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Stevan Pilipović2, Nenad Teofanov3 and Filip Tomić4
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Abstract. We introduce a class of ultradifferentiable functions which
contains Gevrey functions and study its basic properties. In particular,
we investigate the continuity properties of certain (ultra)differentiable
operators. Finally, we discuss microlocal properties in appropriate dual
spaces.
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1. Introduction

Since their introduction in the context of regularity properties of funda-
mental solution of the heat operator in [1], Gevrey classes were used in many
situations related to the general theory of linear partial differential operators
such as hypoellipticity, local solvability and propagation of singularities. We
refer to [6] for the definition and detailed exposition of Gevrey classes and their
applications to the theory of linear partial differential operators. It is known
that intersection (projective limit) of Gevrey classes contains the space of ana-
lytic functions, while its union (inductive limit) is contained in the class of
smooth functions. However, there is a gap between the Gevrey classes and the
space of smooth functions, so that in certain situations a more refined descrip-
tion of regularity might be useful. The purpose of this paper is to introduce a
family of smooth functions which are less regular than the Gevrey functions,
and to study its basic properties. The main motivation for our approach is that
it can be used in the study of intermediate singularities between the classical
C∞ and the Gevrey type singularities, see Section 4.

We recall Komatsu’s approach [4] and introduce a family of sequences of the
formMτ,σ

p = pτp
σ

, p ∈ Z+, for some τ > 0 and σ > 1, so that the corresponding
space of ultradifferentiable functions contains Gevrey classes. Such sequences
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do not satisfy conditions (M.2) and (M.2)′ (cf. Subsection 1.2), which are in

our analysis replaced by (̃M.2)′ and (̃M.2), see Lemma 2.2.
In Section 3 we define the corresponding space of ultradifferentiable func-

tions and study its basic properties. For example, we show that there exists
a nontrivial smooth compactly supported function in our class which does not
belong to Gevrey classes.

Recall the condition (M.2) provides the stability under the action of appro-
priate ultradifferentiable operators. Since Mτ,σ

p does not satisfy (M.2) we can
not expect that our space is closed under the action of appropriate ultradiffer-
entiable operators. However, the continuity holds if we observe an inductive
limit with respect to one of the parameters, Theorems 3.2 and 3.3.

In Section 4 we discuss a new approach to the study of microlocal proper-
ties of ultradistributions in the context of the new class of ultradifferentiable
functions.

1.1. Notation

Throughout the paper, we use the standard notation: nonnegative integers,
integers, positive integers, real numbers, positive real numbers and complex
numbers are denoted by N, Z, Z+, R, R+ and C, respectively. The integer
part (the floor function) of x ∈ R+ is denoted by ⌊x⌋ := max{m ∈ N : m ≤ x}.
For a multi-index α = (α1, . . . , αd) ∈ Nd we write ∂α = ∂α1 . . . ∂αd and |α| =
|α1|+ . . . |αd|. We will also use the Stirling formula: N ! = NNe−N

√
2πNe

θN
12N ,

for some 0 < θN < 1, N ∈ Z+. By C
m(K), m ∈ N, we denote the Banach

space of m-times continuously differentiable functions on a regular compact set
K ⊂⊂ U , where U ⊆ Rd is an open set, and C∞(K) is the corresponding set
of smooth functions on K, see [4]. Convolution is denoted with f ∗ g(x) =∫
Rd f(x− y)g(y)dy, whenever the integral make sense.

For locally convex topological spaces X and Y we write X ↪→ Y when
X ⊆ Y and the identity mapping from X to Y is continuous. If, in addition,
X ̸= Y then the embedding is strict. By X ′ we denote the strong dual of X
and by ⟨·, ·⟩X the dual pairing between X and X ′. The set of continuous linear
operators from X to Y is denoted by L(X,Y ).

A linear map B ∈ L(X,Y ), X,Y are Banach spaces, is quasi-nuclear if

there exists a sequence {x′j} in X ′ such that
∞∑
j=1

∥x′j∥X′ < ∞ and ∥Bx∥Y ≤
∞∑
j=1

|⟨x, x′j⟩X |. In particular, a quasi-nuclear map A ∈ L(X,Y ) is nuclear if

there exists bounded sequences x′j ∈ X ′ (with respect to the strong topology)

and yj ∈ Y , j ∈ Z+, and a sequence λj ∈ C, j ∈ Z+, such that
∞∑
j=1

|λj | <∞ and

Ax =
∞∑
j=1

λj⟨x, x′j⟩Xyj . We refer to [11, Section III.7] and [8] for an extension

of nuclear and quasi-nuclear mappings to arbitrary locally convex topological
spaces.
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1.2. Classical spaces of ultradifferentiable functions

We use Komatsu’s approach to the theory of ultradistributions as follows,
see [4].

By Mp = (Mp)p∈N we denote a sequence of positive numbers such that:

(M.0) M0 = 1;

(M.1) M2
p ≤Mp−1Mp+1, p ∈ Z+;

(M.2) (∃A,B > 0) Mp+q ≤ ABpMpMq, p, q ∈ N;

(M.3)′
∞∑
p=1

Mp−1

Mp
<∞.

ThenMp also satisfies weaker conditions: (M.1)′ MpMq ≤Mp+q and (M.2)′

Mp+q ≤ ABp
qMp for some A,B > 0, p, q ∈ N.

Let there be given sequence Mp which satisfies (M.0)− (M.3) and let U ⊆
Rd be an open set. A function ϕ ∈ C∞(U) is an ultradifferentiable function if
on each compact subset K ⊂⊂ U there exist positive constants C and h such
that

(1.1) sup
x∈K
|∂αϕ(x)| ≤ Ch|α|M|α|, α ∈ Nd.

