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Abstract. A class of translation-invariant Banach spaces of quasi-
analytic ultradistributions is introduced and studied. They are Banach
modules over a Beurling algebra. Based on this class of Banach spaces,
we define corresponding test function spaces D% and their strong du-
als Dg; of quasianalytic type, and study convolution and multiplicative
products on D%, . These new spaces generalize previous works about
translation-invariant spaces of tempered (non-quasianalytic ultra-) dis-
tributions; in particular, our new considerations apply to the settings
of Fourier hyperfunctions and ultrahyperfunctions. New weighted D’L*;na
spaces of quasianalytic ultradistributions are analyzed.
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1. Introduction

Recently, the authors and Pilipovi¢ have constructed and studied new classes
of distribution and non-quasianalytic ultradistribution spaces in connection
with translation-invariant Banach spaces [?, ]. Those spaces generalize the
concrete instances of weighted D7, and D7, spaces [, 4] and have shown
usefulness in the study of boundary values of holomorphic functions [8] and
the convolution of generalized functions [d].

The aim of this article is to extend the theory of ultradistribution spaces
associated to translation-invariant Banach spaces by considering mixed quasi-
analytic cases. We have been able here to transfer all results from [4] to this new
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setting with the aid of various new important results for quasianalytic ultradis-
tribution spaces of type Si* (R?) (see Subsection Il for the notation) from [I0]
concerning the construction of parametrices and the structure of these spaces.
Such technical results will be stated in Section B without proofs, as details will
be treated in [M0]. Although our results in the present paper are analogous
to those from [d], new arguments and ideas have had to be developed here in
order to deal with the quasianalytic case and achieve their proofs.

In Section B we study the class of translation-invariant Banach spaces of
ultradistributions of class * — . These are translation-invariant Banach spaces
satisfying S:(Rd) — E — S{*(Rd) and having ultrapolynomially bounded
weight function of class {. Here x and { stand for the Beurling and Roumieu
cases of sequences M, and A,, respectively. We would like to emphasize that
our considerations apply to hyperfunctions and ultra-hyperfunctions, which
correspond to the symmetric choices M, = A, = p!; but more generally, our
weight sequence M), measuring the ultradifferentiability, is allowed to satisfy
the mild condition p!* C M, with A > 0. The growth assumption on A, is just
p! C A,, which also allows us to deal with Banach spaces whose translation
groups may have exponential growth.

Section @ contains our main results. In analogy to [d], we introduce the
test function spaces DJ(EM”)7 D{EM‘“}, and ﬁf{EM”}. We prove that the following
continuous and dense embeddings hold 8 (R?) — Dy, < E < S{*(R?) and
that D} are topological modules over the Beurling algebra L1, where w is
the weight function of the translation group of E. We also prove the dense
embedding Dy, < OF (R?), where the spaces OF (R?) are defined in a similar
way as in [d]. The space Df;, is defined as the strong dual of D and various

structural and topological properties of D%, are obtained via the parametrix

method (Lemma B72). We also prove that ’D}{EM‘”} = ﬁj{gM”}, topologically.
As an application of our theory, we extend the theory of D7, B;;‘, and
n

B’;]* spaces not only by considering quasianalytic cases of * but also by allow-
ing ultrapolynomially bounded weights n which may growth exponentially. We
establish relations among them and make a detailed investigation of their topo-
logical properties. We would like to point out that applications of such results
to the study of the general convolvability in the setting of quasianalytic ultra-
distributions will appear elsewhere [0]. We conclude this section with some
results about convolution and multiplicative products on D/E;-

1.1. Notation

Let (M,)pen and (A4,)pen be two sequences of positive numbers such that
My = M; = Ag = A; = 1. Throughout the article, we impose the following
assumptions over these weight sequences. The sequence M, satisfies the ensuing
three conditions:

(M.1) M7 < My 1My, p € ZLy;

(M.2) M, < coH? Olglggp{Mp,qu}, p,q € N, for some co, H > 1;

(M.5) there exists s > 0 such that M, is strongly non-quasianalytic, i.e.,
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there exists ¢y > 1 such that

> M;fl M;
Z Ve < COPMS ) vp € Z+'
g=p+1 4 s

It is clear that if M is strongly non-quasianalytic than for any s> s, M;/
is also strongly non-quasianalytic. One easily verifies that when M), satisfies
(M.5) there exists k > 0 such that p!® C M,, i.e., there exist ¢y, Ly > 0 such
that p!* < ¢oL{M,, p € N (cf. [@, Lemma 4.1]). Following Komatsu [7], for
p € Zy, we denote m, = Mp,/M,_1 and for p > 0 let m(p) be the number of
my, < p. As a consequence of [[4, Proposition 4.4], by a change of variables, one
verifies that M, satisfies (M.5) if and only if

 m(A m
/p )\s(+1)d)\ <c p(f)’ Vp > my.

A sufficient condition for M, to satisfy (M.5) is if the sequence m,/p*, p € Z
is monotonically increasing for some A > 0.

We assume that A, satisfies (M.1) and (M.2). Of course, without loss of
generality, we can assume that the constants ¢y and H from the condition
(M .2) are the same for M, and A,. Moreover, we also assume that A, satisfies
the following additional hypothesis:

(M.6) p! C Ap; i.e., there exist ¢, Lo > 0 such that p! < ¢oLEA,, p € N.

Of course, the constants ¢g and Lg in (M.6) can be chosen such that ¢o, Ly >
1. Although it is not a part of our assumptions, we will primary be interested

— M,
. . . . p—1
in the quasianalytic case, i.e., ; M, =00
We denote by M(-) and A(-) the associated functions of M, and A,, that is,
»

P
M(p) :=suplny Z/\Zi and A(p) :=suplny P for p > 0, respectively. They are

peN P peEN Ap
non-negative continuous increasing functions (cf. [[@]). We denote by R the set
of all positive monotonically increasing sequences which tend to infinity. For
(Ip) € M, denote by Ny, and By, (-) the associated functions of the sequences
M, [T, lj and A, T[%_, I;, respectively.
For h > 0 we denote by Sﬁi‘"’;lh the Banach spaces (in short (B)-space from
now on) of all ¢ € C*°(R%) for which the norm

<p|‘L°°(]Rd)

plel [|eA®ID pa
on(p) = sup A

is finite. One easily verifies that for h; < ho the canonical inclusion Si\ép}g“ —
Mp,hy . (Mp) rdy _ 1 Mp,h {Mp} mpd
Sa h, iscompact. Aslcs., we define Sy /(R?) = hliTm Sy)y and Spy 7 (RY)
oo
ii_r% Sﬁﬁ }Lh. Since for hy < hsy the inclusion Sﬁi‘”’h; — Sﬁ{: }Ihll is compact,
N
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S((ﬁi”)) (R9) is an (F'S)-space and S}L{IIXI }}(Rd) is a (DFS)-space. In particular,
they are both Montel Spaces
For each (r,) € R, by S, "’(TT" we denote the space of all p € C>°(R?) such

that

By, (1) po H
g P

@ M, H|Of\

Provided with the norm o, ), the space s " ”’(r ) ) becomes a (B)-space. Simi-

larly as in [, ], one can prove that S{{j{i}} (R?) is topologically isomorphic to
lim My, (rp)
Ap,(rp) ~

(rp)ER
P
In the future we shall employ St (R?) as a common notation for S((Z”)) (R%)
(Beurling case) and S{M”}(Rd) (Roumieu case) It is clear that for each h > 0

and (rp) € R, the spaces S }L and S ) are continuously injected into

S(R?) (the Schwartz space).
We will often make use of the following technical result from [IT].

Lemma 1.1 ([T0]). Let (k) € R. There exists (k,) € R such that k, < k,
p+a P q

and H K < 2rta Hké . H K, for allp,q € Zy.
= j=1 =1

b2

We adopt the following notations. The symbol “ < ” stands for a contin-
uous and dense inclusion between topological vector spaces. For h € R% and
fesy (R?) we denote as T}, f translation by h, i.e., Ti,f = f(- +h). We write

(x) = (1 + |=[>)V/?, x € R%.

