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APPROXIMATION BY LINEAR SUMMABILITY
MEANS IN ORLICZ SPACES

Sadulla Z. Jafarov®

Abstract. In the present work we estimate of deviations of periodic
functions from linear operators constructed on basis of its Fourier series
in terms of the best approximation of these functions in Orlicz space.
Specifically, we study the problem of the effect of metric of space on
order of change of deviations.
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1. Introduction and the main results

We suppose that [0] ® is the class of strictly increasing functions & :
[0,00) — [0, 00) satisfying ¢(oco) := mlg{.lo¢(ac) = 00. Let Y[p,q], —o0o < p <
q < oo be the class of even functions ¢ € ® satisfying the following conditions

1. ¢(t)/t? is non- decreasing as |t| increases;

2. ¢(t)/t? is non- increasing as |t| increases.

Let p < ¢. The class of functions ¢ belonging to Y[p + ¢, ¢ — 8] for some
small numbers ¢, § > 0 we will denote by Y {p,q). If 1 < p < ¢, the class of
functions M belonging to the class Y (p, ¢) will be denoted by ®.

We use ¢, c1, ca,... to denote constants (which may, in general, differ in
different relations) depending only on numbers that are not important for the
question of our interest.

Let T denote the interval [0,27]. We suppose that M € @5, p > 1 and we
put ¢ar(u) = M(u)/u. Note that 1 < p < ¢ < 00, then ¢pr(u) — 00 as u — 0.
Let

Dy (x) = | dar(u)du.
/

For some positive real constant ¢ let Lp(T) denote the set of all Lebesgue
measurable functions f : T — R for which

/<I>M(c|f(x)|)dx < 0.

T
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Ly (T) is called an Orlicz space and is a Banach function space with the norm

1£1,,, oy o= in /\>0:/<I>M ('f(;)') do <1

T

Every function in Ly, (T) is integrable on T [22, p. 50|, i.e. Ly (T) C L*(T).
Detailed information on properties Orlicz spaces can be found in [6, 06, P2].
Generally, the approximation problems in Orlicz spaces have been investigated,
when M is a convex and quasiconvex Young function. According to [G] the
condition M € @7, p > 1, need not imply M to be convex. Therefore, when
M € @, p > 1it is important to study the approximation of the functions in
Orlicz spaces.

Definition 1.1. Let X be a normed space. X is said to be g—concave if for an
arbitrary system of functions {¢;(z)}_,, 0 < ¢; € X, the following inequality
holds: .

q

{ZN@M}fm1<XMO :
i=1 i=1

X

X is said to be p—convex if for an arbitrary system of functions {¢;(z)};_; |

0 < ¢; € X, the following inequality holds:

{énm}

! > €9 (i d’f) p
i=1

X
Let

(1.1) % + Z Ap(z; f), Ar(z; f) = ar(f) coskx + bi(f) sin kx
k=1

be the Fourier series of the function f € Ly(T), where ar(f) and bi(f) are
Fourier coefficients of the function f. The nth partial sum of the series (1) is
defined as:

Sules f) =5 + 3 Aula:)).
k=1

We consider the sequence of the functions {Ag(r)} defined in the set E of
the number line, satisfying the conditions that

Xo(r)=1, lim A, (r)=1

r—ro

for an arbitrary fixed v =0,1,2, ...
For an arbitrary r € E and for every function f € Ly (T) the series

(1.2) UCS: @) = 5+ D M) Aulas f)
k=1
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converges in the space Ly (T).
For each linear operator U,.( f; z; \) we set

Rr(f§ /\)M = ”f - Ur(f; L5 >‘)HLM(T)'

If we substitute the following

1-2 0<v<r
= r+17 =7 ="0

(13) Av(r) { 0, V> ’

1- 2 0<v<
(1.4) )\V(r):{ Tt ==

0, V>

where k > 1,
(1.5) M(r)=r", (v=0,1,2,...) (0<r<1)

into (IZ2) we obtain Fejér means, Zygmund means of order k and Abel-Poisson
means of the series ([CT) respectively.

We denote by F,(f)n the best approximation of f € Ly (T) by trigono-
metric polynomials of degree not exceeding n, i.e.,

En(f)v = wf{|| f =T || Lar(ry: T € 1}

where I1,, denotes the class of trigonometric polynomials of degree at most n.

The approximation problems by trigonometric polynomials in Orlicz spaces
were investigated by several authors (see, for example, [I, @, [d, 8, @, 00, I, 02,
I3, 04, 05, [7, 21, 23, 29]). In the present paper we investigate the problems of
estimating the deviation of the functions from the linear operators constructed
on the basis of its Fourier series in terms of the best approximation of these
functions in Orlicz spaces. Obtained results show that the estimates of R,.(f;
A), depends on both the rate of decrease of the sequence {Ey(f)n} and in
some cases the metric of the considered space. This is valid for the upper
and lower estimates of the quantity R, (f; )\)M. The similar problems of the
approximation theory in the different spaces were investigated in [2, B, IR, I9,
o0, 4, U5, 26, 21, 28]

Our main results are the following.

