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Abstract. We introduce a class of ultradifferentiable functions which
contains Gevrey functions and study its basic properties. In particular,
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1. Introduction

Since their introduction in the context of regularity properties of funda-
mental solution of the heat operator in [0], Gevrey classes were used in many
situations related to the general theory of linear partial differential operators
such as hypoellipticity, local solvability and propagation of singularities. We
refer to [B] for the definition and detailed exposition of Gevrey classes and their
applications to the theory of linear partial differential operators. It is known
that intersection (projective limit) of Gevrey classes contains the space of ana-
lytic functions, while its union (inductive limit) is contained in the class of
smooth functions. However, there is a gap between the Gevrey classes and the
space of smooth functions, so that in certain situations a more refined descrip-
tion of regularity might be useful. The purpose of this paper is to introduce a
family of smooth functions which are less regular than the Gevrey functions,
and to study its basic properties. The main motivation for our approach is that
it can be used in the study of intermediate singularities between the classical
C* and the Gevrey type singularities, see Section @.

We recall Komatsu’s approach [d] and introduce a family of sequences of the
form M7 = p™®" peZ,, forsomer > 0and o > 1, so that the corresponding
space of ultradifferentiable functions contains Gevrey classes. Such sequences
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do not satisfy conditions (M.2) and (M.2)" (cf. Subsection [2), which are in

—_—~

our analysis replaced by (M.2)" and (M.2), see Lemma 2.

In Section B we define the corresponding space of ultradifferentiable func-
tions and study its basic properties. For example, we show that there exists
a nontrivial smooth compactly supported function in our class which does not
belong to Gevrey classes.

Recall the condition (M.2) provides the stability under the action of appro-
priate ultradifferentiable operators. Since M7 does not satisfy (M .2) we can
not expect that our space is closed under the action of appropriate ultradiffer-
entiable operators. However, the continuity holds if we observe an inductive
limit with respect to one of the parameters, Theorems B2 and B33.

In Section B we discuss a new approach to the study of microlocal proper-
ties of ultradistributions in the context of the new class of ultradifferentiable
functions.

1.1. Notation

Throughout the paper, we use the standard notation: nonnegative integers,
integers, positive integers, real numbers, positive real numbers and complex
numbers are denoted by N, Z, Z,, R, R, and C, respectively. The integer
part (the floor function) of x € Ry is denoted by |z] := max{m € N : m < z}.
For a multi-index a = (a1, ...,aq) € N we write 9% = 9%1 ... 9% and |a| =
lar| + ... |ag|. We will also use the Stirling formula: N! = N¥Ne=Ny/ 27T'N€102’7NN,
for some 0 < Oy < 1, N € Z,. By C™(K), m € N, we denote the Banach
space of m-times continuously differentiable functions on a regular compact set
K cC U, where U C R? is an open set, and C*°(K) is the corresponding set
of smooth functions on K, see [d]. Convolution is denoted with f * g(z) =
Jra f(x —y)g(y)dy, whenever the integral make sense.

For locally convex topological spaces X and Y we write X — Y when
X CY and the identity mapping from X to Y is continuous. If, in addition,
X # Y then the embedding is strict. By X’ we denote the strong dual of X
and by (-, ) x the dual pairing between X and X’. The set of continuous linear
operators from X to Y is denoted by £L(X,Y).

A linear map B € L(X,Y), X,Y are Banach spaces, is quasi-nuclear if

o0
there exists a sequence {z}} in X’ such that } [[2}|x < oo and || Bz[ly <
j=1

oo
Z |(x,2%)x|. In particular, a quasi-nuclear map A € L(X,Y) is nuclear if
j=1

there exists bounded sequences z; € X’ (with respect to the strong topology)

[e.e]
andy; €Y, j € Z;,andasequence \; € C, j € Zy, suchthat > |\;| < coand
j=1

o0
Az = Z)\j (z,2%) xy;. We refer to [, Section IIL.7] and [g] for an extension
j=1
of nuclear and quasi-nuclear mappings to arbitrary locally convex topological
spaces.
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1.2. Classical spaces of ultradifferentiable functions

We use Komatsu’s approach to the theory of ultradistributions as follows,
see [4].
By M, = (M,),en we denote a sequence of positive numbers such that:

( .0) My =1;

M.1) M2 < M, M, peZy;
( 2) (3A,B>0) Mpyq < ABPM,M,, p,q€N;
(M.3)’ 2 i

Then M, also satisfies weaker conditions: (M.1)" MM, < My, and (M.2)’
My +q < ABEM,, for some A, B >0, p,q € N.