2. Some important auxiliary results on the space S;(R)

We collect in this section some important results on the nuclearity of Sf (RY),
the existence of parametrices as well as a characterisation of bounded sets in
Sy (R%). These are essential tools in the rest of the article. We refer to [IT] for
the proofs. Unless explicitly stated, we deal with the Beurling and Roumieu
cases simultaneously. We follow the ensuing convention. We shall first state
assertions for the (M),)—(A,) case followed in parenthesis by the corresponding
statements for the {M,} — {A,} case.

Proposition 2.1. The space S;‘(Rd) is nuclear.

Proposition 2.2. For every t > 0 there exist G € S%‘”t and an ultradifferen-

tial operator P(D) of class (M) (for every (t,) € R there exist G € S, ”’(Sfp))

and an ultradifferential operator P(D) of class {M,}) such that P(D)G = ¢.
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Lemma 2.3. Letr >0 ((rp) € R).
i) For each x,¢ € S:(Rd) and ) € SA L (WE S v T")), one has x*(pv) €
St (RY).

i) Let p,x € S;(Rd) with ¢(0) = 1 and [, x(x)dx = 1. For each n € Z,
define xn(x) = nx(nxz) and on(x) = @(x/n). Then there exists k > 2r
((kp) € R with (k,) < (rp/2)) such that the opemtors Qn D .—> Xn *

My, (k)

(pnt)), are continuous as mappings from Sz/lp}ﬁk nto S (from (k )
into SM (T”)) for alln € Z,. Moreover Qn — Id in £b (SA % ,SA )
(e (Sirl) sariy)

=M,
In the next proposition, given ¢ > 0 ((t,) € 2), we denote as SAP’:

(a]\s/[ S(f) i ))) the closure of 8((24")) (R%) in Sﬁff (the closure of S}L{f }} (RY) in
Aptty) )’

Proposition 2.4. Let B be a bounded subset of S%*(Rd). There exists k > 0
((kp) € 9%) such that each f € B can be extended to a continuous functional

f on SA k (on SA')(k ) Moreover, there exists | > k ((1,) € R with (I,) <
»(lp) ~ oMy (kp) Mp,l Myl
( ))suchthatSA CSAk(SA (l)gs ) and x2Sy 00 x Syt =
( Sﬂi”’(l”) SZP,,(E:)) — SAI”((: 'y ) is a continuous bilinear mapping.
FurtheTmore there exist an ultradifferential operator P(D) of class * and u €
gi\{:f (u e gi/lpp”(ll:))) such that P(D)u =6 and f = (P(D)u)* f = P(D)(ux f)
for each f € B, where ux f is the image of f under the tmnspose of the
continuous mapping ¢ — U * @, S((ﬁip)) (RY) — Ef:f (S:{{f‘”}} (RY) — :77((: )
For f € B, uxf ¢ L% NCRY) (u * fe L%, N C(RY)) and in fact
wx f(z) = (f,u(x —-)). The set {ux f|f € B} is bounded in L%y (in
L:%lp(\‘\))'
Lemma 2.5. Let B C S (RY). The following statements are equivalent:
i) B is bounded in S;* (R9);
ii) for each p € S¢ (RY), {f x| f € B} is bounded in S{*(Rd);
iii) for each ¢ € 8¢ (RY) there exist t,C' > 0 (there exist (t,) € R and C > 0)

such that |(fx@)(z)] < CeAU=D (|(fxp)(z)] < CePrl=D) for all 2 € RY,
feB;

iv) there exist C,t > 0 (there exist (t,) € R and C > 0) such that
(f * @)(@)] < CeADoy(p) (resp. |f = p(a)] < CePorlFa, ()

for all p € S;‘(Rd), zeR? feB.
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Lemma 2.6. Let f € SEI(K‘“)(Rd) (f € Sii?fp}(Rd)). Then f € S*(RY) if
and only if there exists t > 0 (there exists (t,) € R) such that for every ¢ €

M, M,
S((p!) )(Rd) (for every ¢ € Si{p!} }(Rd))

sup e AU |( 4 o) ()] < o0 (sup e~ B 1D (f 4 ) (@) < oo) .
zERC rER4

3. Translation-invariant Banach spaces of quasianalytic
ultradistributions

We extend here the theory of translation-invariant Banach spaces of ultra-
distributions to the quasianalytic case. We closely follow the approach from
[2, 4], where the distribution and non-quasianalytic ultradistribution cases were
treated. We mention that some of the arguments below are similar to those
from [@], but for the reader’s convenience we include all details about the adap-
tations in the corresponding proofs.

Let E be a (B)-space. We call E a translation-invariant (B)-space of ultra-
distributions of class x — t if it satisfies the following three axioms:

(D) S;(RY) = E < S*(RY).
(IT) Ty(E) C E for each h € R%.
(III) There exist 7,C > 0 (for every 7 > 0 there exists C' > 0), such that

IThglle < Clgllze* ™™, vh e RY, vg € E.

Notice that the condition (III) implicitly makes use of the continuity of
Ty. The next lemma shows that such a continuity is always ensured by the
conditions (I) and (II).

Lemma 3.1. Let E be a (B)-space satisfying (I) and (II). The translation
operators T), : E — E are bounded for all h € R?,

Proof. Observe that T}, is continuous as a mapping from F to S](* (R9) since it
can be decomposed as E % S (R7) KN S (RY) and Ty, : S*(RY) — Sp*(RY)
is continuous. Thus the graph of T}, is closed in F X S]{*(]Rd) and, since its
image is in F, its graph is also closed in F x E (E x E is continuously injected

into E' x St (RY) via the mapping Id x Id). As E is a (B)-space, the closed
graph theorem implies that T}, is continuous. O

Lemma 3.2. Let E be a translation-invariant (B)-space of ultradistributions
of class * — t. For every g € F, %ir% IThg — glle = 0. In particular for each
—

g € E the mapping h — Trg, RY — E, is continuous at 0 (hence everywhere
continuous).

Proof. The proof is straightforward and we omit it. O
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Summarizing, Lemma BT and Lemma B=2 prove that a translation-invariant
(B)-space of ultradistributions F of class * — | satisfies the following stronger
condition than (II):

(ﬁ) for each h > 0, T}, : E — F is continuous and for each g € E the mapping
h— Thg, R — E, is continuous.

Clearly Ty = Idg, Th,+hy = Th, © Th, = Th, o T,. Next, we define the
weight function w(h) of E as

(3.1) w(h) = |T-nllc(E)-

Obviously the weight function is positive and w(0) = 1. Furthermore, since
S:(Rd) is separable (it is an (F'S)-space or a (DFS)-space, respectively), so
is £. Thus w(h) = ||T_4||z(p) is the supremum of |T_,g||z where g belongs
to a countable dense subset of the closed unit ball of E. Since h — |[|[T_pg|le
is continuous, w is measurable. Clearly, the logarithm of w is subadditive
and there exist C,7 > 0 (for every 7 > 0 there exists C > 0) such that
w(h) < CeAlTIRD,
Remark 3.3. In the Beurling case when A, = p!, the assumption (III) is su-
perfluous. In fact, assuming only (I) and (IT), Lemma B implies that for each
h € R4 Ty, : E — E is continuous. Additionally, one easily verifies that for
each fixed ¢ € S¢ (R9), one has Ty — ¢ as h — 0 in St (R9) and consequently
in E. Hence, employing the same reasoning as above, we obtain that w is a
measurable positive function with subadditive logarithm. Therefore, there ex-
ist C,h > 0 such that w(h) < CeFM Vh € R? (cf. [, Sect 7.4]), which is in
fact condition (III) in this case.

We will also give an alternative version of (III) in the Roumieu case which is

sometimes easier to work with than (III). For this purpose we need the following
technical result from [IT].