If K is a fixed compact set in Rd and if h > 0 is given, then ϕ ∈ E{Mp},h(K)
if ϕ ∈ C∞(K) and if (1.1) holds for some C > 0. If ϕ ∈ C∞(Rd) and suppϕ ⊂
K, then ϕ ∈ D{Mp},h

K .

The space of ultradifferentiable functions of class {Mp} is given by

E{Mp}(U) = lim←−
K⊂⊂U

lim−→
h→∞

E{Mp},h(K) =
∩

K⊂⊂U

∪
h→∞

E{Mp},h(K),

and its strong dual is the space of ultradistributions of Roumieu type of class
Mp. The space of ultradifferentiable functions of class {Mp} with support in
K is given by

D{Mp}(U) = lim−→
K⊂⊂U

lim−→
h→∞

D{Mp},h
K =

∪
K⊂⊂U

∪
h→∞

D{Mp},h
K .

and its strong dual is the space of compactly supported ultradistributions of
Roumieu type of class Mp.

In particular, if Mp is Gevrey sequence, Mp = p!t, t > 1, then E{p!t}(U) is
the Gevrey class of ultradifferentiable functions. Note that p!t, t > 1, satisfies
(M.0) − (M.3). We refer to [4] for a detailed study of different classes of
ultradifferentiable functions and their duals.

Let there be given t ≥ 1, (x0, ξ0) ∈ U × Rd\{0}. Then the Gevrey wave

front setWFt(u) of u ∈ D′{p!t}(U) can be defined as follows: (x0, ξ0) ̸∈WFt(u)
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if and only if there exists an open neighborhood Ω of x0, a conic neighborhood
Γ of ξ0 and a bounded sequence uN ∈ E ′{p!

t}(U), such that uN = u on Ω and

|ûN (ξ)| ≤ A hNN !t

|ξ|N
, N ∈ Z+, ξ ∈ Γ,

for some A, h > 0. Here, and in what follows, the Fourier transform û of a
distribution u is normalized to be û(ξ) =

∫
Rd u(x)e

−2πixξdx, ξ ∈ Rd, whenever
the integral is well defined. If t = 1, then the Gevrey wave front set is sometimes
called the analytic wave front set and denoted by WFA(u), u ∈ D′{p!}(U). We
refer to [5, 6] for details.

2. New classes of ultradifferentiable functions

In this section we introduce new spaces of ultradifferentiable functions in
an analogy to E{Mp}(U) and D{Mp}(U). We introduce more general sequences
than the Gevrey type sequences p!t, t > 1, and begin our investigations by
studying their basic properties. We start with a simple but useful Lemma.

Lemma 2.1. Let τ > 0, σ > 1 and Mτ,σ
p = pτp

σ

, p ∈ Z+, M
τ,σ
0 = 1. Then

there exist A,B,C > 0 such that

(2.1) Mτ,σ
p ≤ ACpσ

⌊pσ⌋!τ/σ and ⌊pσ⌋!τ/σ ≤ BMτ,σ
p .

Proof. By pσ ≤ ⌊pσ⌋+ 1 and pσ ≤ 2⌊pσ⌋, p ∈ Z+, we have

pτp
σ

≤ pτ(⌊p
σ⌋+1) ≤ pτ

(
2⌊pσ⌋

)τ⌊pσ⌋/σ
≤ eτp

σ

2τ⌊p
σ⌋/σ⌊pσ⌋τ⌊p

σ⌋/σ
,

and the left hand side inequality in (2.1) follows from the Stirling formula.
The right hand side inequality in (2.1) follows directly from the Stirling

formula:

⌊pσ⌋!τ/σ ≤
(
e−⌊pσ⌋

√
2π⌊pσ⌋⌊pσ⌋⌊p

σ⌋
)τ/σ

≤ B⌊pσ⌋τ⌊p
σ⌋/σ ≤ Bpτp

σ

,

for some B > 0.

Next we study properties of the sequence Mτ,σ
p , τ > 0, σ > 1 with respect

to the conditions (M.0)− (M.3)′.

Lemma 2.2. Let τ > 0, σ > 1 and Mτ,σ
p = pτp

σ

, p ∈ Z+, M
τ,σ
0 = 1. Then

the following properties hold:
(M.1) (Mτ,σ

p )2 ≤Mτ,σ
p−1M

τ,σ
p+1, p ∈ Z+,

(̃M.2)′ Mτ,σ
p+q ≤ Cpσ

q Mτ,σ
p , for some sequence Cq ≥ 1, p, q ∈ N,

(̃M.2) Mτ,σ
p+q ≤ Cpσ+qσMτ2σ−1,σ

p Mτ2σ−1,σ
q , p, q ∈ N, for some constant

C > 1.
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Proof. Note that (M.0) holds by the assumption and (M.3)′ will be proved in
Lemma 3.1.

We may assume that τ = 1 without loos of generality.
The condition (M.1) obviously holds when p = 1. If p − 1 ∈ Z+ then the

sequence lnMp is convex since the second derivative of f(t) = tσ ln t, t > 0, is

positive when t > e
1−2σ

σ(σ−1) . This implies (M.1).

The conditions (̃M.2)′ and (̃M.2) trivially hold when p = 0 (or q = 0). Let
p, q ∈ Z+.

