 0, uniformly with respect to w.

We call D∗,a (Rn) the space of test functions on Rn with a thick point
located at x = a. We denote D∗,0 (Rn) as D∗ (Rn) .

The topology of the space of thick test functions is constructed as follows.

Definition 2.2. Let m be a fixed integer and K a compact subset of Rn whose

interior contains a. The topology of D[m;K]
∗,a (Rn) is given by the seminorms
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‖ ‖q,s

}
q>m,s≥0

defined as

(2.2) ||φ||q,s = sup
x−a∈K

sup
|p|≤s

∣∣∣∣∣∣∂
pφ

∂x
(a + x)−

q−1∑
j=m−|p|

aj,p (w) rj

∣∣∣∣∣∣
rq

,

where x = rw and

(2.3)
∂pφ

∂x
(a + x) ∼

∞∑
j=m−|p|

aj,p (w) rj .

The topology of D[m]
∗,a (Rn) is the inductive limit topology of the D[m;K]

∗,a (Rn)
as K ↗ ∞. The topology of D∗,a (Rn) is the inductive limit topology of the

D[m]
∗,a (Rn) as m↘ −∞.

A sequence {φl}∞l=0 in D∗,a (Rn) converges to ψ if and only there exists
l0 ≥ 0, an integer m, and a compact set K with a in its interior, such that

φl ∈ D[m;K]
∗,a (Rn) for l ≥ l0 and ||ψ − φl||q,s → 0 as l → ∞ if q > m, s ≥ 0.

Notice that if {φl}∞l=0 converges to ψ in D∗,a (Rn) then φl and the correspond-
ing derivatives converge uniformly to ψ and its derivatives in any set of the
form Rn \ B, where B is a ball with center at a; in fact, r|p|−m (∂/∂x)

p
φl

converges uniformly to r|p|−m (∂/∂x)
p
ψ over all Rn. Furthermore, if

{
alj
}

are

the coefficients of the expansion of φl and {bj} are those for ψ, then alj → bj
in the space D (S) for each j ≥ m.

We can now consider distributions in a space with one thick point, the
“thick distributions.”

Definition 2.3. The space of distributions on Rn with a thick point at x = a
is the dual space of D∗,a (Rn) . We denote it D′∗,a (Rn) , or just as D′∗ (Rn) when
a = 0.

Observe that D (Rn) , the space of standard test functions, is a closed sub-
space of D∗,a (Rn) ; we denote by

(2.4) i : D (Rn)→ D∗,a (Rn) ,

the inclusion map and by

(2.5) Π : D′∗,a (Rn)→ D′ (Rn) ,

the projection operator, dual of the inclusion (2.4).

The derivatives of thick distributions are defined in much the same way as
the usual distributional derivatives, that is, by duality.
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Definition 2.4. If f ∈ D′∗,a (Rn) then its thick distributional derivative ∂∗f/∂xj
is defined as

(2.6)

〈
∂∗f

∂xj
, φ

〉
= −

〈
f,

∂φ

∂xj

〉
, φ ∈ D∗,a (Rn) .

We denote by E∗ (Rn) the space of smooth functions in Rn \ {a} that have
a strong asymptotic expansion of the form (2.1); alternatively, ψ ∈ E∗ (Rn) if
ψ = ψ1 + ψ2, where ψ1 ∈ E (Rn), the space of all smooth functions in Rn, and
where ψ2 ∈ D∗ (Rn) . The space E∗ (Rn) is the space of multipliers of D∗ (Rn)
and of D′∗ (Rn) . Furthermore [16], the product rule for derivatives holds,

(2.7)
∂∗ (ψf)

∂xj
=

∂ψ

∂xj
f + ψ

∂∗f

∂xj
,

if f is a thick distribution and ψ is a multiplier. Notice that ∂ψ/∂xj is the
ordinary derivative in (2.7).

