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1. Introduction

Asymptotic analysis is a very much studied topic within generalized func-
tion theory and has shown to be quite useful for the understanding of structural
properties of a generalized function in connection with its local behavior as well
as its growth properties at infinity. Several applications have been developed in
diverse areas such as Tauberian and Abelian theory for integral transforms, dif-
ferential equations, number theory, and mathematical physics. There is a vast
literature on the subject, see the monographs [6, 9, 11, 12, 14] and references
therein.

The purpose of this paper is to present an elementary approach to asymp-
totic behavior in the Cesàro sense. The Cesàro behavior for Schwartz distribu-
tions was introduced by Estrada in [5] (see also [6]). The approach we develop in
this article uses Yosida’s algebra M of operators [13], which provides a simpli-
fied but useful version of Mikusiński’s operational calculus [8]. While Schwartz
distribution theory is based on the duality theory of topological vector spaces,
the construction of Yosida’s space M is merely algebraic, making only use of
elementary notions from calculus. That is why we call our approach to Cesàro
asymptotics elementary.
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The plan of the article is as follows. In Section 2, we recall the construction
of Yosida’s space M. We study some useful localization properties of elements
of M in Section 3. The asymptotics in the Cesàro sense is defined in Section 4
and its properties are investigated. As an application, we conclude the article
with some Abelian and Tauberian theorems for Stieltjes and Laplace transforms
in Section 5. It should be mentioned that Abelian and Tauberian theorems for
Stieltjes and Laplace transforms of generalized functions have been extensively
investigated by several authors, see, e.g., [7, 9, 11, 12, 14].

2. Preliminaries

We recall in this section the construction of Yosida’s space of operators M
and explain some of its properties. See [13] for more details about M.

Let Cn
+(R) denote the space of all n-times continuously differentiable func-

tions on R which vanish on the interval (−∞, 0). We write C+(R) = C0
+(R).

For f, g ∈ C+(R), the convolution is given by

(f ∗ g)(x) =
∫ x

0

f(x− t)g(t)dt.

Let H denote the Heaviside function. That is, H(x) = 1 for x ≥ 0 and zero
otherwise. For each n ∈ N, we denote by Hn the function H ∗ · · · ∗H where H
is repeated n times. One has Hn ∈ Cn−2

+ (R), n ≥ 2. Note that if f ∈ C+(R),
then

(Hm ∗ f)(x) = 1

(m− 1)!

∫ x

0

(x− t)m−1f(t)dt.

The space M is defined as follows,

M =

{
f

Hk
: f ∈ C+(R), k ∈ N

}
.

Two elements of M are equal, denoted
f

Hn
=

g

Hm
, if and only if Hm ∗ f =

Hn ∗ g. Addition, multiplication (using convolution), and scalar multiplication
are defined in the natural way, and M with these operations is a commutative

algebra with identity δ =
H2

H2
, the Dirac delta. We can embed C+(R) into M.

Indeed, for f ∈ C+(R), we set Wf =
H ∗ f
H

. Obviously, f 7→Wf is injective.

Let W =
f

Hk
∈ M. The generalized derivative of W is defined as DW =

f

Hk+1
. The product of x and W is given by

xW =
xf − kH ∗ f

Hk
(k ≥ 2).

In the last formula k ≥ 2 is no restriction because
f

Hk
=
H ∗ f
Hk+1

. Clearly, these

definitions do not depend on the representative of W .
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Proposition 2.1. The generalized derivative and product by x satisfy:

(a) xWf =Wxf , f ∈ C+(R).

(b) DWf =Wf ′ , f ∈ C1
+(R).

(c) D(xW ) =W + xDW, W ∈ M.

Proof. For (a),

xWf =
x(H2 ∗ f)

H2
− 2H2 ∗ f

H
=
xH2 ∗ f
H2

+
H2 ∗ xf
H2

− 2H2 ∗ f
H

=
2H3 ∗ f
H2

+
H2 ∗ xf
H2

− 2H2 ∗ f
H

=
H ∗ xf
H

= Wxf .

If f ′ ∈ C+(R), we have DWf =
H ∗ f
H2

=
f

H
=
H ∗ f ′

H
= Wf ′ , which shows

(b). Next, let W =
f

Hk
∈ M. Then,

W + xDW =
f

Hk
+

(
xf

Hk+1
− (k + 1)f

Hk

)
=

xf

Hk+1
− kf

Hk
= D(xW ).