To prove (̃M.2)′ we put σ = n+ δ where n ∈ Z+ and 0 < δ ≤ 1. If σ ̸∈ Z+

then n = ⌊σ⌋, 0 < δ < 1, while n = σ − 1, δ = 1, if σ ∈ Z+. By the binomial
formula we have:

(p+ q)σ ≤ (p+ q)n(pδ + qδ) = pσ +
n∑

k=1

(
n

k

)
pσ−kqk

+

n∑
k=0

(
n

k

)
pn−kqk+δ ≤ pσ + 2n(pσ−1qn + pnqσ)

≤ pσ + 2n+1qσpσ−δ,

wherefrom

(2.2) (p+ q)σ ln(p+ q) ≤ pσ ln(p+ q) + 2n+1qσpσ−δ ln(p+ q).

We will use the fact that for any α > 0 there exists A > 0 such that lnx ≤ Axα,
x ≥ 1. Therefore p ≤ Cpδ

, for some C > 1 when p ∈ Z+ and 0 < δ ≤ 1.
The first term on the right hand side of the inequality (2.2) can be estimated

by

pσ ln(p+ q) = pσ
(
ln p+ ln

(
1 +

q

p

))
≤ pσ ln p+ pσ−1q

≤ pσ ln p+ qpσ,(2.3)

while for the second term we use

2n+1qσpσ−δ ln(p+ q) = 2n+1qσpσ−δ
(
ln p+ ln

(
1 +

q

p

))
≤ 2n+1qσpσ lnC + 2n+1qσpσ ln(1 + q) .(2.4)

Now (2.3) and (2.4) imply (̃M.2)′ by taking the exponentials in (2.2).

It remains to prove (̃M.2). From (p+ q)σ ≤ 2σ−1(pσ + qσ) it follows that

(p+ q)(p+q)σ ≤ (p+ q)2
σ−1pσ

(p+ q)2
σ−1qσ .

Since

2σ−1pσ ln(p+ q) = 2σ−1pσ
(
ln p+ ln

(
1 +

q

p

))
≤ 2σ−1pσ ln p+ 2σ−1qpσ−1

≤ 2σ−1pσ ln p+ 2σ−1(p+ q)σ,
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by taking the exponentials we obtain (p+ q)2
σ−1pσ ≤ p2σ−1pσ

e2
σ−1(p+q)σ . Simi-

larly, (p+ q)2
σ−1qσ ≤ q2σ−1qσe2

σ−1(p+q)σ . Therefore

(p+ q)(p+q)σ ≤ p2
σ−1pσ

q2
σ−1qσe2

σ(p+q)σ

and (̃M.2) is proved.

Remark 2.1. From the proof of (̃M.2)′ it follows that Mτ,σ
p does not satisfy

the Komatsu condition (M.2)′. As a first guess one might assume that the
sequence Mτ,σ

p satisfies

(2.5) Mτ,σ
p+q ≤ Cpσ+qσMτ,σ

p Mτ,σ
q , C > 0, p, q ∈ N,

instead. Assume that (2.5) holds forMτ,σ
p , and that τ = 1. Then, for p = q ̸= 0,

(2.5) gives

(2.6) p(2p)
σ

≤ (C1p)
2pσ

, p ∈ Z+ ,

with C1 = C

22σ−1 . By taking the logarithm we obtain 2σ−1 ln p ≤ lnC1p,
p ∈ Z+, but this holds only for finitely many p ∈ Z+. This contradiction

explains why (̃M.2)′ is an appropriate substitution of (M.2)′ when considering
Mτ,σ

p .

The next simple Lemma will be used later on.

Lemma 2.3. Let τ > 0 and σ > 1 be fixed. Then

(2.7) T̃τ,σ(h) := sup
ρ>0

hρ
σ

ρτρσ = e
τ
σeh

σ
τ , h > 0.

Proof. Put f(ρ) = hρσ

ρτρσ , ρ > 0. Since (ln f(ρ))′ = ρσ−1(σ lnh − τσ ln ρ − τ),
ρ > 0, for ρ0 := h

1
τ e−σ we have maxρ>0 ln f(ρ) = f(ρ0) =

τ
eσh

σ
τ , and Lemma

is proved.

Remark 2.2. In the theory of ultradifferentiable functions, for a given sequence
Mp, p ∈ N, the function T given by T (h) = supp>0

hpM0

Mp
, h > 0, is called the as-

sociated function of the sequenceMp, p ∈ N (in [4] the function supp>0 ln
hpM0

Mp

is considered instead of T (h)). It plays an important role in the study of the
spaces of ultradifferentiable functions and their dual spaces. Notice that T̃τ,σ
given by (2.7) is not the associated function of the sequence Mτ,σ

p . It is known
that the associated function Tτ (h) of the sequence p!τ , τ > 0, satisfies the

estimate of the form C1e
τ
e h

1
τ ≤ Tτ (h) ≤ C2e

τ
e h

1
τ , for some C1, C2 > 0, and for

every h > 0, cf. [2, Chapter IV.2]. This implies that

C ′(Tτ (h
σ))1/σ ≤ T̃τ,σ(h) ≤ C ′′(Tτ (h

σ))1/σ

for some C ′, C ′′ > 0, h > 0 and for any given τ > 0, σ > 1.
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Next we introduce a family of spaces of ultradifferentiable functions in an
analogy to the spaces E{Mp}(U) and D{Mp}(U) from the Introduction.

Let U ⊆ Rd be an open set, K ⊂⊂ U and h > 0. Then ϕ ∈ C∞(U) belongs
to the space Eτ,σ,h(K) if there exists A > 0 such that

(2.8) |∂αϕ(x)| ≤ Ah|α|
σ

|α|τ |α|
σ

, α ∈ Nd.