Let g (w) is a distribution in S. The thick delta function of degree q, denoted

as gδ
[q]
∗ , or as g (w) δ

[q]
∗ , acts on a thick test function φ (x) as

(2.8)
〈
gδ

[q]
∗ , φ

〉
D′∗(Rn)×D∗(Rn)

=
1

C
〈g (w) , aq (w)〉D′(S)×D(S) ,

where φ (rw) ∼
∑∞

j=m aj (w) rj , as r → 0+, and where

(2.9) C =
2πn/2

Γ (n/2)
,

is the surface area of the unit sphere S of Rn. If g is locally integrable function
in S, then

(2.10)
〈
gδ

[q]
∗ , φ

〉
D′∗(Rn)×D∗(Rn)

=
1

C

∫
S
g (w) aq (w) dσ (w) .

Thick deltas of order 0 are called just thick deltas, and we shall use the notation

gδ∗ instead of gδ
[0]
∗ .

Let g ∈ D′ (S) . Then

(2.11)
∂∗

∂xj

(
gδ

[q]
∗

)
=

(
δg

δxj
− (q + n)njg

)
δ

[q+1]
∗ .

Here δg/δxj is the δ−derivative of g [4, 6]; in general the δ−derivatives can be
applied to functions and distributions defined only on a smooth hypersurface
Σ of Rn. Suppose now that the surface is S, the unit sphere in Rn and let
f be a smooth function defined in S, that is, f (w) is defined if w ∈ Rn

satisfies |w| = 1. Observe that the expressions ∂f/∂xj are not defined and,
likewise, if w = (wj)1≤j≤n the expressions ∂f/∂wj do not make sense either;
the derivatives that are always defined and that one should consider are the
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δf/δxj , 1 ≤ j ≤ n. Let F0 be the extension of f to Rn\{0} that is homogeneous
of degree 0, namely, F0 (x) = f (x/r) where r = |x| . Then [16]

(2.12)
δf

δxj
=
∂F0

∂xj

∣∣∣∣
S
.

Also, if we use polar coordinates, x = rw, so that F0 (x) = f (w) , then ∂F0/∂xj
is homogeneous of degree −1, and actually ∂F0/∂xj = r−1δf/δxj if x 6= 0.

The matrix µ = (µij)1≤i,j≤n , where µij = δni/δxj , plays an important role

in the study of distributions on a surface Σ. If Σ = S then µij = δni/δxj =
δij − ninj . Observe that µij = µji, an identity that holds in any surface.

The differential operators δf/δxj are initially defined if f is a smooth func-
tion defined on Σ, but we can also define them when f is a distribution. We
can do this if we use the fact that smooth functions are dense in the space of
distributions on Σ.

3. The thick distribution Pf (1)

Let us consider one of the simplest functions, namely, the function 1, defined
in Rn. Naturally this function is locally integrable, and thus it defines a regular
distribution, also denoted as 1, and the ordinary derivatives and the distribu-
tional derivatives both coincide and give the value 0. On the other hand, 1 does
not automatically give an element of D′∗ (Rn) since if φ ∈ D∗ (Rn) the integral∫
Rn φ (x) dx could be divergent, and thus we consider the spherical finite part

thick distribution Pf (1) given as

(3.1) 〈Pf (1) , φ〉 = F.p.

∫
Rn

φ (x) dx =F.p. lim
ε→0+

∫
|x|≥ε

φ (x) dx .

The derivatives of Pf (1) do not vanish, since actually we have the following
formula [16].

Lemma 3.1. In D′∗ (Rn) ,

(3.2)
∂∗

∂xi
(Pf (1)) = Cniδ

[−n+1]
∗ ,

where C is given by (2.9).

Proof. One can find a proof of a more general statement in [16], but in this
simpler case the proof can be written as follows,〈

∂∗

∂xi
(Pf (1)) , φ

〉
= −

〈
Pf (1) ,

∂φ

∂xi

〉
= −F.p. lim

ε→0+

∫
|x|≥ε

∂φ

∂xi
dx

= F.p. lim
ε→0+

∫
εSn−1

niφ dσ ,
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so that if φ ∈ D∗ (Rn) has the expansion φ (x) ∼
∑∞

j=m aj (w) rj , as x → 0,
then ∫

εSn−1

niφ dσ ∼
∞∑

j=m

(∫
S
niaj (w) dσ (w)

)
εn−1+j ,

as ε→ 0+. The finite part of the limit is equal to the coefficient of ε0, thus

F.p. lim
ε→0

∫
εSn−1

niφdσ =

∫
S
nia1−n (w) dσ (w)

=
〈
Cniδ

[1−n]
∗ , φ

〉
,

as required.