Lemma 3.4 ([[0]). Let g : [0,00) — [0,00) be an increasing function that
satisfies the following estimate:

For every L > 0 there exists C > 0 such that g(p) < A(Lp) +InC.
Then there exists a subordinate function €(p) such that g(p) < A(e(p)) + InC’,
for some constant C' > 1.

See [[A] for the definition of subordinate function.

Lemma 3.5. In the Roumieu case condition (III) is equivalent to the following
one:

(m) there exist (1,) € R and C > 0 such that | Thg||z < C|g|lzeB»"D, for
allg € E, h € R?.

Proof. The proof is analogous to that of (¢) < (¢) in [@, Theorem 4.2]. O

The next theorem gives a weak criterion to conclude that a (B)-space F is
a translation-invariant space of ultradistributions of class % — §.
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Theorem 3.6. Let E be a (B)-space satisfying:
(1) s p)(Rd) s F s S’(Mp)( R%) (S{M }(Rd) B s S’{M }( RY));
(I1) Th(E) CE, for all h € R™;

(III) for any g € E there exist C = Cy > 0 and 7 = 74 > 0 (for every 7 > 0
there exists C = Cy» > 0) such that |Thg|lp < CeATMD vh € RY,

Then E is a translation-invariant (B)-space of ultradistributions of class x — .

Proof. Employing the same technique as in the proof of Lemma BT, one easily
verifies that conditions (I)" and (II) imply the continuity of T}, : E — E. The
proof of (IIT) can be obtained by adapting the proof of (¢) in [@, Theorem 4.2].

We now address (I). To prove S (RY) < E, by (I)', it is enough to prove
that SF (R9) is continuously injected into E. Pick 11 € D(R?) such that

Zwl z—m)=1, Vz € R supp ¢y € [-1,1]¢

meZzd
and 1 is non-negative and even. Next, pick 15 € S((;\!/[)”)(Rd) (Y2 € S{M }(Rd))
such that fRd Yo(x)dx = 1 and 19 is even. Set ¢ = *wg One readlly verifies
that 3, e ¥(x —m) =1 for all z € R and ¢ € S (Rd) in the Beurling

case and 9 € Si{ B (]Rd) in the Roumieu case, rebpectlvely. By (III), there
exist C, 7 > 0 (for every 7 > 0 there exists C' > 0) such that

(3.2)|pT- || g < CeATIMD || 2ATIMD YT o, Vo € Si, Vm € 7.
For m € Z%, consider the linear mapping

rlm M, M, M, M,
pmr () = 2ATDyT, o, U RY) — SO (RY)(SHT (RY) — ST RY)).

Clearly, it is well defined. Let B be a bounded subset of S;‘(Rd). Then for
every h > 0 (there exists A > 0) such that

plal [| AL pa
(3.3) sup sup e SDHL

= < oo
w€eEB aqeNd MOA

Now, [@, Lemma 3.6] implies
(34) eQA(T\m\) < 2006A(2H7|rc+m|)eA(QHT\zD.
In the Beurling case, let hy > 0 be arbitrary but fixed. Choose h > 0 such

that h > max{2HT,2h;} and eARHTA) < O/l for all A > 0 (such an h exists
because p! C A,). By (B3) and (B2) we have

h\lal 1D (1h(2) T p ()] ehrle]
My,

(3.5) < Cye2AGImD),
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for all x € RY, m € Z%, p € B. Hence {py..|m € Z%} is uniformly bounded
on B. In the Roumieu case there exist k, C' > 0 such that hlel |[D¥y ()| eMl*l <
CM, for all z € R% a € N% For the h > 0 for which (83) holds choose
0 < 7 < h/(2H) such that eAH72) < C7eh?2 for all A > 0 (such a 7 exists
because p! C A,). Choose h; < min{h/2,h/2}. Then, by using (83) and
(83), similarly as in the Beurling case, we obtain (B3), i.e., {pm | m € Z4} is
uniformly bounded on B. Now, (I)’ implies that || pn, - (¢)||g < C4 for all ¢ € B,

m € Z%. By using (82), we obtain that the sequence {Z\m|<N <pT_m¢}N
< =0

is a Cauchy sequence in E for each ¢ € B. Since its limit is ¢ in S(I;]I\fp)(Rd)
(in S/{M }( R%)) it converges to ¢ € E. Also |¢||g < C for all ¢ € B. This
1mphes that St (RY) C E and the inclusion maps bounded sets into bounded
sets. As &7 (R?) is bornological, the inclusion is continuous. It remains to prove
E C 8*(R%). By (I)' for a bounded set B in (" (R?) (in [ (R7)) there
exists D > 0 such that [{g,¢)| < Dllg||g for all g € E and ¢ € B. Then (III)
implies that there exist C,7 > 0 (for every 7 > 0 there exists C' > 0) such that

(g% @) (y)| < D||Tyglle < CDeATWD for all y e RY, o € B, g € E.

In the Beurling case Lemma PG implies £ C S&M) (R4). In the Roumieu
case Lemma P8 together with Lemma B implies £ C S&M}}( 4,

E— SE;{\;IP)(Rd) is continuous (E — Sl{]!\fp}(Rd) is continuous) it has a closed

graph. Thus the inclusion £ — S'*(]Rd) has a closed graph. As S(E4 ;’)(Rd) is a

(DF'S)-space (SE%Z}}(Rd) is an (F'S)-space), it is a Pték space (cf. [T, Sect.

IV. 8, p. 162]). Thus the continuity of £ — &i* (R4) follows from the Ptak
closed graph theorem (cf. [T2, Thm. 8.5, p. 166]) O

Since

Throughout the rest of the article we shall always assume that E is a
translation-invariant (B)-space of ultradistributions of class * — . Our next
concern is the study of convolution structures on E. We need three technical
lemmas.

Lemma 3.7. Let ¢ € S;‘(Rw), Then for each y € R, (-, y) € S]’L"(Rd) and
the function ¢(x) = / o(x,y)dy is an element of S;(Rd), Moreover, the
Rd

function £ : R4 — E, y v+ ¢(-,y), is Bochner integrable and 1) = f(y)dy.
Rd

Proof. The fact that (-, y) € S;‘(Rd) for each y € R? and that ¢ € S;‘(Rd) is
trivial. Thus f is well defined on R? with values in E (in fact its values are in

8¢ (R%)). One easily verifies that f is continuous, hence strongly measurable.
To prove that it is Bochner integrable it remains to prove that y — ||f(y)|| £ is
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in L'(R%). The condition (I) implies

M,

- »
[£(y)|lz < C1sup LR < Cogmp (@)e— A0,

Thus f is Bochner integrable. Now, for n € Z,, denote K,, = [-n,n]?%. Since
K, is compact and f is continuous there exists I(n) € Zy such that I(n) > n
and [(y) — £/ |5 < 2" when gy’ € Ko and |y; — 4| < 1/L(n), j = 1,...d.
Of course, we can take I(n+ 1) > I(n) for all n € Z;. Set D,, = {y € K,|y =
(k1/l(n),...,ka/l(n)),kj € Z,—nl(n) < k; <nl(n) —1,j =1,...,d} and let

Lo(x) = Y oz, t)i(n)~"
teD,,

Clearly L,, € S:(Rd) C E. We prove that L, — ¢ when n — oo, in S:(Rd).
We give the proof for the Roumieu case, the Beurling case being similar. There
exists m > 0 such that ¢ € Sﬁﬁg(ﬂ%d). Pick m’ > 0 such that m’ < m/(2H?).
Foreacht = (t1,...,tq) € D, denote K,, 1 = [t1,t1+1/l(n))x...X[tq, ta+1/l(n)).
Observe that