Then Eτ,σ,h(K) is a Banach space with the norm given by

(2.9) ∥ϕ∥Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αϕ(x)|
h|α|σ |α|τ |α|σ

.

Let DK
τ,σ,h be the set of ϕ ∈ C∞(Rd) with support in K such that (2.8)

holds for some A > 0.
Then we define the spaces Eτ,σ(U) and Dτ,σ(U)of ultradifferentiable func-

tions as follows:
(2.10)
Eτ,σ(U) := lim←−

K⊂⊂U

lim−→
h→∞

Eτ,σ,h(K), and Dτ,σ(U) := lim−→
K⊂⊂U

lim−→
h→∞

DK
τ,σ,h.

Remark 2.3. The spaces Eτ,σ(U) and Dτ,σ(U) can be represented as projective
and inductive limits of a countable family of spaces as follows, cf. [4]. Let
{Ki}i∈N be a sequence of compact sets with smooth boundary such that Ki ⊂
Ki+1, i ∈ N, and ∪i∈NKi = U . Then, for j ∈ N,

Eτ,σ(U) = lim←−
i→∞

lim−→
j→∞

Eτ,σ,j(Ki), and Dτ,σ(U) = lim−→
i→∞

lim−→
j→∞

DKi
τ,σ,j .

Remark 2.4. From Lemma 2.1 it follows that the norms (2.9) and

(2.11) ∥ϕ∥∼Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αϕ(x)|
h|α|σ⌊|α|σ⌋!τ/σ

<∞, h > 0.

are equivalent in Eτ,σ,h(K).

Obviously,

(2.12) Eτ1,σ1,h1(K) ↪→ Eτ2,σ2,h2(K) , h1 < h2, 0 < τ1 < τ2, 1 < σ1 < σ2 .

Moreover, the following proposition holds.

Proposition 2.1. Let σ1 ≥ 1. Then for every σ2 > σ1 we have the strict
embedding

(2.13) lim−→
τ→∞

Eτ,σ1(U) ↪→ lim←−
τ→0+

Eτ,σ2(U).

Proof. Let τ > 0 be given and let ϕ ∈ Eτ0,σ1,h(K) for some h, τ0 > 0 and
K ⊂⊂ U . Then

(2.14) ∥ϕ∥Eτ,σ2,h(K) ≤ sup
α∈Nd

h|α|
σ1 |α|τ0|α|σ1

h|α|
σ2 |α|τ |α|σ2

∥ϕ∥Eτ0,σ1,h(K).
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Put ε := σ2 − σ1. Then there is a constant Cε > 0 so that

τ0p
σ1 ln p ≤ Cετ0p

σ1+ε = Cετ0p
σ2 p ∈ N,

wherefrom pτ0p
σ1 ≤ eCετ0p

σ2
(note that Cε blows up if ε→ 0+). If C := eCετ0

and ch := max{1/h, 1}, we have

(2.15) sup
α∈Nd

h|α|
σ1 |α|τ0|α|σ1

h|α|
σ2 |α|τ |α|σ2

≤ sup
α∈Nd

(C ch)
|α|σ2

|α|τ |α|σ2
≤ T̃τ,σ2(Cch) = e

τ
eσ2

(C ch)
σ2
τ
,

where T̃τ,σ is given in (2.7). Now by (2.14) and (2.15) it follows that Eτ0,σ1,h(K) ↪→
Eτ,σ2,h(K), for arbitrary τ, τ0 > 0, which implies (2.13), the embedding obvi-
ously being strict.

As an immediate consequence we obtain that

(2.16) Eτ0,σ1(U) ↪→
∩

τ>τ0

Eτ,σ1(U) ↪→ Eτ0,σ2(U),

for any τ0 > 0 whenever σ2 > σ1 ≥ 1. In particular, if E{p!t}(U), t > 1, is the
Gevrey space of ultradifferentiable functions on U , then, for every τ > 0 and
σ > 1 we have

(2.17)
∪
t>1

E{p!
t}(U) ↪→ Eτ,σ(U).

Furthermore, with the notation E∞,σ(U) := lim−→
τ→∞

Eτ,σ(U), Proposition 2.1

implies that for fixed τ0 > 0 and σ0 > 1, we have

lim−→
t→∞

E{p!
t}(U) ↪→ lim←−

σ→1+

E∞,σ(U) ↪→ E∞,σ0(U) ↪→ lim−→
σ→∞

Eτ,σ(U) ↪→ C∞(U).

Note that our classes are larger then Gevrey classes but their inductive
limits with respect to τ and σ are continuously embedded in C∞(U).

3. Basic properties of the new classes of ultradifferen-
tiable functions

In this section we study the basic properties of Eτ,σ(U). In separate sub-
sections we show that Eτ,σ(U) are non-quasianalytic and nuclear spaces, closed
under differentiation and pointwise multiplication. Finally, we study the action
of ultradifferentiable operators on Eτ,σ(U).

3.1. Compactly supported test functions

In this subsection we construct a compactly supported function in Eτ,σ(U)
following the ideas presented in [5]. We begin by showing that the sequence
Mτ,σ

p satisfies the non-quasianalyticity condition.
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Lemma 3.1. Let τ > 0, σ > 1 and let Mτ,σ
p = pτp

σ

. Then

(3.1) (M.3)′
∞∑
p=1

Mτ,σ
p−1

Mτ,σ
p

<∞.