If ψ ∈ E∗ (Rn) is a multiplier of D∗ (Rn) , then we define, in a similar way,
the thick distribution Pf (ψ) ∈ D′∗ (Rn) , and we clearly have the useful formula

(3.3) Pf (ψ) = ψPf (1) ,

which immediately gives the thick distributional derivative of Pf (ψ) as

∂∗

∂xi
(Pf (ψ)) =

∂ψ

∂xi
Pf (1) + ψ

∂∗

∂xi
(Pf (1)) ,

so that we obtain the ensuing formula.

Proposition 3.2. If ψ ∈ E∗ (Rn) then

(3.4)
∂∗

∂xi
(Pf (ψ)) = Pf

(
∂ψ

∂xi

)
+ Cniψδ

[1−n]
∗ .

Notice that, in general, the term Cniψδ
[1−n]
∗ is not a thick delta of order

1 − n. Indeed, let us now consider the case when ψ ∈ E∗ (Rn) is homogeneous
of order k ∈ Z. Then ψ (x) = rkψ0 (x) , where ψ0 is homogeneous of order 0.

Since rkδ
[q]
∗ = δ

[q−k]
∗ [16, Eqn. (5.16)] we obtain the following particular case of

(3.4), where now the term Cniψ0δ
[1−n−k]
∗ is a thick delta of order 1− n− k.

Proposition 3.3. If ψ ∈ E∗ (Rn) is homogeneous of order k ∈ Z, then

(3.5)
∂∗

∂xi
(Pf (ψ)) = Pf

(
∂ψ

∂xi

)
+ Cniψ0δ

[1−n−k]
∗ ,

where ψ0 (x) = |x|−k ψ (x) .

If we now apply the projection Π onto the usual distribution space D′ (Rn) ,
we obtain the formula for the distributional derivatives of homogeneous dis-
tributions. Observe first that if k > −n then ψ is integrable at the origin,
and thus ψ is a regular distribution and Π (Pf (ψ)) = ψ. If k ≤ −n then
Π (Pf (ψ)) = Pf (ψ) , since in that case the integral

∫
Rn ψ (x)φ (x) dx would
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be divergent, in general, if φ ∈ D (Rn) . A particularly interesting case is when
k = −n, since if ψ is homogeneous of degree −n and

(3.6)

∫
S
ψ (w) dσ (w) = 0 ,

then the principal value of the integral

(3.7) p.v.

∫
Rn

ψ (x)φ (x) dx = lim
ε→0+

∫
|x|≥ε

ψ (x)φ (x) dx ,

actually exists for each φ ∈ D (Rn) , so that Pf (ψ) = p.v. (ψ) , the prin-
cipal value distribution. Note however that if Σ is a closed surface in Rn

that encloses the origin, described by an equation of the form g(x) = 1,
where g(x) is continuous in Rn \ {0} and homogeneous of degree 1, then
〈RΣ (ψ(x)) , φ(x)〉 = lim

ε→0

∫
g(x)̇>ε

ψ(x)φ(x) dx , defines another regularization

of ψ, but in general RΣ (ψ(x)) 6= p.v. (ψ (x)) [15], a fact observed by Farassat
[8], who indicated its importance in numerical computations, and studied by
several authors [11, 15].

Condition (3.6) holds whenever ψ = ∂ξ/∂xj for some ξ homogeneous of
order −n+ 1.

Proposition 3.4. Let ψ be homogeneous of order k ∈ Z in Rn \ {0} . Then,
in D′ (Rn) the distributional derivative ∂ψ/∂xi is given as follows:

(3.8)
∂ψ

∂xi
=
∂ψ

∂xi
, k > 1− n ,

equality of regular distributions;

(3.9)
∂ψ

∂xi
= p.v.

(
∂ψ

∂xi

)
+Aδ (x) , k = 1− n ,

where A =
∫
S niψ0 (w) dσ (w) = 〈ψ0, ni〉D′(S)×D(S) , while

(3.10)
∂ψ

∂xi
= Pf

(
∂ψ

∂xi

)
+D (x) , k < 1− n ,

where D (x) is a homogeneous distribution of order k − 1 concentrated at the
origin and given by
(3.11)

D (x) = (−1)
−k−n+1

∑
j1+···+jn=−k−n+1

〈
niψ0,w

(j1,...,jn)
〉

j1! · · · jn!
D(j1,...,jn)δ (x) .