Let there be given sequence M,, which satisfies (M.0) — (M.3) and let U C
R? be an open set. A function ¢ € C(U) is an ultradifferentiable function if
on each compact subset K CC U there exist positive constants C' and h such
that

(1.1) sup |0%¢(x)| < Ch‘“le‘7 a e N
zeK

If K is a fixed compact set in R? and if o > 0 is given, then ¢ € £{Mpbh(K)
if ¢ € C°°(K) and if (IT) holds for some C' > 0. If ¢ € C*°(R?) and supp ¢ C
K, then ¢ € DiMH",

The space of ultradifferentiable functions of class {M,,} is given by

M) = lim  lig EMpbh () = ﬂ U EMpbh (¢
KCCU h—oo KCCU h—oo

and its strong dual is the space of ultradistributions of Roumieu type of class
M,,. The space of ultradifferentiable functions of class {M,} with support in
K is given by

D{Mp}(U) — hg 1g D{M }h U U D{M }h
KCCU h—oo KCCU h—o0

and its strong dual is the space of compactly supported ultradistributions of
Roumieu type of class M,,.

In particular, if M, is Gevrey sequence, M, = p!*, t > 1, then E{W}(U) is
the Gevrey class of ultradifferentiable functions. Note that p!*, ¢t > 1, satisfies
(M.0) — (M.3). We refer to [d4] for a detailed study of different classes of
ultradifferentiable functions and their duals.

Let there be given t > 1, (2¢,&) € U x R¥\{0}. Then the Gevrey wave
front set W Fy(u) of u € D'} (U) can be defined as follows: (z0,&) & W Fy(u)
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if and only if there exists an open neighborltlood Q of xg, a conic neighborhood
I' of & and a bounded sequence uy € 7! }(U), such that uy = v on Q and

WV N
[

for some A,h > 0. Here, and in what follows, the Fourier transform @ of a
distribution u is normalized to be U(§) = [ra u(z)e "¢ dx, £ € R?, whenever
the integral is well defined. If ¢t = 1, then the Gevrey wave front set is sometimes
called the analytic wave front set and denoted by WF4(u), u € D'P}H(U). We
refer to [8, B] for details.

[un(§) <A NeZ, teT,

2. New classes of ultradifferentiable functions

In this section we introduce new spaces of ultradifferentiable functions in
an analogy to £{Mp}(U) and D{M»}(U). We introduce more general sequences
than the Gevrey type sequences p!*, ¢ > 1, and begin our investigations by
studying their basic properties. We start with a simple but useful Lemma.

Lemma 2.1. Let 7 >0, 0 > 1 and M7 = p ™, peZy, M{” =1. Then
there exist A, B,C > 0 such that

(2.1) M7 < ACY |p7 |17/ and  [p°]1/7 < BM]°.
Proof. By p” < |p°|+1 and p° < 2[p°|, p € Z, we have

p < pr WD <7 (QLPUDTLPUJ/U < oo e rletile,

and the left hand side inequality in (E70) follows from the Stirling formula.
The right hand side inequality in (20) follows directly from the Stirling

formula:

- s \T/o - -
|p7 |17/ < (e—Lp 1/ 2x | po | |p7 | P J) < B|p° |77/ < BpTP?
for some B > 0. O

Next we study properties of the sequence M7, 7 > 0, o > 1 with respect
to the conditions (M.0) — (M.3)".

Lemma 2.2. Let 7 >0, 0 > 1 and M} = p ™, peZy, M{” =1. Then
the following properties hold:

(M.1) (Mp©)? < My M%, p € Zoy

—_~—

(M.2) Mpy, < C}I’GM;’U, for some sequence Cqy > 1, p,q € N,

(M.2) My, < CP" " M7
C>1.

o—1 o—1
2 *"MC;Q 7. p,g € N, for some constant
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Proof. Note that (M.0) holds by the assumption and (M.3)’ will be proved in
Lemma B

We may assume that 7 = 1 without loos of generality.