Remark 2.2. Notice by identifying f ∈ L1
loc(R+) with

H ∗ f
H

∈ M, the space

L1
loc(R+) can be considered a subspace of M. Also, for the construction of M,

the space of locally integrable functions which vanish on (−∞, 0) could have
been used instead of C+(R).

3. Localization

We discuss in this section localization properties of elements of M.

Definition 3.1. Let W =
f

Hk
∈ M. W is said to vanish on an open interval

(a, b), denoted W (x) = 0 on (a, b), provided there exists a polynomial p with
degree at most k − 1 such that p(x) = f(x) for a < x < b. Two elements
W,V ∈ M are said to be equal on (a, b), denoted W (x) = V (x) on (a, b),
provided W − V vanishes on (a, b).

The support of W ∈ M, denoted suppW , is the complement of the largest
open set on which W vanishes. The degree of a polynomial p will be denoted
by deg p in the sequel.

Example 3.2. Recall δ =
H2

H2
. Notice that H2(x) = x on the open interval

(0,∞). Thus, δ(x) = 0 on (0,∞). Also, H2(x) = 0 on (−∞, 0). So, δ(x) = 0
on (−∞, 0). Therefore, supp δ = {0}.
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Proposition 3.3. Let W ∈ M.

(a) If W (x) = 0 on (a, b), then DW (x) = 0 on (a, b).

(b) If DW (x) = 0 on (a, b), then W is constant on (a, b).

Proof. Part (a) follows immediately from definitions. See [10, Thm. 4.1] for
(b).

Proposition 3.4. Let W ∈ M.

(a) If W (x) = 0 on (a, b), then xW (x) = 0 on (a, b).

(b) Suppose xW (x) = 0 on (a, b). Then,

(i) W (x) = 0 on (a, b), provided 0 /∈ (a, b).

(ii) W (x) = 0 on (a, 0) ∪ (0, b), provided 0 ∈ (a, b).

Proof. Let W =
f

Hk
∈ M (k ≥ 2).

Part (a). Since W (x) = 0 on (a, b), there exist a0, a1, . . . , ak−1 ∈ C such that
f(x) = a0 + a1x+ · · ·+ ak−1x

k−1 for a < x < b. Now, there exists A ∈ C such
that

xf(x)− k(H ∗ f)(x) =

A+ a0(1− k)x+ a1

(
1− k

2

)
x2 + · · ·+ ak−2

(
1− k

k − 1

)
xk−1,

for a < x < b. Since xW =
xf − kH ∗ f

Hk
, the above yields xW (x) = 0 on

(a, b).
Part (b). Suppose xW (x) = 0 on (a, b).

(i) If a < 0, then the conclusion is clearly true. So assume a ≥ 0. Now, there
exists a polynomial p with deg p ≤ k − 1 such that

xf(x)− k

∫ x

0

f(t)dt = p(x) for a < x < b.

Thus, f ∈ C1(a, b) and xf ′(x)+(1−k)f(x) = p′(x) for a < x < b. Solving
this differential equation, it follows that f(x) = q(x) for a < x < b, where
q is a polynomial with deg q ≤ k − 1. Therefore, W (x) = 0 on (a, b).

(ii) Since for all W ∈ M, we have W (x) = 0 on (−∞, 0), we only need to
show that W (x) = 0 on (0, b). Since 0 ∈ (a, b), one has

(3.1) xf(x)− k

∫ x

0

f(t)dt = 0

for a < x < b, in particular, for 0 < x < b. Similarly as in the proof of
part (i), we obtain f(x) = Axk−1 for 0 < x < b, where A ∈ C. Thus,
W (x) = 0 on (0, b). Therefore, W (x) = 0 on (a, 0) ∪ (0, b).
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Proposition 3.5. Let W ∈ M.

(a) If xW (x) = 0 on (−∞,∞), then W = αδ for some α ∈ C.

(b) If W =
f

Hk
(k ≥ 2) and W (x) = 0 on (0,∞), then W =

∑k−2
n=0 αnδ

(n),

for some αn ∈ C, n = 0, 1, 2, . . . , k − 2.

Proof. Let W =
f

Hk
(k ≥ 2).

Part (a). Suppose xW (x) = 0 on (−∞,∞). Similarly as in the proof of
Proposition 3.4(b), we obtain (3.1) on (−∞,∞). It follows that f(x) = βxk−1

on (0,∞), for some β ∈ C. Since f is continuous on R and vanishes on (−∞, 0),
we have f(x) = βxk−1 on [0,∞). Therefore,

W =
f

Hk
= (k − 1)!β

Hk

Hk
= αδ where α = (k − 1)!β.