D*(x) ~ DLy (z)
D d
< [, IPze iy

+ Z / *D?gﬁ(l’,t”d’y:51(1‘)4»52(1;)_

teD,

For y € K, +, by Taylor expanding D%y(x,y) at (z,t), we have

|Dgp(z,y) — Dgp(z,t)|
Z| —t) |/ |DgD <pxt+s(y ))|ds
[Bl=1

1
dom(p) | —lal-1p, 1/ o= Alml(.t+s—t)) gg.
” jol+1 |

By [, Proposition 3.6] and the fact eA(P+1) < 2e4(22)eACK) for p, 11 > 0 (which
can be easily verified), we have

AL A Iy < g AM[o]) AR [14s(y—0)) AR | (1) (5=0))
< el Hl@ s
Hence
. C H*IM,
|Dgp(x,y) — Dgp(z,t)] S? L mlal gA(m[z]) g A(m Tyl)
Ci M,

— nm!leleAlm/|z]) gA(m/ |y|)
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Thus, for S3(z) we have the following estimate

C1M, — A ly]) CaMa
(3.6) Sa(x) < W/Rd € W < Tl ATl

To estimate S7, we proceed as follows

S (z) < TP Ma Al gy,
m|a| RI\K,,

For y € R\ K, by [, Proposition 3.6], we have

eAm'm) A [a) A lyl) < ¢ A la]) QA HIl) < 2 A H| @)

Hence
CsM, —A(m/
3.7 S < 5 i
(3.7) o) < T AT At /Rde !
CyM,
(3.8) :

m/leleA(m/|z]) gA(m/n)

Now, (BH) and (BR) imply that L, — ¢ in Sﬁi’:ﬁ/ (R?) and hence also in

SEZ”}}(Rd). As we noted, the Beurling case is completely analogous. By (I)

this also implies L, — 1 in E. Denote by X, the characteristic function of
K, + and define

Lo(y) = Y ft)xns(y), y € R
teD,

Then L,, is a simple function on R¢ with values in E and / L, (y)dy = L.
Rd

By using the continuity of f one easily verifies that L,, converges pointwise to
f. Moreover, by the definition of K, ; we have |L,(y)||lz < [[f(y)||e + 27",
for y € K,, and for y ¢ K,, L,(y) = 0. Thus, by defining g(y) = 1/2 for
y € Ky and ¢g(y) = 27" when y € K,\K,,_1 for n € Zy, n > 2, we obtain
L.z < If(y)||z + g(y) for all y € R Since g € L}(R?) and f is Bochner
integrable, dominated convergence implies

lim L, = lim L,(y)dy :/ f(y)dy,

n—00 n—00 Jrd Rd
which completes the proof. O

Lemma 3.8. The convolution mapping (¢,v) € S; (R4) x St (RY) = p*1) €
S;‘(Rd) extends to a continuous bilinear mapping Sf (RY) x E — E. Further-
more, the following estimate holds

(39) o+ le < ol [, (@)l w(o)ds
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Proof. Let ¢,9 € S;‘(Rd). One easily verifies that the function f(z,y) =

o(y)(z —y) is an element of SJF‘(RM). Define f : RY — E, f(y) = f(,y) =
©(y)T—-y1. Then, by Lemma B4, f is Bochner integrable and

pxp= [ f(y)dy.
Rd

Observe that ||f(y)|lg < |e(y)|w(y)||¢| . Thus, we have

lexvle < [ I ledy < Ile [ el

which proves (84) for g € &7 (RY). For general g € E, (89) follows from a
standard density argument. The continuity of the convolution as a bilinear
mapping S;‘ (RY) x E — FE in the Beurling case is an easy consequence of
(B9). In the Roumieu case, from (BH) we can conclude separate continuity,
but Sg\ép}} (RY) and E are barreled (DF)-spaces, hence the separate continuity
implies the continuity of the convolution. O

Lemma 3.9. S (R9) is dense in L.

Proof. Observe that C.(R) (the space of continuous functions with compact
support) is dense in L. Thus it is enough to prove that each ¢ € C.(R?) can
be approximated by elements of Sf (RY) in LY. Let v € LL. Select a nonzero

pedst (R9) such that / o(z)dxr = 1. For n € Z,, set p,(z) = np(nz). One
Rd

casily verifies that ¢, * 1 € Sf(R?). We prove ¢, * ¢ — ¢ in LL(R?). We
consider the Roumieu case, as the Beurling case is analogous. By (III) there
exist (I,) € % and C’ > 0 such that w(z) < ¢’ 7). By Lemma T we can
assume that (I,) satisfies Hf;’ i < 22T L - 1T, Uy, for all pg € Zy.
Letr, =1,/4H,p € Z4. Since ¢ € S?Zp}} (R, |o(z)| < C”eBra(2D) - Observe
that

w(z) [(on * ) (x) — ()|

IN

w(z) /Rd leW)l | (x —y/n) —P(z)[dy

IN

OBy Iz /Rd e Bro WD) |y (z — y/m) — v(x)| dy.

Since 1 has compact support e (12D e=Br (D14 (2)| € L'(R2%) and
PPl ()| < Cy(z)~*7", Vo e RY
This inequality, together with ePt (PH1) < 2eB1,(20) By 1) -, ) > 0, implies

Py (z —y/m)|
2eBiv 2le=y/nD) o Buy Clu/n) |y (2 — g /)|

<
< <3L‘ _ y/n>—d—1eBlp(2\y|) < Oy <x>—d—1<y>d+1eBlp(2\y|)
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< Cg<$>7d71 <y>7d7162BlT’(2|yD.

Since the sequence 4, H§:1 l; satisfies (M.2) with the constant 2H instead of
H, [, Proposition 3.6] implies 251» W) < ¢/eBro (WD) (by definition of (r,)).
Thus

e (== Ben D (@ — y /)] < Cia) =1 (y) " € LH(RED).

Since 1 is continuous, eBir(#De=Bro (WD 42 — 4 /n) —(2)] — 0 as n — oo
pointwise. Hence, dominated convergence implies @, x ¢ — ¢ — 0 as n — oo
in L} U

Combining Lemmas B8 and B, we immediately obtain the ensuing impor-
tant proposition.

Proposition 3.10. The convolution extends as a mapping L., x E — E and
E becomes a Banach module over the Beurling algebra LY, i.e., |u* g||p <

[ull1wllglle-

Corollary 3.11. Let g€ E and ¢ € S]T(Rd). Set p.(x) = e % (x/c). Then,

lim [jcg — ¢e * gllp =0,
e—0+

where c:/ p(z)dz.
R4

Proof. Let 0 < e < 1. We first consider the case when ¢, g € S¢ (R9). Observe
that

cola) = (¢ +0)(@) = [ (o) = gl <) ol

One easily verifies that the function f.(z,y) = (9(z) — g(x —ey)) ¢(y) is in
S]T(RM). Define f.(y) = f-(-,y) = (9 — T-cy9) ¢(y), R? - E. Lemma B2
implies that f. is Bochner integrable and

(3.10)||lcg — e * gllp = H/ f.(y)dy| < / g = T—cygll g lo(y)|dy.
R4 E R4

Clearly [lg — Teygll; ke (w)] < llglle (1 + CeAID) fo(y)] for some Cym > 0
(for each m > 0 and a corresponding C' = C,). Since the left hand side is
in L'(R?) and for each fixed y € R, by Lemma B3, ||g — T_., 9|z |¢(y)| = 0
as ¢ — 07. Thus, dominated convergence together with (BI0) proves the
corollary. Due to the density of Sf (R?) < E, the conclusion in the lemma for

g€ FEand p €S (R?) follows by using the estimate (89). O
Proposition 3.12. The space E' satisfies

a') Sf (RY) — E' — S (RY), with continuous embeddings.
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V') For each h, Ty : E' — E' is a bounded operator. The mappings R — E',
given by h— Ty f, are continuous for the weak™ topology.

Moreover, the property (III) holds true when E is replaced by E'.
Proof. The proof is similar to that of [2, Proposition 2]. O

We can now associate a Beurling algebra to E’. Set
&(h) = T-nlleey = 1T ey = w(=h).