The condition (M.1) obviously holds when p = 1. If p — 1 € Z, then the
sequence In M, is convex since the second derivative of f(t) =t Int, ¢t > 0, is

positive when ¢ > 71 . This implies (M.1).
The conditions (ﬁ—Q/)/ and m trivially hold when p =0 (or ¢ = 0). Let
P.q €Ly
To prove (M.2) weput c =n+ 3§ wheren € Zy and0<d <1. Ifc € Z,
thenn = |o],0<d <1, whilen=0—1,d =1, if 0 € Z,. By the binomial
formula we have:

o < n(, o ) — 0 n o—k _k
N R R S (e
" /n
+ Z <k>pnqu+5 Spa' +2n(poflqn +pnqa)
k=0
S pcr_|_2n+1qa'p6757
wherefrom
(2.2) (p+ @) In(p+q) <p”In(p+q) +2"¢"p" " In(p + q).

We will use the fact that for any « > 0 there exists A > 0 such that Inx < Az®,
x > 1. Therefore p < C’pé, for some C > 1whenp € Z, and 0 < § < 1.

The first term on the right hand side of the inequality (22) can be estimated
by

p’ln(p+q) = p”(lnp—i—ln (l—i—%)) <p’lnp+p°q
(2:3) < p’lnp+qp”,
while for the second term we use
2" g7p P In(p+4q) = 2"T1g7p7? ( Inp+1In (1 + %))
(2.4) < 2"t InC 4+ 2" g7 p In(1 + ¢q) .

Now (E33) and (E4) imply (M.2)" by taking the exponentials in (22).

It remains to prove (M.2). From (p + ¢q) < 277 1(p° + ¢°) it follows that

o o—1, 0 o—1 _o
(p+P" < (p+9* Pp+q* 7.

Since
27 % In(p+q) = 2"71p‘7<1np + In (1 + Q))
p

2071pa 1Hp—|—2071qp071
20—1p01np+20_1(p+q)07

IN A
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by taking the exponentials we obtain (p+¢)2 P < p?” 'P7e2” '@+ Simi-
larly, (p+ q)2" 97 < ¢2° '97¢2” ' (°+0)"  Therefore

(p + q)(erq)” < pT’_lp” q2"_1q” 27 (p+a)7

—_~—

and (M.2) is proved.
O

Remark 2.1. From the proof of (M.2)" it follows that M;" does not satisfy
the Komatsu condition (M.2)’. As a first guess one might assume that the
sequence M7 satisfies

(2.5) MIC < CP UMM, C>0,p,q €N,

instead. Assume that (Z3) holds for M7, and that 7 = 1. Then, for p = ¢ # 0,
(E3) gives

(26) (2p (Clp) , DE Z+ )
with C7 = 22(,% By taking the logarithm we obtain 2°~'lnp < InCip,
p € Z4, but this holds only for finitely many p € Z,. This contradiction
explains why (M.2)’ is an appropriate substitution of (M.2)" when considering
Mp7.

The next simple Lemma will be used later on.

Lemma 2.3. Let 7 >0 and 0 > 1 be fixed. Then

- h*’ -
(2.7) Tro(h):=sup —5 =e7e"" b >0.
p>0 PP

Al

Proof. Put f(p) = phTL:a, p > 0. Since (In f(p)) = p° Y olnh —7olnp —7),

p >0, for pg := h7e™7 we have max,soln f(p) = f(po) = Zh7, and Lemma
is proved. O

Remark 2.2. In the theory of ultradifferentiable functions for a given sequence
My, p € N, the function T given by T'(h) = sup,,~o M ,h >0, is called the as-

sociated function of the sequence M, p € N (in [d] the function sup,-q In hM]\f"

is considered instead of T'(h)). It plays an important role in the study of the

spaces of ultradifferentiable functions and their dual spaces. Notice that Tm,

given by (B74) is not the associated function of the sequence M7, 1t is known

that the associated function T, (h) of the sequence p!7, 7 > 0, satisfies the
1 1

estimate of the form Cyec"™ < T, (h) < Coech™ | for some Oy, Cy > 0, and for

every h > 0, cf. [2, Chapter IV.2]. This implies that

(T (W )M7 < Ty o (h) < C"(T (W)

for some C’,C” > 0, h > 0 and for any given 7 > 0, o > 1.
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Next we introduce a family of spaces of ultradifferentiable functions in an
analogy to the spaces E{Mr}(U) and DIM»} (U) from the Introduction.