Part (b). SupposeW (x) = 0 on (0,∞). Then, f(x) = a0+a1x+ · · ·+ak−1x
k−1

on (0,∞), where a0, a1, . . . , ak−1 ∈ C. Since f is continuous and vanishes on
(−∞, 0), we obtain a0 = 0. Thus,

W = a1
H2

Hk
+ 2!a2

H3

Hk
+ · · ·+ (k − 1)! ak−1

Hk

Hk

= a1 δ
(k−2) + 2! a2 δ

(k−1) + · · ·+ (k − 1)! ak−1 δ.

4. Asymptotics in the Cesàro sense

We now introduce and study asymptotics in the Cesàro sense for elements
of M. As usual, Γ stands for the Euler Gamma function and o stands for the
little o growth order symbol of Landau [6, Chap. 1].

Definition 4.1. Let W ∈ M. For α ∈ R\{−1,−2, . . . }, define

W (x) ∼ γ xα

Γ(α+ 1)
(C),

if and only if there is k ∈ N such that W =
f

Hk
with

(4.1)
Γ(α+ k + 1)f(x)− p(x)

xα+k
→ γ, x→ ∞,

where p is some polynomial with deg p ≤ k − 1. That is,

Γ(α+ k + 1)f(x) = p(x) + γxα+k + o(xα+k), as x→ ∞.
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Remark 4.2. If α > −1, then the polynomial p is not needed.

The next theorem tells us that Definition 4.1 is consistent with the choice
of representatives.

Theorem 4.3. If W =
f

Hk
∈ M is such that (4.1) holds, then the continuous

function Hm ∗ f in the representation W =
Hm ∗ f
Hk+m

(m ∈ N) satisfies

Γ(α+ k +m+ 1)(Hm ∗ f)(x)− q(x)

xα+k+m
→ γ, x→ ∞,

for some polynomial q of degree at most k +m− 1.

Proof. Suppose that (4.1) holds for some polynomial p with deg p ≤ k − 1.
Consider

Γ(α+ k + 2)

∫ x

0

(
f(t)− p(t)

Γ(α+ k + 1)

)
dt+K,

with K a constant to be determined.
Case 1. Suppose α+k < −1 ⇒ xα+k ∈ L1(1,∞). So, (4.1) implies f−p/Γ(α+
k + 1) ∈ L1(0,∞). Therefore there exists a constant K such that

Γ(α+ k + 2)

∫ x

0

(
f(t)− p(t)

Γ(α+ k + 1)

)
dt+K → 0, as x→ ∞.

Thus, using L’Hospital’s rule and (4.1)

lim
x→∞

Γ(α+ k + 2)
∫ x

0

(
f(t)− p(t)

Γ(α+k+1)

)
dt+K

xα+k+1

= lim
x→∞

Γ(α+ k + 1)f(x)− p(x)

xα+k
= γ.

Let q(x) = (α + k + 1)
∫ x

0
p(t)dt −K. Then q is a polynomial with deg q ≤ k.

Moreover,

Γ(α+ k + 2)(H ∗ f)(x)− q(x)

xα+k+1
→ γ, as x→ ∞.

Case 2. Suppose α+ k > −1. Assume γ ̸= 0. Then (4.1) implies∫ x

0

(Γ(α+ k + 1)f(t)− p(t)) dt→ ±∞, as x→ ∞.

Using L’Hospital’s Rule and (4.1),

Γ(α+ k + 2)
∫ x

0

(
f(t)− p(t)

Γ(α+k+1)

)
dt

xα+k+1

=
(α+ k + 1)

∫ x

0
(Γ(α+ k + 1)f(t)− p(t))

xα+k+1
→ γ,
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as x→ ∞. For the case γ = 0 (and α+k > −1), we set g(x) = Γ(α+k+1)f(x)−
p(x). It is well known that if x−α−kg(x) → 0, then x−α−k−1

∫ x

0
g(t)dt→ 0 (see

e.g. [6, Chap. 1]).
The above shows that the claim is true for m = 1. By using induction, the

result follows.

Unless otherwise stated, we assume from now on α ∈ R\{−1,−2, . . . }.
The following provides an alternative to Definition 4.1.
Let W ∈ M and γ ∈ C. Then

(4.2) W (x) ∼ γxα

Γ(α+ 1)
(C), x→ ∞

if and only if there exist n ∈ N with α + n > 0, g ∈ C+(R), and b > 0 such
that W (x) = Dng(x) on (b,∞) and g(x)/xα+n → γ/Γ(α+ n+ 1) as x → ∞.
We leave the verification of this fact to the reader.

