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CIRCULAR CUBICS IN PSEUDO-EUCLIDEAN
PLANE

Ema Jurkin1

Abstract. A curve in the pseudo-Euclidean plane is circular if it passes
through at least one of the absolute points.

A cubic can be obtained as a locus of the intersections of a conic
and the corresponding line of the projectively linked pencil of conics and
pencil of lines. In this paper the conditions that the pencils and the
projectivity have to fulfill in order to obtain a circular cubic of a certain
type of circularity are determined analytically. The cubics of all types
(depending on their position with respect to the absolute figure) can be
constructed by using these results. The results are first stated for any
projective plane and then their pseudo-Euclidean interpretation is given.
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1. Introduction

The pseudo-Euclidean plane is a real projective plane where the metric is
induced by a real line f and two real points F1 and F2 incidental with it,
[6, 7]. The line f is called the absolute line and the points F1, F2 are the
absolute points. All straight lines through F1, F2 are called isotropic lines, and
all points lying on f are called isotropic points.

If an algebraic curve k of order n passes through at least one of the absolute
points, the curve is said to be circular. If F1 is an intersection point of k and f
with the intersection multiplicity r and F2 is an intersection point of k and f
with the intersection multiplicity t, the curve k has the type of circularity (r, t)
and its degree of circularity is defined as r + t, [5]. We say that the curve is
(r + t)-circular. If n = r + t, the curve is entirely circular.

In further classification we will not distinguish the type (r, t) from the type
(t, r) since the possibility of constructing one of them implies the possibility of
constructing the other.

The conics are classified in the paper [5] into: non-circular conics (ellipses,
hyperbolas, parabolas), special hyperbolas (circularity of type (1, 0)), special
parabolas (circularity of type (2, 0)) and circles (circularity of type (1, 1)).

The circular cubics can be of the following types:

• Type of circularity (1,0)
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– The cubic passes through the absolute point F1.

• Type of circularity (1,1)

– The cubic passes through both absolute points F1 and F2.

• Type of circularity (2,0)

– The cubic touches the absolute line f at F1.

– The cubic has a double point (node, isolated double point or cusp)
in F1.

• Type of circularity (2, 1)

– The cubic touches the absolute line f at F1 and passes through F2.

– The cubic has a double point (node, isolated double point or cusp)
in F1 and passes through F2.

• Type of circularity (3, 0)

– The cubic osculates f at F1.

– The cubic touches f at its double point F1.

A curve of order four in the projective plane can be defined as a locus of
the intersections of pairs of corresponding conics in projectively linked pencils
of conics. That projectivity has been studied in [1]. The results were stated
for the projective plane and then their isotropic interpretation was given. The
pseudo-Euclidean interpretation of the same projective results was presented in
[2], where it was shown that by using this method the entirely circular quartics
of all types of circularity can be obtained.

The aim of this paper is to construct the circular cubics in the pseudo-
Euclidean plane by using projectively linked pencil of conics and pencil of
lines, and to classify them according to their position with respect to the abso-
lute figure. Different methods of obtaining circular cubics and quartics where
studied in [4] and [9].

2. Projective plane

A curve of order three in the projective plane can be defined as a locus of
the intersections of pairs of a conic and its corresponding line of the projectively
linked pencil of conics and pencil of lines, [10]. Let A,B be the conics (described
by symmetric 3×3−matrices with the same name) and let c, d be the lines
(described by 3×1−matrices with the same name) in the projective plane. Let
π : [A,B]→ [c, d] be the projective mapping of the conics A+ λB to the lines
c + λd for all λ ∈ R ∪∞. Some calculations deliver the following equation of
the cubic k:

F(~x) ≡ ~x>A~x · d~x− ~x>B~x · c~x = 0.
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The cubic k in the algebraic sense passes through the following nine points:
four basic points of the pencil [A,B], vertex of the pencil [c, d], two intersection
points of A and c and two intersection points of B and d. According to [8] the
number of points required for the determination of a cubic is nine, but nine
points do not in every case determine a single cubic.

Remark 2.1. We have to be aware of the fact that proportional matrices
A,B, c, d and αA, βB, γc, δd represent the same two conics and two lines, but
the consequential cubics are different. For defining the projectivity beside A, c
and B, d we need one more pair of elements. Although the corresponding cubics
are different, their properties that are of our interest stay the same.