Theorem 1.2. Let {\,(r)} be an arbitrary triangular matriz (r = 0,1,2,3, ...;
M(r) =1; A\(r) =0, v > 7). Let M € @5, p>1 and f € Ly(T), then the
following inequality holds:

m—1

Rr(.ﬁ >‘)M < CS{(]- + KT‘)ET‘(f)M + Zé(qurl;T) EQ"—l(f)M
v=0

(1.6) +6(r; ) Eam(f)a},
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where 2™ <1 < 2™F1 ¢y is a constant not depending on r,

2 1 &
KT—;/ i—i-;)\l,(r)COSVH ds,

0

+Z{1 (r)}cosvB|dh, u<r.

(1.7) /

0

Corollary 1.3. Suppose that the conditions of Theorem 2 are satisfied.
1. Let \,(r), v = 0,1,2,... be a system of numbers defined by relations
(3). Then the following inequality holds:

r

(1'8) (f7 )1\/1 = % OE (f)M'

2. Let \,(r), v =0,1,2,.. be a system of numbers defined by relations (IA).
Then the following inequality holds:

(1.9) Ro(f; M < Tf’l)k ;J(VH)’C*IE,,(J‘)M

where cs 1s a positive constant depending on k.

Theorem 1.4. Let M € ®;, 1 <p <gq, vy =max{2, ¢— 4} and f € L (T),
then for the system of numbers defined by (IA) the following inequality holds:

1
i
Ri(fs N = {ZVM 'E(f } ;
where § is some small positive number and cg is a constant depending on p and
k.

Theorem 1.5. Let M € @5, 1 <p <gq, vy =max{2, ¢—d}and f € Ly (T),
then for the system of numbers defined by (ICA) the following inequality holds:

Rr(f§ )‘)M > c7 (1 _T) {ZTV (1/+1)71E3(f)1\4}77

v=0

where § is some small positive number and c7 is a constant depending on p.

2. Proofs of theorems

We need the following [] theorems:
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Theorem 2.1. Let a sequence A\ satisfy the conditions
271
(2.1) Mel <4, Y7 =Ml <4
k=2i-1
where A > 0 does not depend on k and j. Suppose that satisfied the conditions

of Theorem 2 For given f € Ly (T) there exists a function F € Ly (T) such

that the series
o0

+ Z Ak (ag cos kx + b sin kx)
k=0

)\an
2

1s Fourier series for F' and
(22) H F ||LM(T)S CSA || f ||LM(T)’
where cg > 0 does not depend on f € Ly (T).

Theorem 2.2. Under the conditions of Theorem I3 there exist constants cg >
0 and c19 > 0 such that

. 2\ *
oo 27 -1
(23) C10 H f ||LA{(T)§H Z Z Ak($7f> HLM(T)g C9 H f ||LM(T) .
Jj=0 k=271

forall f e Ly (T).

Proof of Theorem 3. We consider the trigonometric polynomial

T

T.(z) = Z(au cosvx + B, sinvz).

V=0

The following inequality holds:
Ri(f; Nwm

f(:l,') - Z)‘V(T)Av(x; f)
v=0

Ly (T)

IN

f(z) = T(@) 1, 0m) + || Tr(2) — Z)\V(r)(al, cosvr + f3, sinvx)
v=0 LM(T)

r

+ Z)\V(T)A,,(x; f)—Z(a,, cosvx + B, sinvz)\, (r)
v=0

v=0
LZM(T)
= |f(@) =T @)llg,, ) + Re(T; N m
A et T 0y LS ) cosvh b db
= o X r\T 2 2 v(T)COSV

L (T)
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Therefore, we obtain the following inequality
(2.4) Re(f, M < 1 (2) = T ()l ooy (L + Kp) + Re(Tos N s

where
2 [T .
K, = ;/0 3 + l;)\,,(r) cosvf|db.

According to [7] the following identity holds:
. 2
(2.5) g {1 =X(")} (o cosva+p, sinve) = — /Tn(x—l—H) cosndBy,(r,0)db,
T
v=1

where A\o(r) = 1 and

n

T.(z) = Z(au cosvx + B, sinvz).

V=0

%m + i(l — An—p(1)) cos v.

v=0

B, (r,0) =

Let f € Lp(T) and let T,, € II (n = 0,12, ...) be the polynomial of best
approximation to f i. e.

En(f)m = If (@) = Tal@) 1, (1 -

We set

27 v
20) mlirio) == [ Do+ )Y (1= M)} eosp, 0 < k< w1,

T
pu=1

It is clear that
R(TisA) . = ||pr(7"§7‘§33)HLM(T) )

po(2;752) =0, p(vsrs2) = 0, p(ks ) = 0, (v > k).