Theorem 4.4. We have:

(a) If f ∈ C+(R) such that f(x) ∼ γxα as x→ ∞, then Wf (x) ∼ γxα (C),
x→ ∞.

(b) Let W ∈ M satisfy (4.2). Then,

(4.3) DW (x) ∼ αγxα−1

Γ(α+ 1)
(C), x→ ∞.

and

(4.4) xW (x) ∼ γ xα+1

Γ(α+ 1)
(C), x→ ∞.

Proof. We only prove (4.4) since the other parts of the theorem follow from the
definitions. We first assume a stronger condition on the polynomial p. Suppose

V =
g

Hn
∈ M (n ≥ 2) with

(4.5)
Γ(α+ n+ 1)g(x)− p(x)

xα+n
→ γ as x→ ∞,

for some polynomial p with deg p ≤ n − 2. Then there exists a polynomial q
with deg q ≤ n− 1 such that

Γ(α+ n+ 2)xg(x)− q(x)

xα+n+1
→ (α+ n+ 1)γ as x→ ∞.

Therefore,
xg

Hn
∼ (α+ n+ 1)γxα+1

Γ(α+ 2)
(C), x→ ∞.
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Also, from (4.5) it follows that

−ng
Hn−1

∼ −nγxα+1

Γ(α+ 2)
(C), x→ ∞.

Thus,

xV (x) ∼ γxα+1

Γ(α+ 1)
(C), x→ ∞.

We now remove the stronger condition that deg p ≤ n− 2 and complete the

proof of the theorem. Let W =
f

Hk
∈ M such that (4.2) holds. That is, there

exists a0, a1, . . . , ak−1 ∈ C such that

(4.6)
Γ(α+ k + 1)f(x)− (a0 + a1x+ · · ·+ ak−1x

k−1)

xα+k
→ γ as x→ ∞

Let V =
f(x)− βxk−1

Hk
∈ M, where β = ak−1/Γ(α+ k + 1). Then, from (4.6)

it follows that,

V (x) ∼ γxα

Γ(α+ 1)
(C), x→ ∞.

And, by the first part of the proof,

xV (x) ∼ γxα+1

Γ(α+ 1)
(C), x→ ∞.

Since, xW = xV + β(k − 1)!xδ = xV , it follows that

xW (x) ∼ γxα+1

Γ(α+ 1)
(C), x→ ∞.

By Theorem 4.4, we obtain the following theorem.

Theorem 4.5. If (H ∗W )(x) ∼ γ xα

Γ(α+ 1)
(C), then (xW )(x) ∼ αγ xα

Γ(α+ 1)
(C), x→ ∞.

The proofs of the next proposition and corollary follow from the definitions.

Proposition 4.6. If V has compact support, then V (x) ∼ 0

Γ(α+ 1)
xα (C),

x→ ∞.

Asymptotics in the Cesàro sense is a local property.

Corollary 4.7. Let W,V ∈ M. Suppose that W has Cesàro asymptotics (4.2)

and W (x) = V (x) on (a,∞). Then, V (x) ∼ γ xα

Γ(α+ 1)
(C), x→ ∞.
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5. Applications

In this last section we give some Abelian and Tauberian theorems for Stielt-
jes and Laplace transforms of elements of M.

We start by defining the Stieltjes transform [10]. Let r > −1 and suppose

W =
f

Hk
∈ M, where x−r−k+σf(x) is bounded as x → ∞ for some σ > 0.

The Stieltjes transform of W of index r is given by

ΛrW (z) = (r + 1)k

∫ ∞

0

f(x)

(x+ z)r+k+1
dx , z ∈ C\(−∞, 0],

where (r + 1)k = Γ(r+k+1)
Γ(r+1) = (r + 1)(r + 2) . . . (r + k). Notice that ΛrW (z) is

holomorphic in the variable z, as one readily verifies.
The following is a classical Abelian theorem for the Stieltjes transform.

Theorem 5.1 ([3]). If f ∈ C+(R) such that x−νf(x) → A as x → ∞, with
ν > −1, then for ρ > ν,

lim
z→∞

| arg z|≤θ<π/2

zρ−ν Γ(ρ+ 1)Sρf(z)

Γ(ρ− ν)Γ(ν + 1)
= A,

where Sρf(z) =
∫∞
0

f(x)
(x+z)ρ+1 dx.