Let U € R? be an open set, K CC U and h > 0. Then ¢ € C*°(U) belongs
to the space &; 5 (K) if there exists A > 0 such that

(2.8) 0% (x)] < AR |1l o e N9,

Then &: ;1 (K) is a Banach space with the norm given by

804
(29) 16le. ... = sup sup 2@l

o o *
aeNd zek M7 |allel

Let Dfmh be the set of ¢ € C°(R?) with support in K such that (Z3X)
holds for some A > 0.
Then we define the spaces &; »(U) and D, ,(U)of ultradifferentiable func-
tions as follows:
(2.10)
Ero(U) = lm lim & ,p(K), and Dro(U):= lim lim DE, -
KCCU h—oo KCCU h—oco

Remark 2.3. The spaces &, ,(U) and D, ,(U) can be represented as projective
and inductive limits of a countable family of spaces as follows, cf. [d]. Let
{K}ien be a sequence of compact sets with smooth boundary such that K; C
Kiy1,1€ N, and U;enK; = U. Then, for j € N,

Ero(U) = lim lim &,;(K), and Dro(U) = lim lig D .
1—00 j—»00 i—00 j—00
Remark 2.4. From Lemma 271 it follows that the norms (E79) and

N 0%p(x
@11) 6z a0 = sup sup o2l

GO o h>0.
weNd zEK hla‘UHOéPJ!T/U

are equivalent in &; , ,(K).

Obviously,
(212) ng,glyhl(K) ;)ETZ’UQ’]ZZ(K), hi<hoy, 0<T <Tp,1<01<09.
Moreover, the following proposition holds.

Proposition 2.1. Let 01 > 1. Then for every oo > o1 we have the strict
embedding

(2.13) lim &0, (U) = lim &, (0).
T—00 T—0+

Proof. Let 7 > 0 be given and let ¢ € & 5, .n(K) for some h,79 > 0 and
K cc U. Then

hlel?t |a|ro\a|“1
(2.14) ||¢||£T,62,h(K) < aSGUIEd WW”STO,GMUQ'
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Put € := 05 — 01. Then there is a constant C. > 0 so that
7op” Inp < Cerop”™ ™+ = Cemop” p e N,

wherefrom pTP”" < ¢C<70P” (note that C. blows up if € — 0F). If C := ¢C=70
and ¢p, := max{1/h, 1}, we have

h|0¢|01|a‘7'0\0¢|01 (CCh)la‘Q
T e < S, e
aeNd

g2
(C Ch,) T

(2.15) sup < Ty 0y (Cep) = €72 ,

aeNd

where T}, is given in (222). Now by (214) and (213) it follows that &, », 1 (K) <
&40 (K), for arbitrary 7,79 > 0, which implies (213), the embedding obvi-
ously being strict. O

As an immediate consequence we obtain that

(2.16) Erprr (U) = [ Eron(U) = Ery s (U),

T>To

for any 79 > 0 whenever o2 > o7 > 1. In particular, if E{Iﬂt}(U), t>1,is the
Gevrey space of ultradifferentiable functions on U, then, for every 7 > 0 and
o > 1 we have

(2.17) e u) = &..).

t>1

Furthermore, with the notation £ »(U) := lim &-.6(U), Proposition I
T—00
implies that for fixed 79 > 0 and o¢ > 1, we have

lim EPHU) o lim Ea o (U) < Eno 0y (U) > lim - 5(U) = C(U).

t—o0 o—1+t o—00

Note that our classes are larger then Gevrey classes but their inductive
limits with respect to 7 and o are continuously embedded in C*°(U).

3. Basic properties of the new classes of ultradifferen-
tiable functions

In this section we study the basic properties of &; ,(U). In separate sub-
sections we show that £, ,(U) are non-quasianalytic and nuclear spaces, closed
under differentiation and pointwise multiplication. Finally, we study the action
of ultradifferentiable operators on &; ,(U).

