HYPER $B E$-ALGEBRAS

Akefe Radfar ${ }^{\mathbb{D}}$, Akbar Rezaei ${ }^{[\boxed{]}}$ and Arsham Borumand Saeid ${ }^{[3]}$

Abstract

In this paper, we introduce the notion of hyper $B E$-algebra and investigate some properties. Also, some types of hyper filters in hyper $B E$-algebras are studied and the relationship between them are stated. We try to show that these notions are independent by some examples. Furthermore, it shows that under special condition hyper $B E$-algebras are equivalent to dual hyper K-algebras.

AMS Mathematics Subject Classification (2010): 06F35, 03G25.
Key words and phrases: (hyper) $B E$-algebra, hyper K-algebra, hyper (weak)filter.

1. Introduction

H. S. Kim and Y. H. Kim introduced the notion of a $B E$-algebra as a generalization of a dual $B C K$-algebra [5]. Using the notion of upper sets, they gave an equivalent condition of upper sets in $B E$-algebras and discussed some properties of them. A. Rezaei et al. in [$[\mathbf{Z}, \mathbb{Z}]$ study commutative ideals in $B E$-algebras and give some properties. They showed that a commutative implicative $B E$-algebra is equivalent to the commutative self distributive $B E-$ algebra. Also, they proved that every Hilbert algebra is a self distributive $B E$-algebra and commutative self distributive $B E$-algebra is a Hilbert algebra and showed that one can not remove the conditions of commutativity and self distributivity. In [I], S. S. Ahn et al. introduced the notions of terminal sections of a $B E-$ algebras and gave some characterization of commutative $B E-$ algebras in terms of lattice order relations and terminal sections. Recently, R. A. Borzooei et al. introduced the notion of pseudo $B E$-algebra which is a generalization of $B E$-algebra. They defined the basic concepts of pseudo subalgebras and pseudo filters and prove that, under some conditions, pseudo subalgebra can be a pseudo filter [3].

The hyper algebraic structure theory was introduced in 1934 [6], by F. Marty at the 8th congress of Scandinavian Mathematicians. Hyperstructures have many applications to several sectors of both pure and applied sciences. In [4], Y. B. Jun et al. applied the hyperstructures to $B C K$-algebras and introduced the notion of a hyper $B C K$-algebra which is a generalization of

[^0]$B C K$-algebra and investigated some related properties. R. A. Borzooei et al. defined the notion of a hyper K-algebra, bounded hyper K-algebra and consider the zero condition in hyper K-algebras. They show that every hyper K-algebra with the zero condition can be extended to a bounded hyper K algebra [Z, UI].

The goal of this paper is to generalize the notion of $B E$-algebras by considering the notion of hyperoperation, define some types of hyper filters in this structure and describe the relationship between them.

Definition 1.1. [5] An algebra $(X ; *, 1)$ of type $(2,0)$ is called a BE-algebra if the following axioms hold:
(BE1) $\quad x * x=1$,
(BE2) $\quad x * 1=1$,
(BE3) $1 * x=x$,
(BE4) $x *(y * z)=y *(x * z)$, for all $x, y, z \in X$.
We introduce the relation " \leq " on X by $x \leq y$ if and only if $x * y=1$.
Proposition 1.2. [㤐 Let X be a BE-algebra. Then
(i) $x *(y * x)=1$,
(ii) $y *((y * x) * x)=1$, for all $x, y \in X$.

Definition 1.3. [17] An algebra $(X ; *, 1)$ of type $(2,0)$ is called a dual $B C K-$ algebra if
(BE1) $x * x=1$ for all $x \in X$;
(BE2) $x * 1=1$ for all $x \in X$;
(dBCK1) $x * y=y * x=1 \Longrightarrow x=y$;
$($ dBCK2 $)(x * y) *((y * z) *(x * z))=1$;
$(d B C K 3) x *((x * y) * y)=1$.
Lemma 1.4. [7I] Let $(X ; *, 1)$ be a dual BCK-algebra. Then
(i) $x *(y * z)=y *(x * z)$,
(ii) $1 * x=x$, for all $x, y, z \in X$.