Proof. It follows from (3.4) if we observe [16, Prop. 4.7] that if g ∈ D′ (S) then

(3.12) Π
(
gδ

[q]
∗

)
=

(−1)
q

C

∑
j1+···+jn=q

〈
g (w) ,w(j1,...,jn)

〉
j1! · · · jn!

D(j1,...,jn)δ (x) ,
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and, in particular,

(3.13) Π (gδ∗) =
1

C
〈g (w) , 1〉 δ (x) ,

if q = 0.

Our next task is to compute the second order thick derivatives of homo-
geneous distributions. Indeed, if ψ is homogeneous of degree k then we can
iterate the formula (3.5) to obtain

∂∗2

∂xi∂xj
(Pf (ψ)) =

∂∗

∂xi

(
Pf
(
∂ψ

∂xj

)
+ Cnjψ0δ

[1−n−k]
∗

)
(3.14)

= Pf
(

∂2ψ

∂xi∂xj

)
+ Cniξ0δ

[2−n−k]
∗ +

∂∗

∂xi

(
Cnjψ0δ

[1−n−k]
∗

)
,

where ξ = ∂ψ/∂xj is homogeneous of degree k − 1 and ξ0 (x) = |x|1−k ξ (x) is
the associated function which is homogeneous of degree 0. Use of (2.11) allows
us to write

∂∗

∂xi

(
Cnjψ0δ

[1−n−k]
∗

)
= C

(
δ

δxi
(njψ0) + (k − 1)ninjψ0

)
δ

[2−n−k]
∗(3.15)

= C

(
(δij − ninj)ψ0 + nj

δψ0

δxi
+ (k − 1)ninjψ0

)
δ

[2−n−k]
∗

= C

(
(δij + (k − 2)ninj)ψ0 + nj

δψ0

δxi

)
δ

[2−n−k]
∗ ,

while the equation ψ = rkψ0 yields ∂ψ/∂xj = rk−1{knjψ0 + δψ0/δxj}, so that

(3.16) ξ0 = knjψ0 +
δψ0

δxj
.

Collecting terms we thus obtain the following formula.

Proposition 3.5. If ψ ∈ E∗ (Rn) is homogeneous of order k ∈ Z, then

∂∗2

∂xi∂xj
(Pf (ψ)) = Pf

(
∂2ψ

∂xi∂xj

)
(3.17)

+ C

(
(δij + 2 (k − 1)ninj)ψ0 + nj

δψ0

δxi
+ ni

δψ0

δxj

)
δ

[2−n−k]
∗ .

where ψ0 (x) = |x|−k ψ (x) .

Projection onto D′ (Rn) of (3.17) gives the formula for the distributional

derivatives ∂
2
/∂xi∂xj(Pf (ψ)) if ψ ∈ E∗ (Rn) is homogeneous of order k ∈ Z.

In case k = 2− n we obtain the following formula.
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Proposition 3.6. If ψ ∈ E∗ (Rn) is homogeneous of order 2− n, then

(3.18)
∂

2

∂xi∂xj
(ψ) = p.v.

(
∂2ψ

∂xi∂xj

)
+Bδ (x) ,

where

(3.19) B = 〈ψ0, 2ninj − δij〉D′(S)×D(S) .

Proof. If we apply the operator Π to (3.17) and employ (3.13) we obtain (3.18)
with

B =

〈
(δij + 2 (k − 1)ninj)ψ0 + nj

δψ0

δxj
+ ni

δψ0

δxj
, 1

〉
D′(S)×D(S)

.

But [16, (2.6)] yields

(3.20)

〈
nj
δψ0

δxj
, 1

〉
D′(S)×D(S)

= 〈ψ0, n ninj − δij〉D′(S)×D(S) ,

and (3.19) follows since k = 2− n.

We would like to observe that while ψ0 has been supposed smooth, a
continuity argument immediately gives that ψ0 could be any distribution of
D′ (Rn \ {0}) that is homogeneous of degree 0.