3.1. Compactly supported test functions

In this subsection we construct a compactly supported function in &; ,(U)
following the ideas presented in [8]. We begin by showing that the sequence
M7 satisfies the non-quasianalyticity condition.
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Lemma 3.1. Let 7 >0, 0 > 1 and let M7 = p™”. Then

TO'

(3.1) Z

Proof. Since p? In(1 + %) =p°tin(1+ %)p, p € Z,, we have

133

(p—1)7"

1
(3.2) 7p° t1In2 < 7p°In (1 + 5) <’ peZ,,
so that
o—1 1\ 7P’ o—1
(3.3) 9P < (1 + ];) < pez,.
The left hand side of (8B3) and p° > (p — 1)°"p = (p— 1)7 +
p €2y, give
e — 1)1 i (p—1)7=17
PRI P e T
p=1 p=1
- - 1
_ _ 2yt(p-1) -
(3.4) = Y ( (1 > ST
p=1
S <

ﬁ
7 (2p)7P~ Y

3
Il

which implies (B).

O

Corollary 3.1. There exists a compactly supported function ¢ € Egr 51 (U)

such that 0 < ¢ <1 and [g. ¢dx = 1.

Proof. Our goal is to construct a function in D, ,(U) which is not in D (U),
for any t > 1. We follow the ideas from [8, Theorem 1.3.5], and repeat some

steps of its proof to make the exposition self contained.

We start with one dimensional case. Let x be the characteristic function of
interval (0,1), and for ¢ > 0 let He(z) = 1x(£). Clearly [; Hedz =1 and we

recall that

(35) (How £ (@) = © ( / mcf(t)dt)/ G ek (G

c

for any continuous function f on R.
Further we set

1

ap = ———, €N,
N CTPFE ) I
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and note that (82) implies

Mo
(3.6) 2 <a, peN.

T,0
Mp+1

Put up(z) = Hyy * He, -+ % Hy,, m € N. Then, by [8, Theorem 1.3.5] it
follows that the sequence {um, }men has a uniform limit v € C°°(R) supported

in [0,a] where a = )7 a, < 00, and [g udz =1,

p=0
Next we estimate the derivatives ugﬁ), p < m—1. After applying p iterations

of (BH) and by using (B:E) we obtain

\Ha %ok Hy (x) = Hg, - % Hy (z— ag)
A H -

p—1

1
< 2°[[ = sup|Ha, * Ha,., - * Ha, (2)]
Gk zeR v )
k=0
p—1 1
< 2P(H )sup|Ha H /Hak(x)da:)
Pl Oak zeR k=p+1
P MTG MTO’
_ [ L Ml —gp 2t
H ak H MTO’ MTO’
(3.7) = 2P(p+1)T<P+1 <C?p

—_~—

where (M.2)" is used in the last inequality.

From the uniform convergence it follows that the derivatives of u also satisfy
(B2), so that u € 'D[Tof]c.

Next, we extend this to higher dimensions by putting 1(z) = u(z+a/2) and
o(x) = HZ:1 Y(zy) for © = (z1,22,...,74). Since the sequence M7 fulfills
the (M.1) property, we obtain

d d
0%¢(z)| = H |0k (a1)| < H C(XkoakT(XkU < C’IO¢|U|04|T|04|U7
k=1 k=1
a:(al,a27...,ad),

wherefrom ¢ € DX with K = [-a/2,a/2]".
Although K does not have a smooth boundary, by [B, Lemma 1.4.3] one
can find an appropriate open set U and conclude that ¢ € D, ,(U).

At the same time, ¢ ¢ D'} (U), for any ¢ > 1. Otherwise the derivatives
p—1
u® in (87) should be bounded by CPp!* = H C(k + 1)!, for some C > 0,

k=
t > 1, and for arbitrary large m € N. In that case, the estimates in (822) would
imply (k+1)t > C(2(k+1))™*", which is obviously not true for & large enough.
We refer to [8, Lemma 1.3.6] for a discussion about the precision of the
presented construction. O
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3.2. Nuclearity

In this subsection we show that the spaces in (210) are nuclear. This is in
agreement with Komatsu’s result about the nuclearity of £{Mr}(U) when M,
satisfies (M.2)" (see [@, Theorem 2.6 ]).