Proposition 1.5. [17] Any dual BCK-algebra is a BE-algebra.
Example 1.6. [G] Let $X=\{1,2, \ldots\}$ and the operation $*$ be defined as follows:

$$
x * y= \begin{cases}1 & \text { if } y \leq x \\ y & \text { otherwise }\end{cases}
$$

Then $(X ; *, 1)$ is a $B E$-algebra, but it is not a dual $B C K$-algebra.

Definition 1.7. [匀] Let H be a nonempty set and $\circ: H \times H \rightarrow P^{*}(H)$ be a hyperoperation. Then $(H ; \circ, 0)$ is called a hyper K-algebra, if it satisfies the following axioms:
$\left(H K_{1}\right) \quad(x \circ z) \circ(y \circ z)<x \circ y$,
$\left(H K_{2}\right) \quad(x \circ y) \circ z=(x \circ z) \circ y$,
$\left(H K_{3}\right) \quad x<x$,
$\left(H K_{4}\right) \quad x<y$ and $y<x$ imply that $x=y$,
(HK K_{5}) $0<x$, for all $x, y, z \in H$.
For every $A, B \subseteq H$, where $x<y$ is defined by $0 \in x \circ y, A<B$ is defined by: there exist $a \in A$ and $b \in B$ such that $a<b$. Note that if $A, B \subseteq H$, then by $A \circ B$ we mean the subset $\bigcup_{a \in A, b \in B} a \circ b$ of H.

Theorem 1.8. [四] Let H be a hyper K-algebra. Then
(i) $x \in x \circ 0$,
(ii) $x<0$ implies $x=0$, for all $x \in H$.

2. On hyper $B E$-algebras

Definition 2.1. Let H be a nonempty set and $\circ: H \times H \rightarrow P^{*}(H)$ be a hyperoperation. Then $(H ; \circ, 1)$ is called a hyper $B E$-algebra, if it satisfies the following axioms:
$\left(H B E_{1}\right) \quad x<1$ and $x<x$,
$\left(H B E_{2}\right) \quad x \circ(y \circ z)=y \circ(x \circ z)$,
$\left(H B E_{3}\right) \quad x \in 1 \circ x$,
$\left(H B E_{4}\right) \quad 1<x$ implies $x=1$, for all $x, y, z \in H$.
$(H ; \circ, 1)$ is called a dual hyper K-algebra if satisfies $\left(H B E_{1}\right),\left(H B E_{2}\right)$ and the following axioms:
$\left(D H K_{1}\right) \quad x \circ y<(y \circ z) \circ(x \circ z)$,
$\left(\mathrm{DHK}_{4}\right) \quad x<y$ and $y<x$ imply that $x=y$, for all $x, y, z \in H$.
Where the relation" $<"$ is defined by $x<y \Leftrightarrow 1 \in x \circ y$. For any two nonempty subsets A and B of H, we define $A<B$ if and only if there exist $a \in A$ and $b \in B$ such that $a<b$ and $A \circ B=\bigcup_{a \in A, b \in B} a \circ b$.

In the following examples show that axioms for hyper $B E$-algebras and dual hyper K-algebras are independent.

Example 2.2. (i). Let $H=\{1, a, b\}$. Define the hyperoperations " \circ_{1} "and $" \circ_{2} "$ as follows:

\circ_{1}	1	a	b
1	$\{1\}$	$\{a, b\}$	$\{b\}$
a	$\{1\}$	$\{1, a\}$	$\{1, b\}$
b	$\{1\}$	$\{1, a, b\}$	$\{1\}$

\circ_{2}	1	a	b
1	$\{1\}$	$\{a, b\}$	$\{b\}$
a	$\{1\}$	$\{1, a, b\}$	$\{b\}$
b	$\{1, b\}$	$\{1, a, b\}$	$\{1, a, b\}$

Then $\left(H ; \circ_{1}, 1\right)$ is a hyper BE-algebra and $\left(H ; \circ_{2}, 1\right)$ is a dual hyper K-algebra.
(ii). Define the hyper operation "○" on \mathbb{R} as follows:

$$
x \circ y=\left\{\begin{array}{lc}
\{y\} & \text { if } x=1 \\
\mathbb{R} & \text { otherwise }
\end{array}\right.
$$