The very last equality follows from the well-known property |1} [lz(p) =
|Th|| £(E), which is of course a consequence of the bipolar theorem (cf. [IZ,
p. 160]). The associated Beurling algebra to the dual space E’ is L}. We
define the convolution u x f = f*u of f € E' and u € L} via transposition:

(3.11) (uxf.g):=(fuxg), ge€E.
In view of Proposition B0, this convolution is well-defined because % € L},.

Corollary 3.13. We have ||u* f||g < ||ul1,o|lfllg and thus E' is a Banach
module over the Beurling algebra LY. In addition, if ¢ and ¢ are as in Corol-
lary @I, then o, x f — cf as € — 07 weakly* in E’ for each fived f € E'.

Proof. For g € E fixed we have (p. x f —cf,g9) = (f, e * g — cg). O

In general the embedding S;‘(Rd) — E’ is not dense (consider for instance
E = L'). However, E’ inherits the three properties (I), (II), and (III) whenever
FE is reflexive. The following result is a direct consequence of Proposition B2
and the Hahn-Banach theorem.

Proposition 3.14. If E is reflexive, then its dual space E' is also a translation-
invariant (B)-space of ultradistributions of class * — 7.

The fact that the mappings h — T, f, R? — E’ do not necessarily have
to be continuous in the non-reflexive case (F = L'(RY) is an example) causes
various difficulties when dealing with this space. As in the non-quasianalytic
case [2, @], we will often work with the closed subspace E. of E’ from the
following definition rather than with E’ itself.

Definition 3.15. The (B)-space E. stands for L} = E’.

Note that E’ is a closed linear subspace of E’, due to the Cohen-Hewitt

factorization theorem [B] and the fact that L} possesses bounded approximation
unities.
Remark 3.16. Observe that Sf (R9) is a subset of the closure of span(Sy (R?) %
St (R9)) in E’, where span(A) denotes the linear span of a set. To see this, let
pE S;‘(]Rd). Then, if x,, n € Z,, is a d-sequence from S]?‘(]Rd)7 Xn % — @ in
8¢ (R9) hence also in E’ (by a’) of Proposition B12). Whence we also obtain
that Sf(R?) C EL.
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The space E. will be of crucial importance throughout the rest of this work.
It possesses richer properties than E’ with respect to the translation group, as
stated in the next theorem.

Theorem 3.17. The space E., has the properties a'), (ﬁ) and (III). It is a
Banach module over the Beurling algebra L. If . and c are as in Corollary
Z13, then, for each f € E.,

(3.12) lim |lef — e * fllgr = 0.
e—0+t

Furthermore, if E is reflexive, then B, = F’.
Proof. The proof goes along the same lines as that of [d, Theorem 4.4] O

We point out that (812) implies that S:(Rd) x B/ C L. * E’ is dense in
E.. In fact, E’ is the biggest subspace of E’ where the mappings h — T} f,
R? — E’, are continuous. The proof of this result is essentially the same as
that of [@, Theorem 4.4], so we omit it.

Proposition 3.18. We have E., = {f eEFE ilzlg%) \Tnf — fller = 0},

In view of property b') from Proposition BT2, we can naturally define a
convolution mapping E’ x E — C(R%), where F = {g S (Rd)| ge E} with

norm gz := [|9]| 5, via

(fxg)(@) = (f(t), g(z — 1)) = (f(), T-29(1))-

Observe that if E is a translation invariant (B)-space of ultradistributions of
class x—1, then so is . Clearly ||Thlz(g) = | T-n||z(5)- Hence the convolution

can be defined in the same way as a mapping from E’ x E to C(R?). We end
this section with a simple proposition describing the mapping properties of
this convolution. As usual, L2, the dual of the Beurling algebra Ll is the

(B)-space of all measurable functions satisfying

|ltt]| co,0 = €S8 sup l9(2)]
z€R? W(.’E)

<>

We need the following two closed subspaces of L2,

(3.13) Uc, = {u € LZO‘ lim || Thu — vlloo,w = 0}
h—0

and

3.14 Co :=3u e CRY| lim M—o}.

The proof of the following proposition is simple and we thus omit it (the
second part about the reflexive case follows from Proposition B14).
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Proposition 3.19. E' « ECUC, and B’ x E - UC, is continuous. If E is
reflezive, then E' x £ C C,,. SimilarlyVE’ * B CUCy and E'xE = UC is
continuous. When E is reflexive, E' * E C C,, and E' x E C Cj,.

We conclude this section with some examples of translation-invariant (B)-
spaces of quasianalytic ultradistributions.

Example 3.20 (Weighted Ly spaces). Let 1 be an ultrapolynomially bounded
weight function of class 1, that is, a (Borel) measurable function 7 : R? —
(0,00) that fulfills the requirement n(z 4 h) < Cn(z)eA1") for some C,7 > 0
(for every 7 > 0 there exists C' > 0). For 1 < p < oo we denote as L} the
spaces of measurable functions g such that ||g||l,., = ||ngll, < oo. Clearly
L% are translation-invariant (B)-spaces of ultradistributions of class * — 1 for
p € [1,00) and for any sequence (Mp)pen. On the other hand, we make an
exception and define L3° via the norm ||glc., = [|9/1]lcc- We also introduce
the closed spaces UC,, and C, of Ly° as in (BT3) and (BT4) with w replaced
by 7. Note that C,, is a translation-invariant (B)-space of ultradistributions of
class * — { because S (RY) is dense in it, while L° and UC, fail to have this
property.

As usual, we write ¢ for the conjugate index of p. As well known, (Lg)’ =
Lf],l if 1 < p < oo and (L717)’ = Ly°. In view of Proposition BT4, the space
E! corresponding to F = Lf]_l is B/ = L} whenever 1 < p < co. On the
other hand, Proposition B8 gives that E, = UC,, for E = L%. The Beurling
algebra of L} can be explicitly determined as in [2, Proposition 10], we state
the result for the reader’s convenience. Note that when the logarithm of 7 is
a subadditive function and 7(0) = 1, the following proposition yields w, = n

(a.e.).
Proposition 3.21. Let w,(h) := esssup,cpa 1(z + h)/n(z). Then

. _Juwh)  ifpell, o)
IT-nllezn) = wy(=h) ifp=oc.

Consequently, the Beurling algebra of LY is Li)n if p=1[1,00) and L}vn if p=oc.

Clearly, the Beurling algebra of (), is L}Un. We now compute the space E’,
corresponding to E = C,,. Note that 1 can be assumed to be continuous (the
continuous weight 7; = 7% ¢ defines an equivalent norm if we choose ¢ € D(R?)
being non-negative with [, ¢(x)dz = 1). Thus E = C, is isometrically iso-
morphic to Co(R?), the isometry being J,, : C;; = Co(R?), J, () = 1/n. Hence
t7, : M* — (C,)" is isometric isomorphism and thus for each f € (C,)" there

exists a unique finite measure v € M! such that (f, ) = / Y(x)/n(x)du(z)
Rd

for all ¢ € C),. We will denote the dual of ), by /\/l,l7 Now, one easily verifies

that Lin * M}, C L, and since St (R?) is dense in L;, (the proof is analogous

to that of Lemma B9) and S;(R?) * §;(R?) is dense in S;(R?) (cf. Remark

B10), we obtain that E, = L.
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4. Ultradistribution spaces of class x — § associated to
translation-invariant (B)-spaces

In this section we construct and study test function and ultradistribution
spaces associated to translation-invariant (B)-spaces of ultradistributions of
class * — . The construction of such spaces is similar to the one given in [4]
in the non-quasianalytic case; however, the study of their properties requires
new non-trivial arguments. We recall that throughout the rest of the paper
E stands for a tempered translation-invariant (B)-space of ultradistributions
whose growth function of its translation group is w (cf. (B)). The (B)-space
E! C E’ was introduced in Definition BT3.