Theorem 5.2. Let W ∈ M and r > −1. Suppose W (x) ∼ γxα

Γ(α+ 1)
(C),

x→ ∞. Then:

(i) If r > α > −1, then ΛrW (z) is well-defined and has asymptotic behavior

lim
z→∞

| arg z|≤θ<π/2

zr−α Γ(r + 1)ΛrW (z)

Γ(r − α)
= γ,

(ii) If α < −1, α /∈ {−2,−3,−4, . . . }, then ΛrW (z) is well-defined and there
are constants A1, . . . , Ak such that

(5.1) lim
z→∞

| arg z|≤θ<π/2

zr−α Γ(r + 1)

Γ(r − α)

ΛrW (z)−
k∑

j=1

Aj

zr+j

 = γ.

Proof. (i) Let α > −1 and W =
f

Hk
∈ M such that

Γ(α+ k + 1)f(x)

xα+k
→ γ as x→ ∞.

It follows that for r > α, f(x)x−r−k+σ is bounded as x → ∞ for some σ > 0.
Now, by substituting r+ k for ρ, α+ k for ν, and γ

Γ(α+k+1) for A in the above

classical Abelian theorem, we obtain

lim
z→∞

| arg z|≤θ<π/2

zr−αΓ(r + k + 1)Sr+kf(z)

Γ(r − α)
= γ.
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Now, using the fact that ΛrW (z) = (r + 1)kSr+kf(z), the result follows.

(ii) Suppose that W =
f

Hk
∈ M with k + α > −1 and that f can be

written as f(x) = p(x)+ g(x), where g ∈ C+(R) satisfies limx→∞ x−α−kg(x) =

γ/Γ(α+k+1) and p(x) =
∑k−1

j=0 ajx
j . It follows that |f(x)| ≤ Cxk−1 for some

constant C and thus f(x)x−r−k+σ is bounded for any 0 < σ ≤ 1 + r. Observe
that

Sr+k f(z) = Sr+k g(z) +
k−1∑
j=0

aj

∫ ∞

0

xj

(x+ z)r+k+1
dx

= Sr+k g(z) +

k−1∑
j=0

j!Γ(r + k − j)

Γ(r + k + 1)zj+k+r
aj .

By Theorem 5.1, we have that zr−αSr+k g(z) → γΓ(r−α)
Γ(r+k+1) as z → ∞ on sectors

| arg z| ≤ θ < π
2 . Since ΛrW (z) = (r + 1)kSr+k f(z), we obtain (5.1) with

Aj = (k − j)!(r + 1)j−1ak−j .

We illustrate our ideas with the ensuing example, a deduction of Stirling’s
formula for the Gamma function.

Example 5.3. (Stirling’s formula) Recall that the digamma function ψ is
defined as the logarithmic derivative of Γ. By using the product formula for Γ,
namely,

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

e
z
n ,

one has

ψ(z) =
Γ′(z)

Γ(z)
= −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
, z ∈ C\{0,−1,−2, . . . },

where γ is the Euler-Mascheroni constant. We define W =
f

H2
, where f(x) =∫ x

0

(
⌊t⌋ − t+ 1

2

)
dt (here ⌊x⌋ stands for the integer part of x).

Set g(x) = ⌊x⌋−x+ 1
2 and note that g is periodic with period 1, |g(x)| ≤ 1

2 for

all x ∈ R, and
∫ n+1

n
g(x)dx = 0 for all n ∈ N. This implies that

∣∣∫ x

0
g(t)dt

∣∣ ≤ 1
2

for all x ≥ 0. Consequently, W (x) ∼ 0 ·x−σ (C), x→ ∞ for any 0 < σ < 2.
Theorem 4 now yields (from the proof it is clear that the constants A1 = A2 = 0
in this case because f is bounded)

(5.2) lim
z→∞

| arg z|≤θ<π/2

zσΛ0W (z) = 0,

for any 0 < σ < 2. From now on we will work with 1 < σ < 2. We compute an
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explicit expression for Λ0W (z),

Λ0W (z) = 2

∫ ∞

0

f(x)

(x+ z)3
dx =

∫ ∞

0

(⌊x⌋ − x+ 1
2 )

(x+ z)2
dx

=
1

2z
+ lim

N→∞

∫ N

0

⌊x⌋ − x

(x+ z)2
dx

=
1

2z
+ lim

N→∞

(∫ N

0

d⌊x⌋
x+ z

− N

N + z
+

N

N + z
−
∫ N

0

dx

x+ z

)

= ln z +
1

2z
+ lim

N→∞

N∑
n=1

1

n+ z
− lnN

= ln z +
1

2z
− ψ(z).