Then $(\mathbb{R} ; \circ, 1)$ is a hyper BE-algebra.
(iii). Let $H=\{1, a, b\}$. Define the hyperoperations $" \circ_{3} "$ and $" \circ_{4} "$ as follows:

\circ_{3}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{b\}$	$\{1\}$	$\{a\}$
b	$\{a, b\}$	$\{1, b\}$	$\{1, a\}$

\circ_{4}	1	a	b
1	$\{1\}$	$\{a\}$	$\{a, b\}$
a	$\{1, a\}$	$\{a, b\}$	$\{1, b\}$
b	$\{1\}$	$\{a\}$	$\{a, b\}$

Then $\left(H ; \circ_{3}, 1\right)$ and $\left(H ; \circ_{4}, 1\right)$ satisfy $\left(H B E_{2}\right),\left(H B E_{3}\right)$ and $\left(H B E_{4}\right)$. Since $a \nless 1$ and $a \nless a$, it follows that they do not satisfy $\left(H B E_{1}\right)$.
(iv). Let $H=\{1, a, b\}$. Define the hyperoperations $" \circ_{5} ", " \circ_{6} "$ and $" \circ_{7} "$ as follows:

\circ_{5}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1, b\}$	$\{1\}$	$\{1, a, b\}$
b	$\{1\}$	$\{1, b\}$	$\{1, b\}$

\circ_{6}	1	a	b
1	$\{1\}$	$\{b\}$	$\{b\}$
a	$\{1\}$	$\{1\}$	$\{1\}$
b	$\{1\}$	$\{1, b\}$	$\{1, b\}$

\circ_{7}	1	a	b
1	$\{1\}$	$\{1, a\}$	$\{b\}$
a	$\{1\}$	$\{1\}$	$\{b\}$
b	$\{1\}$	$\{a\}$	$\{1, b\}$

Then $\left(H ; \circ_{5}, 1\right)$ satisfies $\left(H B E_{1}\right),\left(H B E_{3}\right)$ and $\left(H B E_{4}\right)$. Since

$$
a \circ_{5}\left(b \circ_{5} b\right)=\{1, a, b\} \neq\{1, b\}=b \circ_{5}\left(a \circ_{5} b\right),
$$

we can see that $\left(H ; \circ_{5}, 1\right)$ does not satisfy $\left(H B E_{2}\right)$. Also, $\left(H ; \circ_{6}, 1\right)$ satisfies $\left(H B E_{1}\right),\left(H B E_{2}\right)$ and $\left(H B E_{4}\right)$. Since $a \notin 1 \circ a,\left(H ; \circ_{6}, 1\right)$ does not satisfy $\left(H B E_{3}\right)$. Furthermore, $\left(H ; \circ_{7}, 1\right)$ satisfies $\left(H B E_{1}\right),\left(H B E_{2}\right)$ and $\left(H B E_{3}\right)$. Since $1<a,\left(H ; \circ_{7}, 1\right)$ does not satisfy $\left(H B E_{4}\right)$.
(v). Let $H=\{1, a, b, c\}$ and define \circ_{8} as follows:

\circ_{8}	1	a	b	c
1	$\{1\}$	$\{a\}$	$\{b\}$	$\{c\}$
a	$\{1\}$	$\{1\}$	$\{a\}$	$\{b, c\}$
b	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
c	$\{1\}$	$\{1\}$	$\{a\}$	$\{1, b, c\}$

Then $\left(H ; \circ_{8}, 1\right)$ satisfies $\left(H B E_{1}\right),\left(H B E_{2}\right)$ and $\left(D H K_{4}\right)$. Since

$$
a \circ_{8} b \nless\left(b \circ_{8} c\right) \circ_{8}\left(a \circ_{8} c\right),
$$

$\left(H ; \circ_{8}, 1\right)$ does not satisfy $\left(D H K_{1}\right)$.
(vi). Let $H=\{1, a, b\}$. Define the hyperoperations " $\circ_{9} "$ to $" \circ_{12} "$ as follows:

\circ_{9}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1\}$	$\{1\}$	$\{1, a\}$
b	$\{1\}$	$\{1\}$	$\{1, a\}$

\circ_{10}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{b\}$	$\{1, a, b\}$	$\{1, a, b\}$
b	$\{b\}$	$\{a, b\}$	$\{1, a, b\}$

\circ_{11}	1	a	b
1	$\{1, a\}$	$\{a\}$	$\{a, b\}$
a	$\{1, b\}$	$\{a, b\}$	$\{1, a, b\}$
b	$\{1, b\}$	$\{a\}$	$\{a, b\}$

\circ_{12}	1	a	b
1	$\{1\}$	$\{b\}$	$\{a, b\}$
a	$\{1\}$	$\{1, a\}$	$\{b\}$
b	$\{1\}$	$\{1\}$	$\{1, a\}$

Then $\left(H ; \circ_{9}, 1\right)$ satisfies $\left(H B E_{1}\right),\left(H B E_{2}\right)$ and $\left(D H K_{1}\right)$. Since $a<b$ and $b<a$, $\left(H ; \circ_{9}, 1\right)$ does not satisfy $\left(D H K_{4}\right)$. Also, $\left(H ; \circ_{10}, 1\right)$ and $\left(H ; \circ_{11}, 1\right)$ satisfies $\left(H B E_{2}\right),\left(D H K_{1}\right)$ and $\left(D H K_{4}\right)$. But in $\left(H ; \circ_{10}, 1\right)$, a $\nless 1$ and in $\left(H ; \circ_{11}, 1\right) a \nless a$ and so they do not satisfy $\left(H B E_{1}\right)$.
Furthermore, $\left(H ; \circ_{12}, 1\right)$ satisfies $\left(H B E_{1}\right),\left(D H K_{1}\right)$ and $\left(D H K_{4}\right)$. But since

$$
1 \circ_{12}\left(a \circ_{12} b\right)=1 \circ_{12}\{b\}=\{a, b\} \neq\{1, a, b\}=a \circ_{12}\{a, b\}=a \circ_{12}\left(1 \circ_{12} b\right),
$$

$\left(H ; \circ_{12}, 1\right)$ does not satisfy $\left(H B E_{2}\right)$.
Theorem 2.3. Let H be a hyper BE-algebra. Then
(i) $A \circ(B \circ C)=B \circ(A \circ C)$,
(ii) $A<A$,
(iii) $1<A$ implies $1 \in A$,
(iv) $x<y \circ x$,
(v) $x<y \circ z$ implies $y<x \circ z$,
(vi) $x<(x \circ y) \circ y$,
(vii) $z \in x \circ y$ implies $x<z \circ y$,
(viii) $y \in 1 \circ x$ implies $y<x$, for all $x, y, z \in H$ and $A, B, C \subseteq H$.

Proof. We prove just (iii) and (viii).
(iii) Let $1<A$. It means that there is $a \in A$ such that $1<a$. By using $\left(H B E_{4}\right), a=1$, and so $1 \in A$.
(viii) Let $y \in 1 \circ x$. Then by $\left(H B E_{2}\right), 1 \in y \circ(1 \circ x)=1 \circ(y \circ x)$. Thus there is $a \in y \circ x$ such that $1 \in 1 \circ a$. Hence $1<a$. By $\left(H B E_{4}\right), a=1$ and $1 \in y \circ x$. Therefore, $y<x$.

Proposition 2.4. Let $(X ; *, 1)$ be a (dual BCK-algebra) BE-algebra. If we define $x \circ y=\{x * y\}$, for all $x, y \in X$, then $(X ; \circ, 1)$ is a (dual hyper K-algebra) hyper $B E$-algebra.

