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Abstract. We show that quasiconformal harmonic mappings on do-
mains in R2 are bilipschitz with respect to euclidean metric on those
parts of the domain where the boundary is flat.
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1. Introduction

Continuity properties of harmonic quasiconformal mappings f : D −→ D′,
where D and D′ are domains in plane, with respect to various natural metrics
have been studied extensively in [5], [6], [7], [8], [9], [10] and [11]. Since the
inverse of K-quasiconformal mapping is also K-quasiconformal mapping, such
results apply at the same time to f and f−1. Note that if f is harmonic then
f−1 is not in general harmonic.

We will consider a method to achieve local bilipschitz behaviour when part
of the boundary is flat. This is local generalization of the work of Kalaj and
Pavlović [7]. Our philosophy is to use the boundary Harnack inequality for this
problem.

The following theorem will be important for proving our main results.

Theorem 1.1. [9] Let f : Ω −→ C be a harmonic map whose Jacobian deter-
minant J = |fz|2 − |fz̄|2 is positive everywhere in Ω. Then log J is a superhar-
monic function.

This theorem has many applications. One of these is to prove that quasi-
conformal harmonic mappings on proper domains in R2 are bi-Lipschitz with
respect to the quasihyperbolic metric [9, Theorem 1].

Another application is in establishing the minimum principle for the Jaco-
bian determinant which is the novelty for the new analytic proof of celebrated
Radó–Kneser–Choquet theorem [4].
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It is also used for studying higher dimensional counterparts [2] to the well-
known theorem of Pavlovic [11], that every harmonic quasiconformal mapping
of the disk is bi-Lipschitz.

We next recall definition from [1, Definition 1.5]

αf (z) = exp

(
1

n
(log Jf )Bz

)
,

where

log(Jf )Bz =
1

m(Bz)

∫
Bz

log Jf dm, Bz = B(z, d(z, ∂D)).

In the case n = 2 we have

1

αf (z)
= exp

(
1

2

1

m(Bz)

∫
Bz

log
1

Jf (w)
dm(w)

)
.

For our main results we also need the counterpart of Koebe theorem estab-
lished by Astala and Gehring.

Theorem 1.2. [1, Theorem 1.8] Suppose that D and D′ are domains in Rn if
f : D −→ D′ is K-qc, then

1

c

d(f(z), ∂D′)

d(z, ∂D)
≤ αf (z) ≤ c

d(f(z), ∂D′)

d(z, ∂D)

for z ∈ D, where c is a constant which depends only on K and n.

2. Main Results

We are going to need the following boundary Harnack inequality ([3], exer-
cise 6, p. 28):

Theorem 2.1. Let u and v be positive harmonic functions on unit disk D in
R2 with u(0) = v(0), let I ⊂ ∂D be an open arc and assume

lim
z→ζ

u(z) = lim
z→ζ

v(z) = 0

for all ζ ∈ I. Then for every compact A ⊂ D ∪ I there is a constant C(A)
independent of u and v such that on A ∩ D

1

C(A)
≤ u(z)

v(z)
≤ C(A).

Proof. We are going to consider the case I = ∂D∩H−, H− = {z : Im(z) < 0}.
Since u is positive and harmonic, we have u(z) =

∫
S1 Pz(t)dµ(t), where µ

is positive measure, with u(0) =
∫
S1 dµ = µ(S1), and similarly v is defined via

positive measure ν.



On bilipschicity of quasiconformal harmonic mappings 107

Suppose v, u ≥ 0 are harmonic in D and u
∣∣∣
I
= v

∣∣∣
I
= 0 , u(0) = v(0) = 1,

i.e. µ(S1) = ν(S1) = 1. Since u is harmonic and µ is supported on {z : Im(z) ≥
0, |z| = 1} = S1

+, we have

u(z) =

∫
S1

1− |z|2

|ξ − z|2
dµ(ξ) =

∫
S1
+

1− |z|2

|ξ − z|2
dµ(ξ)

For δ0 = dist(A, supp(µ)) and z ∈ A we have dist(z, S1
+) ≥ δ0 > 0 and

u(z) ≤ (1− |z|2)
∫
S1
+

1

|ξ − z|2
dµ(ξ) ≤ 2(1− |z|)

δ20

Since |ξ − z| ≤ 2, we have

v(z) ≥ (1− |z|)
∫
S1
+

1

|ξ − z|2
dν(ξ) ≥ 1− |z|

4

and we conclude that for z ∈ A we have u(z)/v(z) ≤ 8
δ20

and analogously

v(z)/u(z) ≤ 8
δ20
, and hence

δ20
8

≤ u(z)

v(z)
≤ 8

δ20
.