Proof. Since pσ ln(1 + 1
p ) = pσ−1 ln(1 + 1

p )
p, p ∈ Z+, we have

(3.2) τ pσ−1 ln 2 ≤ τpσ ln
(
1 +

1

p

)
≤ τpσ−1, p ∈ Z+,

so that

(3.3) 2τp
σ−1

≤
(
1 +

1

p

)τpσ

≤ eτp
σ−1

, p ∈ Z+.

The left hand side of (3.3) and pσ ≥ (p − 1)σ−1p = (p − 1)σ + (p − 1)σ−1,
p ∈ Z+, give

∞∑
p=1

(p− 1)τ(p−1)σ

pτpσ ≤
∞∑
p=1

(p− 1)τ(p−1)σ

pτ((p−1)σ+(p−1)σ−1)

=
∞∑
p=1

(
(1− 1

p
)τ(p−1)σ

)
1

pτ(p−1)σ−1(3.4)

≤
∞∑
p=1

1

(2p)τ(p−1)σ−1 <∞,

which implies (3.1).

Corollary 3.1. There exists a compactly supported function ϕ ∈ E{τ,σ}(U)
such that 0 ≤ ϕ ≤ 1 and

∫
Rd ϕdx = 1.

Proof. Our goal is to construct a function in Dτ,σ(U) which is not in D{p!t}(U),
for any t > 1. We follow the ideas from [5, Theorem 1.3.5], and repeat some
steps of its proof to make the exposition self contained.

We start with one dimensional case. Let χ be the characteristic function of
interval (0, 1), and for c > 0 let Hc(x) =

1
cχ(

x
c ). Clearly

∫
R
Hcdx = 1 and we

recall that

(3.5) (Hc ∗ f)′(x) =
1

c

(∫ x

x−c

f(t)dt

)′

=
f(x)− f(x− c)

c
,

for any continuous function f on R.
Further we set

ap :=
1

(2(p+ 1))τpσ−1 , p ∈ N,
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and note that (3.4) implies

(3.6)
Mτ,σ

p

Mτ,σ
p+1

≤ ap, p ∈ N .

Put um(x) = Ha0 ∗ Ha1 · · · ∗ Ham , m ∈ N. Then, by [5, Theorem 1.3.5] it
follows that the sequence {um}m∈N has a uniform limit u ∈ C∞(R) supported

in [0, a] where a =
∞∑
p=0

ap <∞, and
∫
R
u dx = 1.

Next we estimate the derivatives u
(p)
m , p ≤ m−1. After applying p iterations

of (3.5) and by using (3.6) we obtain

|u(p)m (x)| =

p−1∏
k=0

|Hap ∗ · · · ∗Ham(x)−Hap ∗ · · · ∗Ham(x− ak)|
ak

≤ 2p
p−1∏
k=0

1

ak
sup
x∈R
|Hap ∗Hap+1 · · · ∗Ham(x)|

≤ 2p
( p−1∏

k=0

1

ak

)
sup
x∈R
|Hap(x)|

( m∏
k=p+1

∫
R

Hak
(x)dx

)
= 2p

p∏
k=0

1

ak
≤ 2p

p∏
k=0

Mτ,σ
k+1

Mτ,σ
k

= 2p
Mτ,σ

p+1

Mτ,σ
0

= 2p(p+ 1)τ(p+1)σ ≤ Cpσ

pτp
σ

,(3.7)

where (̃M.2)′ is used in the last inequality.
From the uniform convergence it follows that the derivatives of u also satisfy

(3.7), so that u ∈ D[0,a]
τ,σ,C .

Next, we extend this to higher dimensions by putting ψ(x) = u(x+a/2) and

ϕ(x) =
∏d

k=1 ψ(xk) for x = (x1, x2, . . . , xd). Since the sequence Mτ,σ
p fulfills

the (M.1) property, we obtain

|∂αϕ(x)| =
d∏

k=1

|∂αkψ(xk)| ≤
d∏

k=1

Cαk
σ

αk
ταk

σ

≤ C|α|σ |α|τ |α|
σ

,

α = (α1, α2, . . . , αd),

wherefrom ϕ ∈ DK
τ,σ,C with K = [−a/2, a/2]d.

Although K does not have a smooth boundary, by [5, Lemma 1.4.3] one
can find an appropriate open set U and conclude that ϕ ∈ Dτ,σ(U).

At the same time, ϕ ̸∈ D{p!t}(U), for any t > 1. Otherwise the derivatives

u
(p)
m in (3.7) should be bounded by Cpp!t =

p−1∏
k=0

C(k + 1)t, for some C > 0,

t > 1, and for arbitrary large m ∈ N. In that case, the estimates in (3.7) would
imply (k+1)t > C(2(k+1))τk

σ

, which is obviously not true for k large enough.
We refer to [5, Lemma 1.3.6] for a discussion about the precision of the

presented construction.
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3.2. Nuclearity

In this subsection we show that the spaces in (2.10) are nuclear. This is in
agreement with Komatsu’s result about the nuclearity of E{Mp}(U) when Mp

satisfies (M.2)′ (see [4, Theorem 2.6 ]).
Let us show that for every h > 0 there exists k > h such that identity

mapping X → Y is quasi-nuclear, where X = Eτ,σ,h(K) and Y = Eτ,σ,k(K)
(resp. X = DK

τ,σ,h and Y = DK
τ,σ,k). This means that seminorms on Eτ,σ(K) :=

lim−→
h→∞

Eτ,σ,h(K) (resp. DK
τ,σ := lim−→

h→∞
DK

τ,σ,h) are prenuclear, cf. [11, page 177].