Theorem 2.5. Let $(H ; \diamond, 0)$ be a hyper K-algebra. Then $(H ; \circ, 1)$ is a dual hyper K-algebra, whenever $1:=0$ and $x \circ y:=y \diamond x$, for all $x, y \in H$.
Proof. Let $(H ; \diamond, 0)$ be a hyper K-algebra. Then

$$
\begin{aligned}
(x \circ y) \circ((y \circ z) \circ(x \circ z)) & =(y \diamond x) \circ((z \diamond y) \circ(z \diamond x)) \\
& =(y \diamond x) \circ((z \diamond x) \diamond(z \diamond y)) \\
& =((z \diamond x) \diamond(z \diamond y)) \diamond(y \diamond x) \\
& =((z \diamond x) \diamond(y \diamond x)) \diamond(z \diamond y) .
\end{aligned}
$$

By $\left(H K_{1}\right), 0 \in((z \diamond x) \diamond(y \diamond x)) \diamond(z \diamond y)$ and so $1 \in(x \circ y) \circ((y \circ z) \circ(x \circ z))$. Thus H satisfies $\left(D H K_{1}\right)$. Also by $\left(H K_{2}\right)$,

$$
x \circ(y \circ z)=x \circ(z \diamond y)=(z \diamond y) \diamond x=(z \diamond x) \diamond y=(x \circ z) \diamond y=y \circ(x \circ z) .
$$

Thus H satisfies $\left(H B E_{2}\right)$. By $\left(H K_{3}\right)$ and $\left(H K_{5}\right), 0 \in x \diamond x$ and $0 \in 0 \diamond x$, which means that $1 \in x \circ x$ and $1 \in x \circ 1$. Hence, H satisfies $\left(H B E_{1}\right)$. By $\left(H K_{4}\right)$ and definition of " \circ ", we can easily conclude that H satisfies $\left(D H K_{4}\right)$, and so $(H ; \circ, 1)$ is a dual hyper K-algebra.

Proposition 2.6. Every dual hyper K-algebra is a hyper BE-algebra.
Proof. Let H be a dual hyper K-algebra. By definition of dual hyper $K-$ algebra and hyper $B E$-algebra, it is sufficient to prove that H satisfies $\left(H B E_{3}\right)$ and $\left(H B E_{4}\right)$.

By Theorem [2.5, if we define $x \diamond y:=y \circ x$ and $0:=1$, then $(H ; \diamond, 0)$ is
 means that $(H ; \circ, 1)$ satisfies $\left(H B E_{3}\right)$. Also, by Theorem $\mathbb{L . 8}(i i)$, if $0 \in x \diamond 0$, then $x=0$. It means that $1 \in 1 \circ x$ implies $x=1$. Thus $1 \leq x$ implies $x=1$. Therefore, H satisfies $\left(H B E_{4}\right)$ and H is a hyper $B E$-algebra.

Note. In a similar way, we can define a dual hyper $B C K$-algebra. Since every hyper $B C K$-algebra is a hyper K-algebra, consequently, every dual hyper $B C K$-algebra is a dual hyper K-algebra. By Proposition [2.61, every dual hyper $B C K$-algebra is a hyper $B E$-algebra. We can see that the converse of Proposition [2.6] is not correct in general. In Example [2.2 $(i v),\left(H ; \circ_{8}, 1\right)$ is a hyper $B E$-algebra, but it is not a dual hyper K-algebra.

3. Some types of hyper $B E$-algebras

Definition 3.1. A hyper $B E$-algebra is said
(i) row hyper BE-algebra (briefly, R-hyper $B E$-algebra), if $1 \circ x=\{x\}$, for all $x \in H$,
(ii) column hyper BE-algebra (briefly, C-hyper BE-algebra), if $x \circ 1=\{1\}$, for all $x \in H$,
(iii) diagonal hyper BE-algebra (briefly, D-hyper BE-algebra), if $x \circ x=\{1\}$, for all $x \in H$,
(iv) thin hyper BE-algebra (briefly, T-hyper BE-algebra), if it is a RChyper $B E$-algebra,
(v) very thin hyper BE-algebra (briefly, V-hyper $B E$-algebra), if it is a RCD-hyper BE-algebra,

Example 3.2. (i). Every $B E$-algebra is a $R C D$-hyper $B E$-algebra. In Example $2.2(i),\left(H ; \circ_{1}, 1\right)$ is a C-hyper BE-algebra.
(ii). Let $H=\{1, a, b\}$. Define hyper operations \circ_{13} as follows:

\circ_{13}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1, b\}$	$\{1, a, b\}$	$\{1, a\}$
b	$\{1, a, b\}$	$\{a\}$	$\{1, a, b\}$

Then H is a R-hyper $B E$-algebra.
(iii). Let $H=\{1, a\}$. Define the hyper operations \circ_{14} to \circ_{16} as follows:

\circ_{14}	1	a
1	$\{1\}$	$\{a\}$
a	$\{1\}$	$\{1, a\}$

\circ_{15}	1	a
1	$\{1\}$	$\{a\}$
a	$\{1, a\}$	$\{1\}$

\circ_{16}	1	a
1	$\{1\}$	$\{a\}$
a	$\{1, a\}$	$\{1, a\}$

Then $\left(H ; \circ_{14}, 1\right)$ is a T-hyper $B E$-algebra, $\left(H ; \circ_{15}, 1\right)$ is a $R D$-hyper $B E$ algebra and $\left(H ; \circ_{16}, 1\right)$ is a R-hyper $B E$-algebra.
(iv). Let $H=\{1, a, b\}$. Define the hyperoperations $" \circ_{17} "$ to $" \circ_{20} "$ as follows:

\circ_{17}	1	a	b
1	$\{1\}$	$\{a, b\}$	$\{b\}$
a	$\{1, b\}$	$\{1\}$	$\{1\}$
b	$\{1, b\}$	$\{1\}$	$\{1\}$

\circ_{18}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1\}$	$\{1, a, b\}$	$\{b\}$
b	$\{1\}$	$\{a, b\}$	$\{1, b\}$

\circ_{19}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1\}$	$\{1\}$	$\{b\}$
b	$\{1\}$	$\{1, a\}$	$\{1\}$

\circ_{20}	1	a	b
1	$\{1\}$	$\{a, b\}$	$\{b\}$
a	$\{1\}$	$\{1\}$	$\{1\}$
b	$\{1\}$	$\{1, b\}$	$\{1\}$

Then $\left(H ; \circ_{17}, 1\right)$ is a D-hyper BE-algebra, $\left(H ; \circ_{18}, 1\right)$ is a T-hyper BE-algebra, $\left(H ; \circ_{19}, 1\right)$ is a V-hyper $B E$-algebra and $\left(H ; \circ_{20}, 1\right)$ is a $C D$-hyper $B E$-algebra.

Theorem 3.3. Let H be a D-hyper $B E$-algebra. Then
(i) $a \in 1 \circ x$ implies $x \circ a=\{1\}$,
(ii) $y \circ(x \circ y)=x \circ 1$,
(iii) $1 \circ(x \circ 1)=x \circ 1$, for all $a, x, y \in H$.

Proof. (i). By (HBE $)$ and Definition [.]. $\{1\}=1 \circ 1=1 \circ(x \circ x)=x \circ(1 \circ x)$. It follows that, for all $a \in 1 \circ x, x \circ a=\{1\}$.
(ii). $y \circ(x \circ y)=x \circ(y \circ y)=x \circ 1$.
(iii). $1 \circ(x \circ 1)=x \circ(1 \circ 1)=x \circ 1$.

Theorem 3.4. Let H be a $C D$-hyper $B E$-algebra. Then
(i) $x \circ(y \circ x)=\{1\}$,
(ii) $z \in x \circ y$ implies $y \circ z=\{1\}$, for all $x, y, z \in H$.

Proof. (i). By $\left(H B E_{2}\right)$ and Definition B.ll, $x \circ(y \circ x)=y \circ(x \circ x)=y \circ\{1\}=\{1\}$.
(ii). Let $z \in x \circ y$. Then by $(i), y \circ z \subseteq y \circ(x \circ y)=\{1\}$. Therefore, $y \circ z=\{1\}$.

4. Hyper filters in hyper $B E$-algebras

Definition 4.1. Let F be a nonempty subset of hyper $B E$-algebra H and $1 \in F$. Then F is called
(i) a weak hyper filter of H if $x \circ y \subseteq F$ and $x \in F$ imply $y \in F$, for all $x, y \in H$,
(ii) a hyper filter of H if $x \circ y \approx F$ and $x \in F$ imply $y \in F$, for all $x, y \in H$.