We suppose that the number m € N satisfies condition 2™ < r < 2™+, We
have

R(Ti5N),, < lloa(Zrie) = po(2Zri0)l Ly, )
m—l
D e @4 2) = pon (2 2) | o
p=1

(2.7) +lor(rirsa) — pam (rs752) |, ) -
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By (E3) and (28) we get

o2 (245 ms @) — pon (2 2)|[ oy
27 gm+1
1 .
- | / {Tyr (24 0) = Tou(z+0)} 3 {1 = X;(r)} cos j0do
0 =1 L (T)

2 2
(2.8)= ‘ — / {Tour1(x 4+ 0) — Tou(x + 0)} cos 210 By (1 6)

™Jo L (T)

< 6115(2#+1; ’/‘)Ezu (f)M
By (E74) and (28) we find
m—1
Ro(Tii Ny < c2d(2)Eo(f)ar + 02" 5r) By (f)u
p=1
(2.9) +0(r; ) g (f) 0+
According to [Z7] K, < c12. The inequality (Z4) and (E3) yield (I3). O
Proof of Corollary IT23. If we put
Jk

Au(r) o (0<v<r)yand \,(r)=0, v>r

in the inequality (E53) we have
Zuk(al, cosvr + f3, sinvx)
v=1
onk 27 = v

(2.10) = — ; Ty (x + 0) cosnd §+;(1fﬁ)kcosyﬂ do.

From (21M) it is follows that

n
ka (o cosve + B, sinve) < ci3n® 1T (@) 10y -

v=1 L (T)

If we put
9(u+1)

)\2u+1 (’I“) =1— m
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in (IZ2) we have

S(2H L)
o /ﬂ- /\2u+1
0
ou+Dk  rm g
211) = — -
(2.11) (r+1)k/0 2 +

Then from (211) and (@
lary 3.

2#+1
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+ Z {1 = Agus1_,,(r)} cos 8| db

gntl_q

>, (1=

v=1

12
ou+1

)k cos 8| df < cia

) we obtain the inequalities (IT8) and (

(p+1)k

™) of Corol-
U

Proof of Theorem [I]. We suppose that the number m € N satisfies condition
2m < np < 2™ From E,(f)am 4 0 we get

2=

C ey
T = e | YT E
v=1
1
. m+412v 11
15 ky—1
> m Z Z WTEY(f)
v=0 p=2v
1
16 m+1 v
vyk Y
(n+ 1)k > 27MEL (fu
v=0
Using the estimate [f]
(212) ||f($) —Sn(.’b, f)HLM(T) §017En(f)1\/1
and (23) we have
1
c m+1 0o K K
0% 18 vk .
R ELE 227D Al f)
v=0 pn=22v Lar(T)
1
Y v
c m+1 2
19 vyk
(n+ 1)k 2.2 (Z Au+1>
v=0
L]u('[r)
By the Minkowski’s inequality we get
1
1Y Y

m+1

o, < C20

22yk
<n+12’“z

oo

)

L (T)
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We suppose that v = 2. In this case we obtain 2 > (¢ — ¢). Then we get

12 %
) m—+1 22,/;9 ') 2
o Seny 2 Gy Z Al
v=0 LM(T)

Its clear that the norm [, decreases with p 1. Then

1
l q—é 93
) m+1 22uk 0
o < D G Z Al
v=0 Ly (T)

The space Ly (T ) is of concavity (¢ — ). Then we obtain

1/(q—9)

, m—+1 22uk 0o (g—8)/2
Onk < C23 Z (n+1) T 12k Z AMH

v=0 =
L]\/[ (T)
m+1

2uk
S oy Z (n—i—l)’f ZAuH

v=0 =V

L (T)

Using Abel’s transformation and Minkowski’s inequality, we find that

) m y 2(m+1)k s
Opr < C25 Z u+1+ Z Ayt
,u =m-+1 LM('JT)
m 2uk 2(m+1
(213) S C26 ZmAy.},_l + cor Z A#_A'_l
v=0 L (T) e L (T)

Taking the relations (E33) and (E19) into account we get

> A

p=m-+1

<eas| D Auif) <enBu(f)

—om+1
LM (T) N72m LIM(T)

Then from (Z13) and (E7Id) we conclude that

(2.14)

m 2z/k
0—727,,]{3 < c30 ZmAerl + C31En(f)M
Y= Lar(T)
Note that system of multipliers
vk
Ay = 2 2V <p<ovtt -1, v=1,2,.., 2" 1),
! pk(n+1)k 7 =0

Aw = 0(p= 2mth)
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satisfies the conditions (270). Therefore, by (222) we obtain

n k

op ) < €32 ZLA;L(QE;JC) +e33Bn(f) < csaRn(f5 M) -

(n+ 1)k
pn=0 LM(']T)

Let v =g — 4. Then 2 < (¢ — ¢). Using (¢ — d) concavity of Ly (T) we get

-8 =
m+1 22Vk (e’ % a o
-5 2
it < et S| (i o
v=0 n=v Ly (T)
gk 2 (a=0)/2 H/170)
2
< cs6 Z(WZ%H)
v=0 n=v
L (T)
m+1 22Vk oo %
2
S o (Z WZA;HA)
v=0 H=v Las(T)

Further, using the same Abel’s transformation and reasoning as in the case
2 > (g — 0) we have

ol < essRu(f3 N -

Proof of Theorem 04 is completed. O

Proof of Theorem I3 is similar to proof of Theorem 4.
Acknowledgement. The author thanks the referee for careful reading this
article and useful comments.
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