Let us show that for every h > 0 there exists £k > h such that identity
mapping X — Y is quasi-nuclear, where X = &, ,(K) and ¥ = &, (K)
(resp. X = DT opandY = ’DT ».%)- This means that seminorms on &; 5 (K) :=
lim & 5 n(K) (resp. DE, = lim DE, ) are prenuclear, cf. [I, page 177].
h—o00 h—o0
By [0, Theorem IV 10.2] this implies that & ,(K) (resp. ng) is a nuclear
space.

The classes under consideration can be represented as projective and induc-
tive limits of a countable family of spaces, cf. Remark PZ3. The nuclearity of
&:5(U) and D, ,(U) then follows from [T, Theorem IIT 7.4].

Theorem 3.1. The spaces &, ,(U), DX

7o and D, (U) are nuclear.

Proof. We follow the idea presented in [4]. Let ¢ € & ,n(K) and let u, j,
a € N? j € Z4, be the sequence of linear functionals on &, , ,(K) given by

(0%¢, vj) cat (k)
HIaT? |1l

(3.8) (f, U0, =

)

where v; € (C?1(K))" is defined by the following procedure:

Choose [ > 0 such that K is contained in the interior of L = [, 1]? and let
C41(xL) be the space of all d + 1 times differentiable functions on 7L with
support in L. Let B € L(C?(K),C?!(xL)) be the (Whitney’s) extension
operator such that Bf| = f and let t; € (C4T'(r L))’ be given by

(1)) = / ey, ez,

From [@, Lemma 2.3] it follows that the identity operator from C4T!(K) to
C(K), given by

flz) = (2771 Dy > eI Bft ti)catinry T E K,
jeZd
is quasi-nuclear. In particular, if we put v; =t; 0B, j € Z<, it follows that
(3.9 > lvllcenamy <oo, and ||flleu) < D W vi)con i)l -
jEZI JEZI

By (E9), (BR) and the righthand side of (B) we obtain

9%
||¢HY: sup SupL Z Z ¢7Uo¢j

d klal? |q|Tlel” =
aeNd ze K | | aeNd jezd
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It remains to show that  ||ua,;||x/ < oc.

o]
e~

Note that for |a| > 1, « € N% and h > 1, by (M.2)’ we obtain

hla+B17 | 4 g|Tla+B1"

(¢, ua )| < sup

s e e L U R

h(1+%)“\a|“‘a+ﬁ|f\a+5|“

- Iﬁrgfﬂ klel” || led” [l x[|vjll (catr (k)
RAFDTN ol e
(3.10) < () lellxlvsllices oy

for some Cy > 1.
For 0 < h < 1, note that Al*+#1” < plol” and thus by (M.2)" it follows that

3.11 sup = -
(3.1) |B|<d+1 k1ol |a| 7lel

h\a+ﬁ\”|a+5|rla+5\ﬁ A el al?
<(z) o

Now we choose k > 0 such that k > max{2Cyh, 2C;h(4+2"} 5o the estimates
(81M), and (BT) imply

la|?
DY uagllx < Y > (%) |[vj]l(ca+1(ryy < o0

a€eNd jeZd a€NC jeZd

We conclude that for every h > 0 there exists k > h such that the identity
mapping E;5.1(K) = Er0k(K) (resp. DX, — DX ) is quasi-nuclear, and
the theorem is proved. O

3.3. Algebra property

Since M7 satisfies properties (M.1) and (M.2)" we have the following.

Proposition 3.1. &; ,(U) is closed under the pointwise multiplication of func-
tions and under the (finite order) differentiation.

Proof. Let ¢ € E; o n(K) and ¢ € &, (K) for some h,k > 1, and, for sim-
plicity, assume that 7 = 1.
We first show that

(3.12) 3 <O‘>haﬂ|”kﬂl” <(h+k)7, hk>1.
BLla

In fact,

(2 @) plaA17 121 T ) (g) plela—12h7 1s1eh -1

B<a

(3.13) < Z <g> pla=B81E8l — (h + k)la\ .

B<a
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where the last inequality follows from |5| < || and

(1 - 'ﬂ)“ < lol(1 - 'ﬂ) )

Now (BTH) follows from (BT3).
By the Leibnitz formula and (M.1) we have

CEDS (g) 10 ()[0% ()

BLa
< AB Z <0‘> hla=BI7 | — glla=BI7 kIBI"| | 181"
BLla B
(3.14) < ABJa|*" Y (O‘>ha—ﬂ"k|ﬁ|", zeK.