Example 4.2. In Example $2.9(i),\left(H ; \circ_{1}, 1\right)$ is a hyper $B E$-algebra and $F_{1}=$ $\{1, a\}$ is a weak hyper filter of H. Also, $\left(H ; \mathrm{o}_{2}, 1\right)$ is a hyper BE-algebra and $F_{2}=\{1, a\}$ is a hyper filter of H.

Theorem 4.3. Every hyper filter is a weak hyper filter (i.e., hyper filters \subseteq weak hyper filters).

Proof. Let F be a subset of a hyper $B E$-algebra H and $x \circ y \subseteq F$, for some $x \in F, y \in H$. Since $x \circ y \subseteq F$ implies $x \circ y \approx F$. Now, since F is a hyper filter, we have $x \in F$. Therefore F is a weak hyper filter.

Example 4.4. In Example 4.5, F_{1} is not a hyper filter, because $a \circ_{1} b \approx F_{1}$ and $a \in F_{1}$, but $b \notin F_{1}$.

Note. We can see that the notions of weak hyper filter and hyper filter are different in a hyper $B E$-algebra. In Example 4.2, $\left(H ; \circ_{1}, 1\right)$ is a C-hyper $B E$-algebra, F_{1} is a weak hyper filter and is not a hyper filter of H.

In Definition [.لl, the only case that we did not mention was $x \circ y<F$. In the next theorem we prove that this case is trivial.

Theorem 4.5. Let F be a subset of a hyper BE-algebra H and $1 \in F$. If $x \circ y<F$ and $x \in F$ implies $y \in F$, for all $x, y \in H$, then $F=H$.

Proof. Let x be an arbitrary element of H. By $\left(H B E_{1}\right), x<1$ and by $\left(H B E_{3}\right)$, $x \in 1 \circ x$. Thus $1 \circ x<1$. Since $1 \in F$, consequently, $1 \circ x<F$. By hypothesis, $x \in F$. Therefore, $F=H$.

Definition 4.6. A subset S of hyper $B E$-algebra H is said to be a subalgebra, if $x \circ y \subseteq S$, for all $x, y \in S$.

Example 4.7. In Example $\mathbb{2 . g}(i),\{1, b\}$ is a subalgebra of $\left(H ; \circ_{1}, 1\right)$.
Theorem 4.8. Let H be a hyper $B E$-algebra and S be a subalgebra of H. Then
(i) S is a weak hyper filter of H if and only if for all $x \in S$ and $y \in X \backslash S$, $x \circ y \nsubseteq S$,
(ii) S is a hyper filter of H if and only if for all $x \in S$ and $y \in X / S$, $x \circ y \not \approx S$.

Proof. (i). Let S be a subalgebra, weak hyper filter of $H, x \in S$ and $y \in X \backslash S$. Assume the opposite, i.e. let $x \circ y \subseteq S$. Since S is a weak filter and $x \in S$, we have $y \in S$, which is a contradiction.

Conversely, let for all $x \in S$ and $y \in X \backslash S, x \circ y \nsubseteq S$. Let $x \circ y \subseteq S$ and $x \in S$. If $y \notin S$, then by assumption, $x \circ y \nsubseteq S$, which is a contradiction.
(ii). The proof is similar to (i).

Theorem 4.9. Let H be a CD-hyper BE-algebra. Then every (weak) hyper filter of H is a subalgebra of H.

Proof. Let F be a hyper filter of $H, x, y \in F$ and $a \in x \circ y$. Then by Theorem B.4 (ii), $y \circ a=\{1\}$ and so $y \circ a \approx F$. Since F is a hyper filter and $y \in F$, we can see that $a \in F$. Thus $x \circ y \subseteq F$ and F is a subalgebra of H. By a similar way, every weak hyper filter is a subalgebra of H.

In the next example we show that Theorem 4.9, is not correct about hyper $B E$-algebras in general.