By [11, Theorem IV 10.2] this implies that Eτ,σ(K) (resp. DK
τ,σ) is a nuclear

space.
The classes under consideration can be represented as projective and induc-

tive limits of a countable family of spaces, cf. Remark 2.3. The nuclearity of
Eτ,σ(U) and Dτ,σ(U) then follows from [11, Theorem III 7.4].

Theorem 3.1. The spaces Eτ,σ(U), DK
τ,σ and Dτ,σ(U) are nuclear.

Proof. We follow the idea presented in [4]. Let ϕ ∈ Eτ,σ,h(K) and let uα,j ,
α ∈ Nd, j ∈ Zd, be the sequence of linear functionals on Eτ,σ,h(K) given by

(3.8) ⟨ϕ, uα,j⟩ =
⟨∂αϕ, vj⟩Cd+1(K)

k|α|σ |α|τ |α|σ
,

where vj ∈ (Cd+1(K))′ is defined by the following procedure:
Choose l > 0 such that K is contained in the interior of L = [−l, l]d and let

Cd+1
L (πL) be the space of all d + 1 times differentiable functions on πL with

support in L. Let B ∈ L(Cd+1(K), Cd+1
L (πL)) be the (Whitney’s) extension

operator such that Bf |K = f and let tj ∈ (Cd+1
L (πL))′ be given by

⟨f, tj⟩ :=
∫
πL

f(y)e−iyj/l dy, j ∈ Zd.

From [4, Lemma 2.3] it follows that the identity operator from Cd+1(K) to
C(K), given by

f(x) =
1

(2πl)d

∑
j∈Zd

e−ixj/l⟨Bf, tj⟩Cd+1
L (πL), x ∈ K,

is quasi-nuclear. In particular, if we put vj = tj ◦B, j ∈ Zd, it follows that

(3.9)
∞∑

j∈Zd

||vj ||(Cd+1(K))′ <∞, and ||f ||C(K) ≤
∞∑

j∈Zd

|⟨f, vj⟩Cd+1(K)| .

By (2.9), (3.8) and the righthand side of (3.9) we obtain

∥ϕ∥Y = sup
α∈Nd

sup
x∈K

|∂αϕ(x)|
k|α|σ |α|τ |α|σ

≤
∑

α∈Nd

∑
j∈Zd

|⟨ϕ, uα,j⟩| .
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It remains to show that
∑
α,j

||uα,j ||X′ <∞.

Note that for |α| ≥ 1, α ∈ Nd and h ≥ 1, by (̃M.2)′ we obtain

|⟨ϕ, uα,j⟩| ≤ sup
|β|≤d+1

h|α+β|σ |α+ β|τ |α+β|σ

k|α|σ |α|τ |α|σ
||ϕ||X ||vj ||(Cd+1(K))′

= sup
|β|≤d+1

h(1+
|β|
|α| )

σ|α|σ |α+ β|τ |α+β|σ

k|α|σ |α|τ |α|σ
||ϕ||X ||vj ||(Cd+1(K))′

≤
(h(d+2)σ

k

)|α|σ

C
|α|σ
d ||ϕ||X ||vj ||(Cd+1(K))′ ,(3.10)

for some Cd > 1.

For 0 < h < 1, note that h|α+β|σ ≤ h|α|σ and thus by (̃M.2)′ it follows that

(3.11) sup
|β|≤d+1

h|α+β|σ |α+ β|τ |α+β|σ

k|α|σ |α|τ |α|σ
≤

(h
k

)|α|σ

C
|α|σ
d .

Now we choose k > 0 such that k > max{2Cdh, 2Cdh
(d+2)σ}, so the estimates

(3.10), and (3.11) imply∑
α∈Nd

∑
j∈Zd

||uα,j ||X′ <
∑

α∈Nd

∑
j∈Zd

(1
2

)|α|σ

||vj ||(Cd+1(K))′ <∞.

We conclude that for every h > 0 there exists k > h such that the identity
mapping Eτ,σ,h(K) → Eτ,σ,k(K) (resp. DK

τ,σ,h → DK
τ,σ,k) is quasi-nuclear, and

the theorem is proved.

3.3. Algebra property

Since Mτ,σ
p satisfies properties (M.1) and (̃M.2)′ we have the following.

Proposition 3.1. Eτ,σ(U) is closed under the pointwise multiplication of func-
tions and under the (finite order) differentiation.

Proof. Let ϕ ∈ Eτ,σ,h(K) and ψ ∈ Eτ,σ,k(K) for some h, k > 1, and, for sim-
plicity, assume that τ = 1.

We first show that

(3.12)
∑
β≤α

(
α

β

)
h|α−β|σk|β|

σ

≤ (h+ k)|α|
σ

, h, k > 1.

In fact,( ∑
β≤α

(
α

β

)
h|α−β|σk|β|

σ
) 1

|α|σ−1

≤
∑
β≤α

(
α

β

)
h|α|(1−

|β|
|α| )

σ

k|β|(
|β|
|α| )

σ−1

≤
∑
β≤α

(
α

β

)
h|α−β|k|β| = (h+ k)|α| .(3.13)
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where the last inequality follows from |β| ≤ |α| and

|α|(1− |β|
|α|

)σ ≤ |α|(1− |β|
|α|

) = |α− β|.