4.1. The test function space D},

We begin by constructing our test space. Let

m e} Da
Dg”’ :{ger‘Do‘cpeE,VaeNd7||g0||E,m: sup mII('D”E<oo}.
a€eNd M,

It is easy to verify that Dg”’m is (B)-space with the norm || - [|gm. None of
these spaces is trivial. To see this in the Beurling case one only needs to use the

continuity of the inclusion 8((2?’)) (R%) — E to obtain that S((Zp)) (RY) C Dg’”’m
for each m > 0. In the Roumieu case observe that S((IJ:I”)) (R9) is continuously

injected into S{{X”}} (R9), hence we have the continuous inclusions S((ﬁi”)) (RY) —

E. Now, similarly one proves that S((X)”)) (RY) C ’Dgfp’m for each m > 0.

Obviously, ngp’ml - D]g’”’m2 for ms < mi and the inclusion mapping is

continuous. As l.c.s. we define

(MP) p— 3 MP’ {Mp} J— 3 MZ)7
Dy = lim Dy ", Dy = lim Dg e
m—oo m—0

}

Since DEM"} "™ is continuously injected into E for each m > 0, DEM” is indeed

a (Hausdorff) l.c.s. Moreover DEM”} is a barreled bornological (DF')-space,
since it is an inductive limit of (B)-spaces. Obviously D%M”) is an (F)-space.
Of course DJ(EM") and DJ{EM”} are continuously injected into E.

Additionally, in the Roumieu case, for each fixed (r,) € R we define the
(B)-space

DéMp}:(rp) — {(p cE

D(X
D% € E,Ya € N, ||¢| g,(r,) = sup % =0
o MaHa Tj

j=1"j
with norm || - ||g,(,,). Since for & > 0 and (r,) € R, there exists C' > 0 such
that kl*l > C/ (H‘ja:llrj), DM ig continuously injected into DUMPH ),

Define as l.cs. f)EM”} = lim DEM‘“}’(T”). Then ’ZaéM"} is a complete l.c.s.
(rp)ER

and D}{EM"} is continuously injected into @iEM"}.
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Lemma 4.1. The space ’D{M Vs regular, i.e., every bounded set B in DEM”}

{M, },m

is bounded in some D, In addition D,{EM”} is complete.

Proof. An adaptation of the proof of [, Proposition 5.1] proves the lemma. O

Similarly as in the first part of the proof of [, Proposition 5.1] one can

{Mp}

prove, by using [§, Lemma 3.4], that D, and @}{EM"} are equal as sets, i.e.,

the canonical inclusion D{EM” N D}{E } is surjective.
The next proposition gives the relationship between Sir" (RY), Dy and E.
The proof is essentially the same as that of [d, Proposition 5.2].

Proposition 4.2. The following dense inclusions hold S;‘(Rd) — D} — E —
Sfr* (R%) and D%, is a topological module over the Beurling algebra LY, i.e., the

convolution * : LY, x D3, — D% is continuous. Moreover, in the Beurling case
the following estimate

(4.1) [ux@llzm < llulliwllellem, m>0

holds. In the Roumieu case, for each m > 0 the convolution is also continuous

bilinear mapping L, x D, Mpm DMp’m and the inequality (1) holds.

We will often use the following results on the action of ultradifferential
operators on the test space D}, (see [d] for their proofs).

Lemma 4.3. If P(D) is ultradifferential operator of * type, then P(D) : Dy, —
Dy, is conlinuous.

Lemma 4.4. Every ultradifferential operator P(D) of {M,} class acts contin-

uously on ﬁJ{EM”} .

It turns out that all elements of our test function space D7, are ultradiffer-
entiable functions of class *. We need the following lemmas in order to establish
this fact.

Lemma 4.5. There exists | > 0 (there exists (l,) € R) such that SMP’l C
ENE, (SA (l 3 ) C ENE,). Moreover, the inclusion mappings SA ’”} — F and

Silwpi — E, (SMP’ %) E and Sﬁ@él — E.) are continuous.

Proof. We give the proof in the Roumieu case, the Beurling case is simi-

lar. Since the inclusion Si{fpp}}(Rd) — FE is continuous and SEXI}}(Rd) =

(Li)an SX)’J((T;’”)) there exist C' > 0 and (r,) € R such that |||z < Co.,)(p),
Tp)E
Yo € S{M”}( R?). For this (r,), by Lemma 23, there exist (k,) € R and

{45}
Xn, Pn € S&J }}(Rd)7 n € Zg, such that x, * (ppt)) € Si{f}}(Rd) for each

M(k

n € Z4 and Xy * (¢nt)) = ¥ when n — oo in S T") for all € S, p). We

have

(4.2) [xn * (en¥) B < Co(r,) (Xn * (Pn))-
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We obtain that ., * (p,1) is a Cauchy sequence in E, hence it converges. Since

n* (pnt) — ¥ in SM”’(TI’)) the convergence also holds in S{gM}}(Rd) But E

is contmuously injected into S'{]\;[}}(Rd) thus the limit of x,, * (ppt) in F must

be 1. If we let n — oo in (E2) we have [[¢||p < Co,\(¥) < Cog,(¥),

which gives the desired continuity of the inclusion SM” ’gck )) — FE. Similarly,

(K .
one obtains the continuous inclusion S AP((k/ )) — FE! possibly with another

(k;,) € R. The conclusion of the lemma now follows by taking (I,,) € R defined
as lp = min{ky, k,}, p € Zy. O

Lemma 4.6. Let f € S{*(Rd) be a continuous function such that for each
B € N? the ultradistributional derivative DPf is a continuous function with
ultrapolynomial growth of type t. Then f € C=(RY).

Proof. Since f is continuous f € D'(RY) (the Schwartz space of distributions).
First we prove that the ultradistributional derivatives of f coincide with its
distributional derivatives. We give the proof in the Roumieu case. The Beurling
case is similar. Let 3 € N%. Denote by f5 the distributional derivative D? f of
f and by fg the ultradistributional derivative D?f of f. Since f and fg are
continuous functions of ultrapolynomial growth {4,}, similarly as in the proof
of (¢) & (¢) in [@, Theorem 4.2], one can prove that there exist (r,) € R and
C > 0 such that |f(z)| < CeP»(2D) and |f5(z)| < CePre(2D. Pick (k,) € R
such that (k,) < (r,) and eBr(De=Br() ¢ L1(RY). Fix ¢ € D(R?Y). Let

Sg\‘/l }} (R%), n € Zy, be defined as in ii) of Lemma EZZ3. One easily verifies

that ¢, = x, x 9 € Sa/[ }} (R%). Let o < 8. Observe that

(43) eka(lm‘) |Da7/1n(l’) o Daw(l‘”
55?/ Ix()|eP G0 | D (2 — y /n) — Dp(a)] P Cle=v/mDay,
R4

Let € > 0. Since 9 is compactly supported,
(D — y/n) = D(a) | P G/ < Oy 4 |D()| BBl /oD

<O 4 CyeBrr(lul)
As |x(y)|eBre ClWD(O) 4 CopePrr WD) € L1(R?), there exists ¢; > 1 such that

/ Ix(m)|eBrr WD (Cy 4 CoeBrBIvD)dy < e /4.
ly|>c1

Of course, we can assume that ¢; is large enough such that supp¢ C {x €
Re||z| < e1}. Clearly D¥)(x) = 0 and DY%(x — y/n) = 0 for all n € Z,
when |z| > 2¢; and |y| < ¢;. Hence, for |z| < 2¢q, |y| < ¢; and n € Z, there
exists Cy such that eP*» Cle=v/7l) < ¢, Since D) is continuous, there exists
ng € Zy such that for all n > ng, || < 2¢; and |y| < ¢

L1 (Rd ) '

www—wm.wwn<d(w4mmw>
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These estimates, together with (E33), i eBro (D (Do, — D%/})‘