Example 4.10. (i). In Example [.2. $\left(H ; \circ_{18}, 1\right)$ is a T-hyper $B E$-algebra and $\{1, a\}$ is a (weak) hyper filter. Since $a \circ a \nsubseteq\{1, a\},\{1, a\}$ is not a subalgebra.
(ii). Let $H=\{1, a, b\}$. Define a hyperoperation $" \circ_{21}$ " on H as follows:

\circ_{21}	1	a	b
1	$\{1\}$	$\{a\}$	$\{b\}$
a	$\{1, a, b\}$	$\{1\}$	$\{a, b\}$
b	$\{1, a, b\}$	$\{1, a, b\}$	$\{1\}$

Then H is a D-hyper $B E$-algebra and $\{1, a\}$ is a weak hyper filter. Since

$$
a \circ 1=\{1, a, b\} \nsubseteq\{1, a\}
$$

$\{1, a\}$ is not a subalgebra of H.
Note. We can see that every subalgebra of a hyper $B E$-algebra H is not a (weak) hyper filter in general. In Example $\mathbb{2 . 2}(i),\{1, b\}$ is a subalgebra of a C-hyper $B E$-algebra $\left(H ; \circ_{1}, 1\right)$, but it is not a hyper filter of H.

Theorem 4.11. Let F be a subset of a hyper BE-algebra H and $y \in H$. If $x \leq y$ and $x \in F$, then $y \in F$.

Proof. Let F be a hyper filter of $H, x \in F$ and $x<y$, for some $y \in H$. Then $1 \in x \circ y$. Since $1 \in F$, we have $x \circ y \approx F$. Therefore, $y \in F$.

5. Conclusion

In the present paper, we have introduced the concept of hyper $B E$-algebras and investigated some of their useful properties. This work focused on some types of hyper $B E$-algebras. Also, we discuss on hyper filters in this structure and present some fundamental properties.

In our future work, we will get more results in hyper $B E$-algebras and application.

6. Acknowledgments

The authors are very indebted to the referees for valuable suggestions that improved the readability of the paper.

References

[1] Ahn, S. S., Kim, Y. H., Ko, J. M., Filters in commutative $B E$-algebras. Commun. Korean Math. Soc. 27 (2012) 233-242.
[2] Borzooei, R. A., Hasankhani, A., Zahedi, M. M., Jun, Y. B., On hyper Kalgebras. Sci. Math. Jpn. 52 (2000), 113-121.
[3] Borzooei, R. A., Borumand Saeid, A., Rezaei, A., Radfar, A., and Ameri, R., On pseudo BE-algebras. Discussi. Math. General Algebra Applic. 33 (2013), 95-108.
[4] Jun, Y. B., Zahedi, M. M., Lin, X. L., Borzooei, R. A., On hyper BCK-algebras. Italian journal of pure and applied Mathematics, 8 (2000), 127-136.
[5] Kim, H. S., Kim, Y. H., On BE-algebras. Sci. Math. Jpn. 66 (2007), 113-116.
[6] Marty, F., Sur une generalization de la notion de group, 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
[7] Rezaei, A., Borumand Saeid, A., Commutative ideals in $B E$-algebras. Kyungpook Math. J. 52 (2012), 483-494.
[8] Rezaei, A., Borumand Saeid, A., Borzooei, R. A., Relation between Hilbert algebras and $B E$-algebras. Appl. Appl. Math. 8 (2013), 573-584.
[9] Rezaei, A., Borumand Saeid, A., On fuzzy subalgebras of $B E$-algebras. Afr. Math. 22 (2011), 115-127.
[10] Walendziak, A., On commutative BE-algebras. Sci. Math. Jpn. 69 (2008), 585-588.
[11] Zahedi, M. M., Borzooei, R. A., Jun, Y. B., Hasankhani, A., Some results on hyper K-algebras. Sci. Math. Jpn. 3 (2000), 53-59.

Received by the editors February 28, 2014

[^0]: ${ }^{1}$ Dept. of Math., Payame Noor University, p. o. box, 19395-3697, Tehran, Iran, e-mail: ateferadfar@yahoo.com
 ${ }^{2}$ Dept. of Math., Payame Noor University, p. o. box, 19395-3697, Tehran, Iran, e-mail: rezaei@pnu.ac.ir
 ${ }^{3}$ Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran, e-mail: arsham $(1 \mathrm{uk}$ ac.ir