Now (3.12) follows from (3.13).
By the Leibnitz formula and (M.1) we have

|∂α(ϕψ)(x)| ≤
∑
β≤α

(
α

β

)
|∂α−βϕ(x)||∂βψ(x)|

≤ AB
∑
β≤α

(
α

β

)
h|α−β|σ |α− β||α−β|σk|β|

σ

|β||β|
σ

≤ AB|α||α|
σ ∑
β≤α

(
α

β

)
h|α−β|σk|β|

σ

, x ∈ K.(3.14)

Now ϕψ ∈ Eτ,σ(U) follows from (3.12).
Next, for any β ∈ Nd, x ∈ K and h > 1 we have

|∂α(∂βϕ(x))| ≤ Ch|α+β|σ |α+ β||α+β|σ

≤ Ch2
σ−1|α|σh2

σ−1|β|σC
|α|σ
β |α||α|

σ

,

where we used (̃M.2)′ in the last inequality, which proves the Proposition.

Remark 3.1. Let P =
∑

|α|≤m

aα(x)∂
α be the partial differential operator of order

m with aα ∈ Eτ,σ(U). Then, by the proof of Proposition 3.1, it follows that
P : Eτ,σ(U) → Eτ,σ(U) is a continuous and linear map with respect to the
topology of Eτ,σ(U). Moreover, if ϕ ∈ Eτ,σ(U) and ψ ∈ DK

τ,σ, then ϕψ ∈ DK
τ,σ.

In particular, if aα ∈ DK
τ,σ, |α| ≤ m, then P : Eτ,σ(U)→ DK

τ,σ is also continuous
and linear.

3.4. Ultradifferentiable property

In this subsection we study the continuity properties of certain ultradiffer-
entiable operators P (x, ∂) acting on Eτ,σ(U). Recall, if the defining sequence
Mp fulfills the condition (M.2)′ then the corresponding test function space is
closed under the action of ultradifferentiable operators. Since the sequence
Mτ,σ

p does not satisfy (2.5), the space Eτ,σ(U) can not be closed under the
action of P (x, ∂). However, if we consider E∞,σ(U) := lim−→

τ→∞
Eτ,σ(U) then the

following results hold true.

Theorem 3.2. Let P (x, ∂) =
∞∑

|α|=0

aα∂
α be a differential operator of infinite

order with constant coefficients such that for every L > 0 there exists A > 0 so
that

(3.15) |aα| ≤ A
L|α|σ

|α|τ2σ−1|α|σ .
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Then E∞,σ(U) is closed under action of P (x, ∂). In particular, the mapping

(3.16) P (x, ∂) : Eτ,σ(U) −→ Eτ2σ−1,σ(U) ,

is continuous.

Proof. Let ϕ ∈ Eτ,σ,h(K) for some h > 0. Then using (̃M.2) we have

|∂β(aα∂αϕ(x))|

≤ A||ϕ||Eτ,σ,h(K)
L|α|σ

|α|τ2σ−1|α|σ h
|α+β|σ (|α+ β|)τ |α+β|σ

≤ A||ϕ||Eτ,σ,h(K)
L|α|σC|α|σ+|β|σ

|α|τ2σ−1|α|σ h|α+β|σ |α|τ2
σ−1|α|σ |β|τ2

σ−1|β|σ

≤ A||ϕ||Eτ,σ,h(K)C
|β|σh2

σ−1|β|σ |β|τ2
σ−1|β|σ (CLh2

σ−1

)|α|
σ

,

where x ∈ K and C is the constant in (̃M.2). Now we choose L > 0 such that

CLh2
σ−1

≤ 1/2

and the theorem is proved.

By the use of (M.1) we are able to extend Theorem 3.2 to a class of operators
with non-constant coefficients.

Definition 3.1. A differential operator of infinite order

(3.17) P (x, ∂) =

∞∑
|α|=0

aα(x)∂
α

is an ultradifferential operator of class {τ, σ} on U ⊆ Rd if aα ∈ Eτ,σ(U),
α ∈ Nd, and for every K ⊂⊂ U there exists h > 0 such that for any L > 0
there exists A > 0 such that

(3.18) sup
x∈K
|∂βaα(x)| ≤ Ah|β|

σ

|β|τ |β|
σ L|α|σ

|α|τ2σ−1|α|σ , α, β ∈ Nd.

Theorem 3.3. Let P (x, ∂) be an ultradifferential operator of class {τ, σ}. Then
E∞,σ(U) is closed under action of P (x, ∂). In particular, the mapping

(3.19) P (x, ∂) : Eτ,σ(U) −→ Eτ2σ−1,σ(U) ,

is continuous.

Proof. We are following the idea given in the proof of Theorem 2.4 in [3]. Let
aα ∈ Eτ,σ,h(K), α ∈ Nd, so that (3.18) holds, and let ϕ ∈ Eτ,σ,k(K), for some

k > 0 which will be determined later on. Then, by (M.1)′ and (̃M.2) we obtain
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|∂β(aα(x)∂αϕ(x))|

≤
∑
γ≤β

(
β

γ

)
|∂β−γaα(x)||∂α+γϕ(x)|

≤ A||ϕ||Eτ,σ,k(K)

∑
γ≤β

(
β

γ

)
h|β−γ|σ (|β − γ|)τ |β−γ|σ

· L|α|σ

|α|τ2σ−1|α|σ k
|α+γ|σ (|α+ γ|)τ |α+γ|σ

≤ A||ϕ||Eτ,σ,k(K)
L|α|σ

|α|τ2σ−1|α|σ (|α+ β|)τ |α+β|σ

·
∑
γ≤β

(
β

γ

)
h|β−γ|σk|α+γ|σ

≤ A||ϕ||Eτ,σ,k(K)(CL)
|α|σC |β|σ |β|τ2

σ−1|β|σCh,k,β , x ∈ K,(3.20)

for some constant C > 0 which does not depend on α, β and K and we put

Ch,k,β =
∑
γ≤β

(
β

γ

)
h|β−γ|σk|α+γ|σ .