B«

Now ¢p € €, ,(U) follows from (BT12).
Next, for any 8 € N¢, z € K and h > 1 we have

0%(0°¢())| < ChI*+|a 4 plle+il”
< Cp 1T RN glel g7

—_~—

where we used (M.2)’ in the last inequality, which proves the Proposition. [

Remark 3.1. Let P = Z a0 ()0 be the partial differential operator of order
la<m

m with aq € £ ,(U). Then, by the proof of Proposition B, it follows that

P : & ,U)— &(U) is a continuous and linear map with respect to the

topology of & ,(U). Moreover, if ¢ € & ,(U) and ¢ € DE_, then ¢y € DE .

In particular, if a,, € ng, || <m,then P : & ,(U) — Dfa is also continuous

and linear.

3.4. Ultradifferentiable property

In this subsection we study the continuity properties of certain ultradiffer-
entiable operators P(z,0) acting on &, ,(U). Recall, if the defining sequence
M,, fulfills the condition (M.2)" then the corresponding test function space is
closed under the action of ultradifferentiable operators. Since the sequence
M7 does not satisfy (E3), the space & ,(U) can not be closed under the
action of P(z,d). However, if we consider £ ,»(U) = lim &-5(U) then the

T—00
following results hold true.

o0
Theorem 3.2. Let P(x,0) = Y, aa0% be a differential operator of infinite
|a|=0
order with constant coefficients such that for every L > 0 there exists A > 0 so
that

lal”

(3.15) lan| < A
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Then £oo.o(U) is closed under action of P(z,d). In particular, the mapping
(3.16) P(x,0): & o(U) — Ergo-1,,(U),

1S continuous.

—_~—

Proof. Let ¢ € &; 55, (K) for some h > 0. Then using (M.2) we have

107 (a0 0%¢(2))]
Llel” . S
< A||¢||£T,g,h(K)Wh‘ A (Ja+ )it
Dl Qa8
< A||¢||Er,o,h(K)Wh‘ +8 |72 |ex| 18|72 18l

IN

A||¢||5,,0,h,(K)C|5|Uh2071‘Bla |mf2"*1|ﬁ|“ ((;th”1 )\a|”7

—_~—

where x € K and C is the constant in (M.2). Now we choose L > 0 such that
CLhY ' <1/2
and the theorem is proved. O

By the use of (M.1) we are able to extend Theorem B2 to a class of operators
with non-constant coeflicients.

Definition 3.1. A differential operator of infinite order

oo

(3.17) P(z,0) = Z aq ()0

|a|=0

is an ultradifferential operator of class {r,0} on U C R? if a, € & ,(U),
a € N? and for every K CC U there exists h > 0 such that for any L > 0
there exists A > 0 such that

Il

‘a|72f’*1|a\" ’

(3.18) sup |0Paq (x)| < ARPI|B|TIA1 a, € N°.

rzeK

Theorem 3.3. Let P(x,d) be an ultradifferential operator of class {r,0}. Then
Es,0(U) is closed under action of P(x,0). In particular, the mapping

(3.19) P(,0): Ero(U) — Erger o(U),
1S continuous.

Proof. We are following the idea given in the proof of Theorem 2.4 in [8]. Let
o € Eron(K), a € N so that (BI8) holds, and let ¢ € &, x(K), for some

—_—~—

k > 0 which will be determined later on. Then, by (M.1)" and (M.2) we obtain
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107 (a0 ()0 $(=))|
< > (ﬁ )Iaﬂ—vaa(x)maw)(x)
¥<B v
< Aldlle, ) Y (ﬂ>h57”(|ﬁ_7|yﬁw|“
v N7
Ilol”

Elet " (o 4 4| Tl ”

leel?