Loo(Rd) ™
e for all n > ng. We obtain that for each o < f3, eB"'P(H)Dawn — eB’“P(l'l)D%/)
in L>°(R%). Now, dominated convergence implies

lim. Rdﬂs(w)wn(x)dx =/, o (@) (x)dz,
Jim | J@ED u@de = | f@)(=D)*(a)de

Hence

<f5 S hm / f/g )y (x z:nILII;O 9 f(2)(=D)Pepy, (x)dx = (fa,9).
Since ¢ € D(R?) is arbitrary fﬂ = fg. In other words, f is a continuous
function whose all distributional derivatives are continuous functions. Now
the Sobolev imbedding theorem applied on a ball with center at a fixed point
z € R? implies that f is C*> in that ball. As x is arbitrary, the assertion
follows. U

Define for every m,h > 0 the (B)-spaces

1/2
2|a

Mp o0
OA,,,m,h =4q¥E C (Rd) < 0

’Dagae

[@llm,n = Z
[e%

eNd

Observe that for m; < ms we have the continuous inclusion oM A ek

M, .
Oy, o, and for hy < hy the inclusion OAp7m7h1 — (’)Awmﬁ2 is also con-
tinuous. As l.c.s. we define

(Mp)  _ . My (Mp) s (Mp) .
O(Ap),h = h_)én OA,,,m,h ) O(A,,),c = thn O(A,,),ha
m o0 — 00
{M,} . M {M,} {M,}
O(a = lim Oy "0 > Opa heo = = lim O{A:} R
m—0 h—>

Observe that OEX")),L is an (F')-space and since all inclusions (’)(A Y C>(R%)

are continuous (by the Sobolev imbedding theorem), (’)gi\‘i)) ¢ is indeed a (Haus-

dorff) l.c.s. Moreover, as an inductive limit of barreled and bornological spaces,

OE% ))C is barreled and bornological. Also O%X”}}’ , is (Hausdorff) l.c.s., because

all inclusions O, Mo mn — C% (R4) are continuous (by the Sobolev imbedding

theorem). Hence (9:[[ A ”}} ¢ is indeed a (Hausdorff) l.c.s. Furthermore, OE A ”}} h
is a barreled and bornological (DF')-space, as an inductive limit of (B)-spaces.
By these considerations it also follows that Of . is continuously injected into
C>=(R%). One easily verifies that St (R9) is continuously and densely injected
into Of . We mention that Of o was introduced and studied in [4] in the
non-quasianalytic case.
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Proposition 4.7. The embedding Dy, — O;C(Rd) holds. Furthermore, for

¢ € Dy, DY € Cy for all « € N and they satisfy the following growth
condition:
For every m > 0 (for some m > 0)

(4.4)

mle
AV “oll oo (ray < 00
(1S

Proof. Let v > 0 ((rp) € R) be as in Lemma B, that is, SA”T C ENE,
(Si/[”(( )) C ENE.) and the inclusion mappings S " - E and SAP,T‘ — E!
(S]Vi’j ’(Ef”)) — F and S, ”(Y") — E') are continuous. By Proposition P2, there
exist u € SA 27 and P(D) of type (M,) (u € SZ””(T’)) and P(D) of type {Mp})

(rp)
such that P( Ju=20. Let f € Dy. Then f = (P(D)u) = f. We first prove that

(4.5) f=PD)u)x f=PD)(uxf)=ux(PD)f).

Since @ € SXI”’T CF (ue SM (Tp)) C E') and f € D}, C E, Proposition BT

implies that ux f € UCy C S (]Rd) hence P(D)(ux f) is well a defined element
of S’*(]Rd). Similarly, by Lemma 23, P(D)f € D}, C E, hence Proposition
BT9 implies u* (P(D)f) is well defined element of Si* (RY). By Proposition B2
there exists a net f, € 87 (R9) which converges to f in Dj. Then

Now, since f,, = f in Dj, the convergence also holds in F, and thus Proposition
B9 implies u * f, — u* f in UCy, and therefore also in Si* (RY). Hence
P(D)(u * f,) — P(D)(u * f) in S’*(Rd) Next P(D)f, — P(D)f in D,
(cf. Lemma EZ3) consequently also in F. Again, Proposition B9 implies
ux (P(D)f,) = ux (P(D)f) in UCy, hence also in S’*(]Rd) Now after taking
limit in (E8), we obtain (E5). For 8 € N?, since D'@f € Dy, (E3) implies
DPf = ux DPP(D)f. Since D°P(D)f € D} C E, Proposition BT9 and the
discussion preceding it imply that D? f is continuous function and D% f € UCy,
for each B € N? Thus, Lemma EB implies that f € C(RY). To prove
the inclusion D}, — O;7C(Rd), we consider first the (M),) case. Let m > 0
be arbitrary but fixed. Since P(D) = )" coD® is of (M,) type, there exist
m1,C’ > 0 such that |c,| < C’m‘lal/Ma. Let mo = 4max{m,m;}. By Lemma
B33 (and its proof), we have

,T

IDP f(2)] < ||ull g || DPP(D) f (2)]| y w(~a) < CZW(_x)”ﬁHE’Hf”E,mzH(Q%fw'
Hence

2m) B8l | DB
) CmPUDPI@ - oot e

Mpw(—x)
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Since there exist 7, C"" > 0 such that w(x) < C"eA712D) | by using [, Proposi-
tion 3.6], we obtain w(—z)eA(71?D) < C eATHIZD Hence

1/2 1/2
m2|a‘ ‘ 2 m2\a| Daf 2
D%fe~ < GCs NYTR ‘
< Clallgllfllemen,

(M)

which proves the continuity of the inclusion DJ(E — (9 -~ and hence also

the continuity of the inclusion D(M”) — O(i\‘/l"))c

In order to prove that the inclusion D{M Y (’)}Ei\f }} ¢ 1s continuous, it is

enough to prove that for each h > 0, D{M LN O%{A "}}, is continuous. And
in order to prove this, it is enough to prove that for every m > 0 there exists

. . . M,, M,
m’ > 0 such that we have the continuous inclusion Dy ”""™ — 04", ., ,. So, let
y2l )

h,m > 0 be arbitrary but fixed. Take m’ < m/(4H). For f € D]gp’m, keeping
notations as above, by Lemma B3 (and its proof), we have

D2 1(0)] < il | D PD) (@) o(=a) < Cos(=a)l 1 .y
namely,

amMIBl | DB
ws) Cr) PPN < oo fllsm:

Mpw(—x)

For the fixed h take 7 > 0 such that 7H < h. Then there exists C"' >
0 such that w(z) < C"eA71?l) and by using [, Proposition 3.6] we obtain
w(z)eAT1#) < CueAlTHIZD | Similarly as above, we have

<Z m2lel

which proves the continuity of the inclusion D}{EM” bm o, (’)K” B

1/2
) < Cliall |l f1l2.m.

‘Dafe (h]- \)‘

Observe that (B4) follows from (B71) and (E=8), respectively. It remains to
prove that D*f € C;. We will prove this in the Roumieu case as the Beurling
case is similar. By using Lemma B, with a similar technique as above, one

can prove that for every (k,) € R there exists (I,) € 2 such that for f € ’DEM"}
we have

|D7f ()]
w(— )Mﬁl_['f'l J

Let ¢ > 0. Since SI2?}(RY) is dense in DL} (cf. Proposition E2), it is dense

{Ap}
in D{ Mr} Pick y € S{M”}( R%) (1) <&/ (2C"|Ja] ). Since

{Ap}

(4.9) < ¢l g0,
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1 = w(0) < w(—z)w(z), by (II1) there exist (I,) € R and Cy > 0 such that
1/w(—z) < Coe ™. Thus, as x € S} (RY), there exists K ¢ R? such

{Ap}
DB
| X(I)IL\ < e/2 for all z € R"\K and 8 € N%. Then, by (&9),
w(—x)Mg ;2 k;

for x € R\ K and 8 € N%, we have

that

[DPf@)] D7 (f(@) — x(@))] |D8x(x)|
w(-o)Ms 1k ~ w(-a)Ms TT ky w(-a)Ma T &y
which proves that DS f € Cy,. O

Remark 4.8. 1f f € S¢ (R%), the proof of the previous proposition (combined
with Proposition B0) yields |D?f||z < ||ul|g||D?P(D)f|1 ., since u € E.