We will now search for the conditions that the pencils and the projectivity
have to fulfill in order to obtain a circular cubic of a certain type. The re-
sults will be first stated for a projective plane and then their pseudo-Euclidean
interpretation will be given.

Let us start with a point ~y on the cubic k. We can assume that it is an
intersection point of the basic conic A and the basic line c: we have ~y>A~y = 0,
~yc = 0. The tangential behavior in this point on k is usually being studied by
observing the intersections of k with arbitrary straight lines through ~y. Such
a line q will be spanned by ~y and a further point ~z. It can be parametrized by

q ... ~y + t~z, t ∈ R ∪∞.

The intersections of k and q belong to the zeros of the following polynomial of
degree 3 in t:

p(t) = F(~y + t~z) = tF1(~y, ~z) + t2F2(~y, ~z) + t3F3(~y, ~z),

where

F1(~y, ~z) = 2d~y · ~y>A~z − c~z · ~y>B~y,
F2(~y, ~z) = d~y · ~z>A~z + 2d~z · ~y>A~z − 2c~z · ~y>B~z,
F3(~y, ~z) = d~z · ~z>A~z − c~z · ~z>B~z.

The equation of the tangent of k at the regular point ~y is

(2.1) F1(~y, ~z) = 0

as t = 0 has to be a zero of multiplicity 2 of the polynomial p, and ~y is the
intersection of k and q with intersection multiplicity 2.

A necessary condition to gain ~y as a double point of k is

(2.2) F1(~y, ~z) = 0 for every point ~z

as then t = 0 is a zero of multiplicity 2 of the polynomial p for all ~z (and for all
lines q passing through ~y). The equations of the tangents of k at such a double
point ~y are determined by

(2.3) F2(~y, ~z) = 0.
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One can also wonder if it is possible to get an osculation of the tangent q
and the cubic k at the regular point ~y and the answer is positive. In that case
F2(~y, ~z) should equal zero, but not for all points ~z of the plane, only for all
points ~z lying on the tangent q.

Remark 2.2. Before we continue with our study, let us recall a fact that will
play an important role in our observations. If A is a conic and ~y is a point
lying on A, then three cases are possible:

- A is a regular conic.
The equation ~y>A~z = 0 is the equation of the tangent to A at ~y.

- A is a singular conic, but ~y is not its singular point, i.e. A = a1 ∪ a2,
~y ∈ a1, ~y /∈ a2.
The equation ~y>A~z = 0 is the equation of the line a1. This line plays the
role of the tangent to A at ~y.

- A is a singular conic with a singular point ~y, i.e. A = a1 ∪ a2, ~y ∈ a1, a2.
In this case ~y>A~z = 0 for every point ~z of the plane.

Let us now go back to the cubic k and the point ~y lying on it, ~y ∈ A, c. We
will discuss the following four cases:

• ~y /∈ B, d
~y is not the basic point of [A,B] neither the vertex of [c, d].

• ~y ∈ B, ~y /∈ d
~y is the basic point of [A,B], but not the vertex of [c, d].

• ~y /∈ B, ~y ∈ d
~y is the vertex of [c, d], but not the basic point of [A,B].

• ~y ∈ B, d
~y is at the same time the basic point of [A,B] and the vertex of [c, d].

We will first study the case when ~y ∈ A, c, ~y /∈ B, d.
If A is a singular conic with a singular point ~y then the tangent (2.1) to k at ~y
is identical to the line c. Therefore, we can conclude:

Theorem 2.3. Let [A,B] be a pencil of conics and [c, d] be a pencil of lines.
Let the cubic k be the result of the projective mapping π : [A,B] → [c, d]. If
the line corresponding to the singular conic passes through its singular point ~y,
then that line is the tangent of k at ~y.

If A is a singular conic, but ~y is not its singular point (A = a1 ∪ a2, ~y ∈ a1,
~y /∈ a2), the tangent (2.1) to k at ~y is a linear combination of the lines a1 and
c.

If A is a regular conic, then the tangent to k at ~y is given by the equation

2d~y · ~y>A~z − c~z · ~y>B~y = 0.

The tangent to k is identical to the tangent to A precisely when c touches A.
Thus,
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Theorem 2.4. Let [A,B] be a pencil of conics and [c, d] be a pencil of lines.
Let the cubic k be the result of the projective mapping π : [A,B] → [c, d]. If
there is a line touching its corresponding conic, then that line also touches k.