4. Bowen’s formula

If we apply formula (3.9) to the function ψ = nj1 · · ·njk/r2, which is homo-
geneous of degree −2 in R3 we obtain at once that

∂

∂xi

(nj1 · · ·njk
r2

)
=(4.1)

p.v.

({
k∑

q=1

δijq
nj1 · · ·njk

njq
− (k + 2)ninj1 · · ·njk

}
1

r3

)
+Aδ (x) ,

where

(4.2) A =

∫
S
ninj1 · · ·njk dσ (w) .

This integral was computed in [5, (3.13)], the result being

(4.3) A =
2Γ ((a+ 1) /2) Γ ((b+ 1) /2) Γ ((c+ 1) /2)

Γ ((a+ b+ c+ 3) /2)
,

if ninj1 · · ·njk = na1n
b
2n

c
3, and a, b, or c are even, while A = 0 if any exponent is

odd. Bowen [2, Eqn. (A5)] also computes the integral, and obtains a different
but equivalent expression; in particular, his formula for k = 3 reads as

(4.4) A =
4π

15
(δij1δj2j3 + δij2δj1j3 + δij3δj1j2) ,
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so that (4.3) or (4.4) would yield that if (a, b, c) is a permutation of (2, 2, 0)
then A = 4π/15 while if (a, b, c) is a permutation of (4, 0, 0) then A = 4π/5.

Our main aim is to point out why the product rule for derivatives, as em-
ployed in [2] does not produce the correct result. Indeed, if we use [2, Eqn.
(16)] written as

(4.5)
∂

∂xi

(nj1
r2

)
= p.v.

(
δij1 − 3ninji

r3

)
+

4π

3
δij1δ (x) ,

and then try to proceed as in [2, Eqn. (18)],

(4.6)
∂

∂xi

(nj1nj2nj3
r2

)
“¿ = ?” nj1nj2

∂

∂xi

(nj3
r2

)
+
nj3
r2

∂

∂xi
(nj1nj2) .

Thus (4.5) and the formula

(4.7)
∂

∂xi
(nj1nj2) =

δij1nj2 + δij2nj1 − 2ninj1nj2
r

,

give

(4.8) nj1nj2
∂

∂xi

(nj3
r2

)
+
nj3
r2

∂

∂xi
(nj1nj2) = “Normal” + “Src” ,

where
(4.9)

“Normal” = p.v.

(
δij1nj2nj3 + δij2nj1nj3 + δij3nj1nj2 − 5ninj1nj2nj3

r3

)
,

coincides with the first term of (4.1) while

(4.10) “Src” =
4π

3
δij3nj1nj2δ (x) .

The right hand side of (4.10) is not a well defined distribution, of course, but
Bowen suggested that we treat it as what we now call the projection of a thick
distribution, that is, as

(4.11) “Src” = Π

(
4π

3
δij3nj1nj2δ∗

)
=

4π

9
δij3δj1j2δ (x) ,

since Π (nj1nj2δ∗) = (1/3) δj1j2δ (x) [16, Example 5.10]. In order to compare
with (4.1) and (4.4) we observe that by symmetry the same result would be
obtained if j3 and j1, or j3 and j2, are exchanged, so that if in the term “Src”
we do these exchanges, add the results and divide by 3, we would get

(4.12) “SrcSym” =
4π

27
(δij1δj2j3 + δij2δj1j3 + δij3δj1j2) δ (x) ,

and thus the symmetric version of the (4.8) is “Normal”+“SrcSym”, which of
course is different from (4.1) since the coefficient in (4.4) is 4π/15, while that
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in (4.12) is 4π/27. Therefore, the relation “¿=?” in (4.6) cannot be replaced
by = .

Hence the product rule for derivatives fails in this case. The question is
why? Indeed, when computing the right side of (4.6), that is, the left side of
(4.8), we found just one irregular product, namely nj1nj2δ (x) , but using the
average value (1/3) δj1j2δ (x) seems quite reasonable.