The limit (5.2) then yields

(5.3) ψ(z) = ln z +
1

2z
+ o

(
1

zσ

)
, z → ∞,

for z in the sectors | arg z| ≤ θ < π
2 . Note that integration of (5.3) implies for

any 0 < τ < 1,

ln Γ(z) = z(ln z − 1) +
1

2
ln z + C + o

(
1

zτ

)
, z → ∞

on | arg z| ≤ θ < π
2 , which is Stirling’s asymptotic formula for the Gamma

function except for the evaluation of the constant C. The constant is of course
well known to be C =

√
2π. We refer to [6, p. 43] for an elementary proof of

the latter fact.

We now consider the Laplace transform [1]. If W =
f

Hk
∈ M, where

f(x)e−σx is bounded as x → ∞ for some σ ∈ R, then the Laplace transform
of W is given by

LW (z) = zk
∫ ∞

0

e−zx f(x) dx, ℜe z > σ.

Theorem 5.4. Let W ∈ M. Assume that W (x) ∼ γxα

Γ(α+ 1)
(C), x → ∞.

Then W is Laplace transformable and

(i) If α > −1, then

lim
z→0

| arg z|≤θ<π/2

zα+1LW (z) = γ.
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(ii) If α < −1, α /∈ {−2,−3, . . . }, then there are constants A0, . . . , Ak−1 such
that

(5.4) lim
z→0

| arg z|≤θ<π/2

zα+1

LW (z)−
k−1∑
j=0

Ajz
j

 = γ

Remark 5.5. In the terminology of finite part limits ([6, Sect. 2.4]), the limit
(5.4) might be rewritten as

F.p. lim
z→0

| arg z|≤θ<π/2

zα+1LW (z) = γ.

Proof. (i) Let α > −1 and W =
f

Hk
∈ M such that

Γ(α+ k + 1)f(x)

xα+k
→ γ as x→ ∞.

It follows that there exists σ > 0 such that f(x)e−σx is bounded as x → ∞.
Now, by a well known classical Abelian theorem for the Laplace transform [4],
we obtain

lim
z→0

| arg z|≤θ<π/2

zα+k+1Lf(z)
Γ(α+ k + 1)

=
γ

Γ(α+ k + 1)
.

So,

lim
z→0

| arg z|≤θ<π/2

zα+1LW (z) = lim
z→0

| arg z|≤θ<π/2

zα+k+1Lf(z) = γ.

(ii) Suppose W =
f

Hk
∈ M with k + α > −1 and that f can be written as

f(x) = p(x) + g(x), where g ∈ C+(R) has asymptotic behavior

lim
x→∞

x−α−kg(x) =
γ

Γ(α+ k + 1)

and p(x) =
∑k−1

j=0 αjx
j . Note that W = W1 + W2, where W1 =

g

Hk
and

W2 =
p

Hk
. Exactly as above, one verifies that

lim
z→0

| arg z|≤θ<π/2

zα+1LW1(z) = γ.

It remains to observe that LW2(z) =
∑k−1

j=0 Ajz
j , with Aj = αk−j−1/(k − j −

1)!.

Theorem 5.6. (Tauberian Theorem) LetW =
f

Hk
∈ M, where in addition

to f ∈ C+(R), f is real-valued and nonnegative. If LW (s) ∼ γs−α−1, s → 0+

(for some α > −1), then W (x) ∼ γxα

Γ(α+ 1)
(C), x→ ∞.
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Proof. It follows that

(5.5) Lf(s) ∼ γs−(α+k+1), s→ 0+.

Also,

(5.6) Lf(s) =
∫ ∞

0

e−std(H ∗ f)(t), s > 0.

Since H ∗ f is nondecreasing, by (5.5) and (5.6) and the Hardy-Littlewood-
Karamata Tauberian Theorem [2, 14], it follows that

(H ∗ f)(x) ∼ γ

Γ(α+ k + 2)
xα+k+1, x→ ∞.

That is,
Γ(α+ (k + 1) + 1)(H ∗ f)(x)

xα+(k+1)
→ γ, x→ ∞.

Since W =
H ∗ f
Hk+1

, the above yields W (x) ∼ γxα

Γ(α+ 1)
(C), x→ ∞.
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