Let us now observe the case when ~y is the basic point of [A,B], but not the
vertex of [c, d] (~y ∈ A,B, c, ~y /∈ d).
If A is a singular conic with a singular point ~y (i.e. A = a1 ∪ a2, ~y ∈ a1, a2), it
follows that the conics of the pencil [A,B] touch each other at the basic point
~y. The condition (2.2), which characterize ~y as a singular point of k, is fulfilled.
The tangents of k at ~y are determined by (2.3). This expression is reduced to

d~y · ~z>A~z − 2c~z · ~y>B~z = 0.

If B touches a1, the pencil [A,B] contains conics osculating each other at ~y.
The equation above becomes

a1~z · [d~y · a2~z − 2ωc~z] = 0

for some ω ∈ R. This assumptions provide a1 as the tangent of one branch of
the cubic k at its double point ~y. We conclude

Theorem 2.5. Let [A,B] be a pencil of conics touching each other at the basic
point ~y and let [c, d] be a pencil of lines. Let the cubic k be the result of the
projective mapping π : [A,B]→ [c, d].
If the singular conic with the singular point ~y is mapped onto the line passing
through ~y, the cubic k has the double point at ~y. Furthermore, if the conics of
the pencil [A,B] osculate (or hyperosculate) each other at ~y, one of the tangents
to k at ~y is the common tangent of the conics of [A,B].

If A is not the singular conic with the singular point ~y, the tangent (2.1) to
k at ~y is given by the equation

~y>A~z = 0

which characterizes the tangent to the conic A. It follows immediately

Theorem 2.6. Let [A,B] be a pencil of conics with the basic point ~y and let
[c, d] be a pencil of lines. Let the cubic k be the result of the projective mapping
π : [A,B]→ [c, d].
The tangent to k at ~y is identical to the tangent to the conic of [A,B] with its
corresponding line of [c, d] passing through ~y.

Particularly, if the conics touch each other, their common tangent is the
tangent to the constructed cubic.

The tangent ~y>A~z = 0 can also osculate the cubic k. To gain osculation
the following condition has to be fulfilled

d~y · ~z>A~z − 2c~z · ~y>B~z = 0

for all ~z such that ~y>A~z = 0. If A is a singular conic with a non-singular point
~y, (A = a1 ∪ a2, ~y ∈ a1 ~y /∈ a2), and B touches a1, the line a1 is an inflexion
tangent to k.

The previous study leads us to
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Theorem 2.7. Let [A,B] be a pencil of conics touching each other at the basic
point ~y and let [c, d] be a pencil of lines. Let the cubic k be the result of the
projective mapping π : [A,B]→ [c, d].
The common tangent of the conics of [A,B] is the tangent to k at ~y.
If the singular conic with non-singular point ~y is linked to the line through ~y,
the tangent osculates k.

Let us now study the case when ~y ∈ A, c, d, ~y /∈ B, i.e. ~y is the vertex of
[c, d], but not the basic point of [A,B]. The equation (2.1) is reduced to

c~z · ~y>B~y = 0

which provides c as the tangent to k at ~y.
In other words: There is exactly one conic of the pencil [A,B] passing through
the vertex of the pencil [c, d]. The line of [c, d] corresponding to that conic is
the tangent to k at the vertex.

The line c osculates k if and only if ~y>A~z = 0 for every ~z on c (c~z = 0). This
is true exactly when A touches c or A is the singular conic with the singular
point ~y.

Now we can state the following:

Theorem 2.8. Let [A,B] be a pencil of conics and [c, d] be a pencil of lines.
Let the cubic k be the result of the projective mapping π : [A,B]→ [c, d].
The tangent to k at the vertex of [c, d] is identical to the line of [c, d] whose
corresponding conic passes through the vertex. If that line touches the corre-
sponding conic or the conic is the singular conic with the singular point at the
vertex, the tangent osculates k.

The case to be considered is when ~y ∈ A,B, c, d, i.e. ~y is at the same time
the basic point of [A,B] and the vertex of [c, d]. ~y is obviously a double point
of k at which tangents are determined by

d~z · ~y>A~z − c~z · ~y>B~z.

One tangent to k at ~y coincides with the tangent to A iff c touches A or B
touches A. If c touches A, then one tangent is c while the other tangent is given
by the equation d~z − ω · ~y>B~z = 0, for some ω ∈ R. Thus, if d also touches B,
then the other tangent coincides with d. We can now state:

Theorem 2.9. Let [c, d] be a pencil of lines with the vertex ~y and let [A,B] be
a pencil of conics with the basic point in ~y. Let the cubic k be the result of the
projective mapping π : [A,B]→ [c, d].
The vertex ~y is the double point of k. If there is a line of [c, d] touching the
corresponding conic, that line is one tangent of the cubic at its double point.