In order to see what went wrong let us compute ∂/∂xi
(
nj1nj2nj3/r

2
)

by

computing the thick derivative ∂∗/∂xiPf
(
nj1nj2nj3/r

2
)
, applying the product

rule for thick derivatives, and then taking the projection π of this. We have,

∂∗

∂xi
Pf
(nj1nj2nj3

r2

)
=

∂∗

∂xi

[
nj1nj2Pf

(nj3
r2

)]
= nj1nj2

∂∗

∂xi
Pf
(nj3
r2

)
+
∂ (nj1nj2)

∂xi
Pf
(nj3
r2

)
,

and taking (3.5) into account, we obtain

nj1nj2

{
Pf
(
δij3 − 3ninj3

r3

)
+ 4πnj3niδ∗

}
+
δij1nj2 + δij2nj1 − 2ninj1nj2

r
Pf
(nj3
r2

)
,

that is, ∂∗/∂xiPf
(
nj1nj2nj3/r

2
)

equals

Pf
(
δij1nj2nj3 + δij2nj1nj3 + δij3nj1nj2 − 5ninj1nj2nj3

r3

)
(4.13)

+ 4πnj1nj2nj3niδ∗ .

Applying the projection operator Π we obtain that the Pf becomes a p.v., so
that the term “Normal” given by (4.9) is obtained, while (3.13) yields that the
projection of thick delta is exactly Aδ (x) where A =

∫
S ninj1nj2nj3 dσ (w) ,

that is, the correct term

4π

15
(δij1δj2j3 + δij2δj1j3 + δij3δj1j2) δ (x) .

The reason we now obtain the correct result is while it is true that Π (nj1nj2δ∗) =
(1/3) δj1j2δ (x) and that Π (nj3niδ∗) = (1/3) δij3δ (x) , it is not true that the
projection Π (4πnj1nj2nj3niδ∗) can be obtained as 4π (1/3) δij3Π (nj1nj2δ∗) nor
as 4π (1/3) δj1j2Π (nj3niδ∗) , and actually not even the symmetrization of such
results, given by (4.12), works. Put in simple terms, it is not true that the
average of a product is the product of the averages!

One can, alternatively, compute ∂∗/∂xiPf
(
nj1nj2nj3/r

2
)

as

(4.14)
∂

∂xi

(nj3
r2

)
Pf (nj1nj2) +

(nj3
r2

) ∂∗

∂xi
Pf (nj1nj2) ,

since
(4.15)

∂∗

∂xi
Pf (nj1nj2) = Pf

(
δij1nj2 + δij2nj1 − 2ninj1nj2

r

)
+ 4πnj1nj2niδ

[−2]
∗ .
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Here the thick delta term in (4.14) is 4π
(
nj3/r

2
)
nj1nj2niδ

[−2]
∗ , which becomes,

as it should, 4πnj1nj2nj3niδ∗.
Complications in the use of the product rule for derivatives in one variable

were considered in [3] when analysing the formula [14]

(4.16)
d

dx
(Hn (x)) = nHn−1 (x) δ (x) ,

where H is the Heaviside function; see also [12].

5. Higher order derivatives

We now consider the computation of higher order derivatives in the space(
D[0]
∗ (Rn)

)′
. If f ∈ D′∗ (Rn) then, of course, the thick derivative ∂∗f/∂xi is

defined by duality, that is,

(5.1)

〈
∂∗f

∂xi
, φ

〉
= −

〈
f,
∂φ

∂xi

〉
,

for φ ∈ D∗ (Rn) . Suppose now that A is a subspace of D∗ (Rn) that has a
topology such that the imbedding i : A ↪→ D∗ (Rn) is continuous; then the
transpose iT : D′∗ (Rn)→ A′ is just the restriction operator ΠA. If A is closed
under the differentiation operators. Note that, the space A′ would be a space
of (thick) distributions in the sense of Zemanian [18]. Then we can also define
the derivative of any f ∈ A′, say ∂Af/∂xi, by employing (5.1) for φ ∈ A. Then

(5.2) ΠA

(
∂∗f

∂xi

)
=

∂A
∂xi

(ΠA (f)) ,

for any thick distribution f ∈ D′∗ (Rn) . In the particular case whenA = D (Rn),
then ∂Af/∂xi = ∂f/∂xi, the usual distributional derivative, and thus (5.2)
becomes [16, Eqn. (5.22)],

(5.3) Π

(
∂∗f

∂xi

)
=
∂Π (f)

∂xi
.