To illustrate the use of the boundary Harnack inequality, we will first prove
the following special case:

Theorem 2.2. Suppose that D is the unit disc and H+ is upper-half plane in
R2. If f : D −→ H+ is hqc homeomorphism then f

∣∣
D−

is bi-Lipschitz with

respect to Euclidean metric, where D− = {z : z ∈ D, Im(z) < 0}.

Proof. Without loss of generality we will assume that f(0) = i. Consider the
Möbius transformation

M(z) =
1− iz

z − i

such that M(±1) = ±1, M(0) = i, M(−i) = 0 and choose

u = Im(f), v = Im(M(z)) =
1− |z|2

|z − i|2
.

It holds that u(0) = v(0) = 1, and for any ξ such that Im(ξ) < 0 |ξ| = 1,

lim
z→ξ

u(z) = lim
z→ξ

v(z) = 0.

Since in our setting Im(f(z)) ≡ d(f(z), ∂H+), from 2.1 we now have

1

C(A)
≤ d(f(z), ∂H+)

1−|z|2
|z−i|2

≤ C(A)
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on A ∩ D for some constant C(A), for every compact A ⊂ D ∪ I, where I =
∂D ∩H−.

Because |z − i|2 ≤ 4, d(z, ∂D) = 1− |z| it follows that

1

2C(A)
≤ d(f(z), ∂H+)

d(z, ∂D)
≤ 4C(A).

Using Theorem 1.2 we conclude that

1

c
≤ αf (x) ≤ c,

where c is constant which depends only on A.
Finally, from the proof of Theorem 1.1, ([9]) it follows that

αf (x) ≍ ∥f ′(x)∥,

and since f is qc, it follows that it is bi-Lipschitz.

By developing the ideas above we can consider local questions of bilipschic-
ity phenomena when only part of the boundary is flat. Here we need to use
quasiconformal geometry.

Definition 2.3. ∂Ω is flat at some x0 ∈ ∂Ω if, up to rotations,

∂Ω ∩B(x0, ρ) = [x0 − ρ, x0 + ρ]

for some ρ > 0.

Theorem 2.4. Suppose that D is unit disc, Ω is simply connected and f :
D −→ Ω is harmonic and quasiconformal mapping such that f(D) = Ω. Sup-
pose also that ∂Ω is flat at x0, and that f is normalised so that f(±1) = x0±ρ
with f(−i) = x0.

If Ω1 = f−1[B(x0, ρ/2)∩Ω], then f : Ω1 −→ B(x0, ρ/2)∩Ω is bi-Lipschitz.
Indeed,

1

L0
≤ |f(x)− f(y)|

ρ|x− y|
≤ L0

for some L0 depending only on K(f).

For the proof we need a local version of Theorem 2.2.

Lemma 2.5. Let D+ = D∩H+, and g : D → D+ a harmonic K-quasiconformal
mapping with

g(±1) = ±1, g(−i) = 0.

If A ⊂ D is a compact subset with δ0 := dist(A,S1 ∩H+) > 0, then

1

c(K, δ0)
≤ dist(g(z), ∂D+)

1− |z|
≤ c(K, δ0), z ∈ A.

The constant c(K, δ0) < ∞ depends only on K and δ0.
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Proof. First, the map g : D → D+ is η-quasisymmetric, where η depends only
on K. Indeed, every K-quasiconformal mapping of the unit disk D fixing ±1
and −i is η-quasisymmetric, and the case of our mapping is quickly reduced to
this fact, e.g. by using a suitable bilipschitz mapping from D+ to D.

It follows that if u(z) = Im(g(z)), z ∈ A, then firstly c(K) ≤ u(0) ≤ 1, and
secondly, that

1

c(K, δ0)
≤ u(z)

dist(g(z), ∂D+)
≤ c(K, δ0)

for some constant c(K) < ∞ depending only on K and δ0. Therefore we can
argue similarly as in Theorem 2.2 to prove the claim.

The proof of Theorem 2.4 is reduced to Lemma 2.5, via the conformal
mapping ϕ : D → Ω̃ = f−1[B(x0, ρ) ∩ Ω], where ϕ(±1) = ±1 and ϕ(−i) = −i.
One mainly needs to notice that ϕ is bilipschitz on A = f−1[B(x0, ρ/2) ∩ Ω].
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