If the conics A and B touch each other, their common tangent is also the
tangent of the cubic k. The pencil [A,B] is now the pencil of conics touching
each other at ~y. Therefore, there is a singular conic of [A,B] with the singular
point at ~y. Without loss of generality we can assume that A is that conic. The
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tangents at ~y are now determined by the equation c~z · ~y>B~z = 0. Obviously,
one tangent at ~y is the common tangent of the conics of the pencil, while the
other tangent is the line linked to the singular conic with the singular point at
the contact point. These two tangents can coincide and that results with the
cusp in ~y. These observations lead us to

Theorem 2.10. Let [c, d] be a pencil of lines with the vertex ~y and let [A,B]
be a pencil of conics touching each other at ~y. Let the cubic k be the result of
the projective mapping π : [A,B]→ [c, d].
The vertex ~y is the double point of the cubic k at which one tangent coincides
with the common tangent of the conics of [A,B]. The other tangent at ~y is the
line of [c, d] linked to the singular conic with the singular point in ~y.

The studies similar to the studies presented here were done in [1] and [3]
for obtaining entirely circular quartics in an isotropic and a hyperbolic plane.
In [2] the authors continued with observations in the third projective-metric
plane, a pseudo-Euclidean plane. In the present paper we switch from quartics
to cubics, and therefore from the projectivity between two pencils of conics to
the projectivity between a pencil of conics and a pencil of lines.

3. Pseudo-Euclidean plane

In this section we will give the pseudo-Euclidean interpretation of the ob-
tained projective results. By choosing suitable types of pencils and by setting
projectivity in a proper way we can obtain different types of circular cubics in
the pseudo-Euclidean plane. For example, we can state:

Theorem 3.1. Let [A,B] be a pencil of circles and let [c, d] be a pencil of lines.
The result of the projective mapping π : [A,B] → [c, d] is a 2-circular cubic k
passing through both absolute points.
Furthermore, if [c, d] is a pencil of isotropic lines, k is entirely circular.

A

B

c
d

k

v¢

f

v2

F2F1

Figure 1: A cubic of type of circularity (1, 1)
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All figures in this section are produced using the program Mathematica.
Figure 1 displays a 2-circular cubic k which passes through both absolute points
F1, F2. It is generated by the projectively linked pencil of circles [A,B] and
pencil of lines [c, d]. The projectivity is defined by three corresponding pairs:
A ↔ c, B ↔ d, V ↔ v′ where V is a singular conic formed by two lines, and
the absolute line f is one of them.

By using this method we can construct cubics of all types of circularity.
Here we will indicate only some of the most interesting results.

A direct consequence of Theorem 2.4 is

Theorem 3.2. Let [A,B] be a pencil of conics and [c, d] be a pencil of isotropic
lines with the vertex at F1.
The result of the projective mapping π : [A,B] → [c, d] is a 1-circular cubic k
passing through F1.
If [A,B] contains a special parabola touching the absolute line f at F2 and that
conic is mapped onto f , k is an entirely circular cubic passing through F1 and
touching f at F2.

By giving a pseudo-Euclidean interpretation to Theorem 2.5 we obtain

Theorem 3.3. Let [A,B] be a pencil of special parabolas with the basic point
F1 and let [c, d] be a pencil of lines. Let the cubic k be the result of the projective
mapping π : [A,B]→ [c, d].
If the singular conic with the singular point F1 is mapped onto the isotropic line
through F1, the cubic k is 2-circular with the double point at F1. Furthermore,
if the conics of the pencil [A,B] osculate (or hyperosculate) each other, the
cubic k is entirely circular touching the absolute line at the double point F1.

a1 � f

a2

B

c

d

k

F2F1

Figure 2: A cubic of type of circularity (3, 0)
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The cubic k shown in Figure 2 is obtained by a projectively linked pencil of
special parabolas osculating each other at the absolute point F1 and a pencil
of lines. Since the singular conic A = f ∪ a2 is mapped onto the isotropic line
c through F1, the cubic is entirely circular.