It remains to estimate Ch,k,β . Without loss of generality we may assume
that h > 1 and k ≥ h. Since

|β − γ|σ + |α+ γ|σ ≤ (|β| − |γ|+ |α|+ |γ|)σ = (|α|+ |β|)σ ≤ 2σ−1(|α|σ + |β|σ),

it follows that Ch,k,β ≤ 2|β|k2
σ−1(|α|σ+|β|σ). Now, (3.20) implies

|∂β(aα(x)∂αϕ(x))| ≤ B||ϕ||Eτ,σ,k(K)(k
2σ−1

CL)|α|
σ

(2Ck2
σ−1

)|β|
σ

|β|τ2
σ−1|β|σ .

By choosing L > 0 such that LCk2
σ−1

< 1/2 holds and then taking the sum
with respect to α and the supremum with respect to β and x ∈ K, we obtain

||P (∂)ϕ||Eτ2σ−1,σ,l(K) ≤ C̃||ϕ||Eτ,σ,k(K),

for some C̃ > 0, where l = 2Ck2
σ−1

. This proves the theorem.

4. Motivation

To conclude this paper, we present a motivation for studying Eτ,σ(U) which
comes from microlocal analysis. It is known that for a Schwartz distribution u
we have

(4.1) WF(u) ⊆WFt(u) ⊆WFA(u) ,
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where WFt, t > 1 is the Gevrey wave front set, WFA is the analytic wave front
set (see Introduction), and WF is the standard C∞ wave front (see [5, 7]). In
[6], the inclusion on the righthand side of (4.1) is extended to Gevrey type
ultradistributions.

In the existing literature there are no wave front sets which detect singu-
larities that are ”heavier” than classical C∞ singularities and ”lighter” than
Gevrey type singularities. The ”heavier” singularities related to t < 1 are con-
sidered in [9]. The ”lighter” singularities can be studied within the framework
of Eτ,σ(U) and its dual space of Roumier ultradistributions. Let us explain the
main idea of our approach and leave more details to the forthcoming paper [10]

In the study of regularity properties (as opposed to the singularity proper-
ties) of a function (or of a distribution), one is interested in the points (x0, ξ0)
in which the decrease of |ûϕ(ξ)| (ϕ = 1 in a neighborhood if x0) is faster than

|ξ|−N , |ξ| → ∞, for any N ∈ N, but, at the same time, slower than e−|ξ|1/t ,
|ξ| → ∞, for any t > 1. In other words, u is locally more than being C∞, but
less than being Gevrey ultradifferentiable.

We therefore start with the following decay properties on the Fourier trans-
form side. Let u ∈ D′{p!t}(U) and let {uN}N∈N be a sequence of compactly
supported smooth functions such that uN = u on Ω, and such that some of the
following regularity conditions hold:

(4.2) |ûN (ξ)| ≤ A hN
t⌊N t⌋!
|ξ|⌊Nt⌋ , N ∈ N, t > 0

(4.3) |ûN (ξ)| ≤ A hNN !t

|ξ|N
, N ∈ N, t > 1

(4.4) |ûN (ξ)| ≤ A hNN !t

|ξ|⌊Nt⌋ , N ∈ N, 0 < t < 1.

for some A, h > 0 and ξ ∈ Rd\{0}.
We note that the condition (4.3) is related to the Gevrey wave front WFt,

that is to the Gevrey type regularity for t > 1 (see Introduction).
Next, note that if in (4.2) we put N1/t instead of N we get

(4.5) |ûN1/t(ξ)| ≤ A
hNN !

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}.

We call this process enumeration. We may also say that after the left hand side
enumeration N → N1/t, (4.2) is equivalent to local analyticity.

If we now apply the same enumeration N → N1/t in (4.4) then we obtain

(4.6) |ûN1/t(ξ)| ≤ A
hN

1/t⌊N1/t⌋!t

|ξ|N
, N ∈ N, ξ ∈ Rd\{0},
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that is, after the enumeration and with σ = 1/t > 1, from Lemma 2.1 and
Remark 2.4, it follows that (4.4) is equivalent to

(4.7) |ûNσ (ξ)| ≤ B kN
σ

NNσ

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}.

Now, if in (4.5) and (4.7) we write uN instead of uNσ we conclude that

(4.2)⇒ (4.3)⇒ (4.4) .

Moreover, when τ > 0 and σ > 1, we propose a new regularity condition:

(4.8) |ûN (ξ)| ≤ A hNN !1/σ

|ξ|⌊(N/τ)1/σ⌋ , N ∈ N, ξ ∈ Rd\{0}.

By similar arguments as above we note that after the enumeration N → τNσ,
the condition (4.8) is equivalent to

(4.9) |ûτNσ (ξ)| ≤ A hN
σ

NτNσ

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}.

for some A, h > 0, and thus, if we write uN instead of uτNσ in (4.9), we obtain
(4.2)⇒ (4.3)⇒ (4.8). Note that for σ = 1/t, (4.8)⇔ (4.4) when τ = 1, while
(4.8)⇒ (4.4) when τ ∈ (0, 1).

Thus, the regularity condition (4.8) can be used to define a new type of wave

front sets in D′{p!t}(U). We recall that the idea behind the condition (4.4) is

to construct a (bounded) sequence of cutoff functions in D{p!t}(U) similar to
the one constructed in [5] for WFA (see the proof of [5, Proposition 8.4.2.]).
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142 Stevan Pilipović, Nenad Teofanov, Filip Tomić
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