L e
A|\¢||£T,o,k(K)W(|a+ﬂ|) ot

Z (ﬁ) RIB=7 platy|”

y<B v
(320) < Al¢lle,, .0 (CL) TP BT s,z € K,

IN

for some constant C' > 0 which does not depend on «, 3 and K and we put
Chis = (’6) A=A flaty1”
v<B v

It remains to estimate Ch 1,5. Without loss of generality we may assume
that h > 1 and k > h. Since

18 =17 +la+417 < (18] = vl + lal + 1v1)7 = (lol +18))7 < 277 (Ja|” + [B]7),
it follows that Cj, x g < 2181527 (2I7+817) " Now, (B=20) implies
o—1 o o—1 o o—1 o
107 (aa ()0 ¢(2))| < Blldlle, .0 (K> CL)" (20K )P g7 171,

By choosing L > 0 such that LCKY ' < 1/2 holds and then taking the sum
with respect to a and the supremum with respect to 8 and = € K, we obtain

1P@)le ., . ) < Cllglle, x>

Lol

for some C' > 0, where [ = 2Ck2?°"". This proves the theorem. O

4. Motivation

To conclude this paper, we present a motivation for studying &; »(U) which
comes from microlocal analysis. It is known that for a Schwartz distribution u
we have

(4.1) WF(u) C WF¢(u) € WF4(u),
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where WFy, t > 1 is the Gevrey wave front set, WF 4 is the analytic wave front
set (see Introduction), and WF is the standard C>° wave front (see [, [d]). In
[6], the inclusion on the righthand side of (ETT) is extended to Gevrey type
ultradistributions.

In the existing literature there are no wave front sets which detect singu-
larities that are "heavier” than classical C*° singularities and ”lighter” than
Gevrey type singularities. The "heavier” singularities related to ¢t < 1 are con-
sidered in [d]. The ”lighter” singularities can be studied within the framework
of & ,(U) and its dual space of Roumier ultradistributions. Let us explain the
main idea of our approach and leave more details to the forthcoming paper [I0]

In the study of regularity properties (as opposed to the singularity proper-
ties) of a function (or of a distribution), one is interested in the points (zg, o)
in which the decrease of [ug(£)| (¢ = 1 in a neighborhood if xg) is faster than
I€|7N, |€] = oo, for any N € N, but, at the same time, slower than e"f'm,
|€] — oo, for any ¢ > 1. In other words, u is locally more than being C*°, but
less than being Gevrey ultradifferentiable.

We therefore start with the following decay properties on the Fourier trans-
form side. Let u € D'P"}(U) and let {un}yen be a sequence of compactly
supported smooth functions such that uy = u on 2, and such that some of the
following regularity conditions hold:

- hN'|N)!
(4.2) G §A|£|LLNtJJ’ NeN,t>0
AV N1
R RN N1t

for some A, h > 0 and ¢ € R%\{0}.

We note that the condition (E23) is related to the Gevrey wave front WF;,
that is to the Gevrey type regularity for ¢ > 1 (see Introduction).

Next, note that if in (E2) we put N'/? instead of N we get

RN N!
EIN
We call this process enumeration. We may also say that after the left hand side

enumeration N — N/, (E2) is equivalent to local analyticity.
If we now apply the same enumeration N — N'/* in (E4) then we obtain

(4.5) [y (€)] < A N e N,¢ € R\{0}.

th/t I_Nl/tJ!t

v NeNge R\ {0},

(4.6) [y () < A
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that is, after the enumeration and with ¢ = 1/t > 1, from Lemma 270 and
Remark 274, it follows that (E4) is equivalent to

ENTNNT
gy

Now, if in (B3) and (E22) we write un instead of uye we conclude that

(4.7) |an-(€)| < B N €N, ¢ € RU\{0}.

(2) = (3) = (23) .

Moreover, when 7 > 0 and o > 1, we propose a new regularity condition:

/o
(48) ()] < AN

d
= |§|L(N/T)1/UJ ) N S N? 5 € R \{O}

By similar arguments as above we note that after the enumeration N — 7N,
the condition (ER) is equivalent to

hN”NTN”
gy

for some A, h > 0, and thus, if we write uy instead of u, - in (E9), we obtain
(I2) = (3) = (ER). Note that for o = 1/¢, (E8) < (B4) when 7 = 1, while
(AR) = (E4) when 7 € (0,1).

Thus, the regularity condition (E=8) can be used to define a new type of wave
front sets in D'{P"}(U). We recall that the idea behind the condition (E) is
to construct a (bounded) sequence of cutoff functions in D} (U) similar to
the one constructed in [G] for WF 4 (see the proof of B, Proposition 8.4.2.]).

(4.9) i-n-(6)] < A N €N, ¢ e RA\{0}.
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