If we place the point ~y from Theorem 2.6 in an absolute point of the pseudo-
Euclidean plane, we get

Theorem 3.4. Let [A,B] be a pencil of special hyperbolas with the basic point
F1 and let [c, d] be a pencil of lines. Let the cubic k be the result of the projective
mapping π : [A,B]→ [c, d].
k is a 1-circular cubic passing through F1. If the special parabola of [A,B] is
mapped onto the isotropic line through F1, k is a 2-circular cubic touching f
at F1.

AB

V

c

d

v¢

f

k

F2F1

Figure 3: A cubic of type of circularity (1, 2)

The cubic k in Figure 3 is the result of the projective mapping between
the pencil of special hyperbolas passing through the absolute point F2 and the
pencil of lines. The mapping is defined by three pairs: A↔ c, B ↔ d, V ↔ v′.
The pencil [A,B], besides special hyperbolas, contains one special parabola and
one circle. Since the special parabola A is linked to the isotropic line c through
F1, the cubic k touches f at F2. The circle V is linked to the isotropic line v′

through F1 and therefore k passes through F1. Thus, k is entirely circular.
From Theorem 2.7 we get

Theorem 3.5. Let [A,B] be a pencil of special parabolas with the basic point
F1 and let [c, d] be a pencil of lines. Let the cubic k be the result of the projective
mapping π : [A,B]→ [c, d].
k is a 2-circular cubic touching the absolute line at F1.
If the singular conic containing the absolute line as its part is mapped onto the
isotropic line through F1, the cubic k is entirely circular osculating the absolute
line at F1.
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a1 � f
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c

d

k

F2F1

Figure 4: A cubic of type of circularity (3, 0)

Figure 4 displays an entirely circular cubic k of type (3,0). It is generated
by the projectivity linking the pencil of special parabolas [A,B] and the pencil
of lines [c, d] such that the singular conic A (formed by two lines, the absolute
line f is one of them) is linked to the isotropic line c.

On the basis of the Theorem 2.10 by putting the vertex of the pencil into
the absolute point we can state the following two theorems.

Theorem 3.6. Let the pencil [c, d] of isotropic lines through F1 be given and
let [A,B] be a pencil of conics touching each other at F1. Let the cubic k be
the result of the projective mapping π : [A,B]→ [c, d].
If [A,B] is a pencil of special hyperbolas, k is 2-circular cubic with the double
point at F1 at which one tangent coincides with the common tangent of the
conics of [A,B].
Furthermore, if [A,B] is a pencil of circles touching each other at F1, k is an
entirely circular cubic having the double point at F1 and passing through F2.

The cubic k in Figure 5 is constructed as the result of the mapping between
the pencil of circles [A,B] touching each other at the absolute point F1 and the
pencil of isotropic lines [c, d] through F1. The obtained cubic has the double
point at F1 and passes through F2. Therefore, it is entirely circular. The
common tangent to the conics from [A,B] touches one branch of k at F1. The
other tangent coincides with the line c since that line is linked to the singular
conic A = a1 ∪ a2.

Theorem 3.7. Let [A,B] be a pencil of special parabolas touching f at F1 and
let [c, d] be a pencil of isotropic lines through F1. Let the cubic k be the result
of the projective mapping π : [A,B]→ [c, d].
k is an entirely circular cubic with the double point at F1. The absolute line
touches one branch of k, while the other tangent is the isotropic line linked to
the singular conic with the singular point in F1.
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a1 � f

a2

B

d

c

k

F2F1

Figure 5: A cubic of type of circularity (2, 1)

a1 a2

B

c � f

d

F2F1

k

Figure 6: A cubic of type of circularity (3, 0)

The cubic k in Figure 6 is entirely circular. It is the result of the mapping
between the pencil of special parabolas [A,B] and the pencil of isotropic line
[c, d]. Since the absolute line c = f is linked to the singular conic A = a1 ∪ a2,
both tangents at the absolute point F1 coincide with f . Therefore, k has a
cusp in F1.

4. Conclusion

In this paper we have studied the cubics obtained as the results of the
projectively linked pencils of conics and lines. The pseudo-Euclidean interpre-
tations of the projective situations have been presented. It has been shown
that by using this method it is possible to construct circular cubics of all types
(regarding their position with respect to the absolute figure).
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[4] Kovačević N., Jurkin E., Circular Cubics and Quartics in Pseudo-Euclidean Plane
Obtained by Inversion. Math. Pann. 22 (2) (2011), 199-218.
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