What this means is that one can use thick distributional derivatives to compute
∂Af/∂xi, as we have already done to compute distributional derivatives.

When A is not closed under the differentiation operators then ∂Af/∂xi can-
not be defined by (5.1) if f ∈ A′ since in general ∂φ/∂xi does not belong to A
and thus the right side of (5.1) is not defined. However, if f ∈ A′ has a canon-

ical extension f̃ ∈ D′∗ (Rn) then we could define ∂Af/∂xi as ΠA

(
∂∗f̃/∂xi

)
.

This applies, in particular when A = D[0]
∗ (Rn) : if f ∈

(
D[0]
∗ (Rn)

)′
then

∂∗0f/∂xi = ∂Af/∂xi cannot be defined, in general, but if f has a canonical

extension f̃ ∈ D′∗ (Rn), then ∂∗0f/∂xi is understood as ΠD[0]
∗ (Rn)

(
∂∗f̃/∂xi

)
.

Our aim is to point out that, in general, if P = RS is the product of
two differential operators with constant coefficients, then while, with obvious
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notations, P ∗ = R∗S∗, PA = RASA, if A is closed under differential operators,

and P = RS, it is not true that P ∗0 = R∗0S
∗
0 . Therefore the space

(
D[0]
∗ (Rn)

)′
is not a convenient framework to generalize distributions to thick distributions;
the whole D′∗ (Rn) is needed if we want a theory that includes the possibility
of differentiation.

Example 5.1. Let us consider the second order derivatives of the distribution
Pf (1) . Formula (3.17) yields

(5.4)
∂∗2

∂xi∂xj
(Pf (1)) = C (δij − 2ninj) δ

[−n+2]
∗ .

In particular, in R2, ∂∗2/∂xi∂xj (Pf (1)) = 2π (δij − 2ninj) δ∗. If we consider

the function 1 as an element of
(
D[0]
∗
(
R2
))′

then it has the canonical extension

Pf (1) ∈ D′∗
(
R2
)

and so

∂∗0 (1)

∂xj
= ΠD[0]

∗ (R2)

(
2πnjδ

[−1]
∗

)
= 0 ,

and consequently,

(5.5)
∂∗0
∂xi

(
∂∗0 (1)

∂xj

)
=

∂∗0
∂xi

(0) = 0 6= 2π (δij − 2ninj) δ∗ =
∂∗2 (1)

∂xi∂xj
.

Observe that Π (2π (δij − 2ninj) δ∗) = 0, but observe also that this means very
little.

Example 5.2. It was obtained in [16, Thm. 7.6] that in D′∗
(
R3
)

(5.6)
∂∗2Pf

(
r−1
)

∂xi∂xj
=
(
3xixj − δijr2

)
Pf
(
r−5
)

+ 4π (δij − 4ninj) δ∗ .

Since Π (ninjδ∗) = (1/3) δijδ (x) in R3, this yields the well known formula of
Frahm [9]

(5.7)
∂

2

∂xi∂xj

(
1

r

)
= p.v.

(
3xixj − r2δij

r5

)
−
(

4π

3

)
δijδ (x) .

We also immediately obtain that

(5.8)
∂∗20 Pf

(
r−1
)

∂xi∂xj
= Pf

(
3xixj − r2δij

r5

)
+ 4π (δij − 4ninj) δ∗ ,

a formula that can also be proved by other methods [17]. On the other hand,
in [10] one can find the computation of

(5.9)
∂∗0
∂xi

(
∂∗0
∂xj

(
1

r

))
= Pf

(
3xixj − r2δij

r5

)
− 4πninjδ∗ .
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The fact that
∂∗0
∂xi

(
∂∗0
∂xj

)
6= ∂∗20

∂xi∂xj
is obvious in the Example 5.1, but it

is harder to see it in cases like this one. In fact, the fact that the two re-
sults are different is overlooked in [10]. Observe that the projection of both
4π (δij − 4ninj) δ∗ and of −4πninjδ∗ onto D′

(
R3
)

is given by − (4π/3) δijδ (x) ,
but this does not mean that they are equal; observe also that one needs the
finite part in (5.8) and in (5.9) since the principal value, as used in (5.7), exists

in D′
(
R3
)

but not in
(
D[0]
∗
(
R3
))′

.
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