Employing a similar technique as in the ;roof of Lemma A3 (Lemma B4), we
obtain that for every m > 0 there exist m > 0 and Cy > 0 (for every (k,) € R

there exist (I,) € R and C; > 0) such that

mlel[Defll,
(4.10) [ £l z.m < Crsup ——————={ [|/]

B,(ky) < C1 Sup

1Dy
M, ’

M ]._[Ijazll lj
4.2. The ultradistribution space D’

We can now define our new distribution space. We denote by D%, the

strong dual of Dj. Then, 'Djé{w”) is a complete (DF)-space because D%M")

is an (F')-space. Also, DE,MP}

space. When E is reflexive, we write Df, = Dj;, in accordance with the last
assertion of Theorem BTA. The notation Dy, = (Dj;)" is motivated by the
next structural theorem which characterizes the elements of this dual space
and bounded sets in two ways, in terms of convolution averages and as the
product of ultradifferential operators acting on elements of E..

is an (F')-space as the strong dual of a (DF)-

Theorem 4.9. Let B C S]’L*(Rd). The following statements are equivalent:
(i) B is a bounded subset of D, .

(#3) for each ¢ € S}“(Rd), {f *xv| f € B} is a bounded subset of E'.
(#91) for each 9 € S;(Rd), {f x| f € B} is a bounded subset of E..

(iv) there exist a bounded subset By of E' and an ultradifferential operator
P(D) of class % such that each f € B can be expressed as f = P(D)g
with g € By.

(v) there exist By C E, NUC,, which is bounded in E and in UC,, and an
ultradifferential operator P(D) of class * such that each f € B can be
expressed as f = P(D)g with g € By. Moreover, if E is reflezive, we
may choose By C E'NC,,.
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Proof. We denote Bg = {¢ € S:(Rd)| llelle < 1}.

(i) = (ii). Fix first ¢ € S7(R?). By Proposition B0 the set ¢ Bp = {¢)
¢l € Br} is bounded in Dy,. As D is barreled, B is equicontinuous. Hence,
[(fx,0) = [{f,¥*p)| < Cy, Vo € Bg, Vf € B. So, [(f x1, )| < Cylloll s,
Yo € S:(Rd), Vf € B. Since S:(Rd) is dense in F, we obtain {f x¢| f € B} is
a bounded subset of E’, for each 1) € 8¢ (R9).

We prove (ii) = (iv) and (i) = (v) simultaneously. Let (i7) hold. For
arbitrary but fixed ¢ € S]’L*(Rd) we have (f %@, 9) = (f %1, ). We obtain that
the set {(f*¢,v)| ¢ € Bg, f € B} is bounded in C, i.e., {f*¢|¢ € Bg, f € B}
is weakly bounded in S;* (R9), hence it is equicontinuous. Moreover, Lemma 23
implies that B is bounded in S{* (R4). We continue the proof in the Roumieu
case. The Beurling case is similar. For (t,) € R, denote by X(;, the closure of

S}Xp}} (RY) in SXP(ZP)) The equicontinuity of the set {f * ¢|¢ € Bg, f € B}

implies that there exist (r,) € R and C' > 0 such that

(A1) [(f * )| < Copr,) (), Vo € SHH (RY), Vo € By, Vf € B.

By Lemma B3, there exists (r;,) € R such that Sf”’(ir,‘a) C ENE. and the

inclusion mappings Sfp’(ir,’d)) — FE and Sfp’((;”)) — E! are continuous. Of
P \"'p Po\Tp

course, we can take (r;,) < (r,). Since B is bounded in S&Mi}(]Rd), Proposition

24 implies that there exist (I,), (k,) € R with (I,) < (k) such that f can be

extended to X)), Sﬁ‘l/[”’(glp)) C X(k,), the convolution is a continuous bilinear

mapping from Si\ép(gip)) X SZ”(Z”)) into X(,) and there exists u € X(;,) and

P(D) of class {M,} such that P(D)u = & and f = P(D)(u * f), where f is
the extension of f € B to X(;,) and u * f is the transpose of the continuous
mapping 1 +— @ * 1, S{M”}(Rd) — X(x,)- We may assume that (kp) < (r]).

{Ap} p
Let u,, € S{{X”}}(Rd), n € Z4, be such that u, — u in X(; ). The continuity of
the convolution * : SX)’”(Z”)) X SX)’”((ZL”)) — X(x,), together with (ET), implies

‘(u*f,<p>‘ < (', Vp € Bp, Vf € B,

ie,{uxf|feBlisa bounded subset of E’. Now, f = P(D)(u * f) hence
(iv) is proved. Since {u * f| f € B} is bounded in E’, therefore so is it in
Sl{Mp}(Rd), Proposition 4 again implies that there exist (1},), (k;,) € 9% with

{Ap}
(1) < (k) such that u * f can be extended to X(kr)s SX)"(EZ%) C Xy the

. . - . My, (1 My, (17) .
convolution is continuous bilinear mapping from S, p(g,p)) xS, p(g,”)) into X (k)
prllp psllp

and there exists v € X() and Pi(D) of class {M,} such that Py(D)v = §
and u * f = Py(D)(v * (ux f)), where v % (u * f) is the transpose of the

continuous mapping ¥ — ¥ * 1, S?fp}} (R?) — X(k{n)' We can suppose that
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(k) < (Ip). Moreover, by Lemma B, there exist (¢,) € 9% and C' > 0 such
that w(z) < CeP» (2D and by Lemma I we can assume that Hp+qt <
et 1151 ty, VP, q € Z4.. Hence lfiy choosing (k;,) < (t,/2H), ~1t follows
that v € LL N LY. Now f = P(D)(ux f) = P(D)(Pi(D)(v * (u* f))). But
the composition of two ultradifferential operators is again an ultradifferential
operator, hence f = Py(D)(v * (u* f)), where P»(D) = P(D) o Py(D). Sjnce
v € LLNLL and {u* f| f € B} is a bounded subset of E', v  (u * f) €
E!, and Corollary BI3 implies that {v * (u * f)|f € B} is bounded in E..
Furthermore, since o € X(l/) C Xy, €S, ,,,( )) C E, Proposition BT9 implies
that {v* (ux f)|f € B} is a bounded subset of UC,, and if E is reflexive, also
in C,. Thus (v) also holds.

The implications (iv) = (i), (v) = (i), (i19) = (4i) and (v) = (di7) are
obvious. O

Proposition 4.10. Let f : S;‘(Rd) — SJ’F*(Rd) be continuous. The following
statements are equivalent:

i) £ commutes with every translation, i.e., (£, T_pp) = Tp (f,¢), for all
heR? and ¢ € S;(Rd).

ii) f commutes with every convolution, i.e., (f,1) % @) = 9 * (£, @), for all
Vo € SR,
1ii) There exists f € S’*(Rd) such that (£,¢) = f x ¢ for every ¢ € S¢ (R9).
Proof. i) = ii). Let ¢,¢ € §;(R?). Then @(x,y) = p(x — y)¢(y) € S;(R*?).

By carefully examining the first part of the proof of Lemma BZ4, one can verify
that

S{(RY) 3 Lyn(z) = Y @(a,)i(n)™" = Y oz —)p(0)in)~" = ¢ * g,

teD,, teD,,

in 8¢ (R9), where [(n) can be taken to be equal to n (there, the specific definition
of [(n) was only needed for the second part of the proof). The continuity of f
implies

(£, 9% @)

lim_ <f, > w(xt)w<t)nd>

teD,

= lim > w)E, Tso)n ~= lim > YT, )n ™,

teDy, teDy,

in S'*(Rd) Let x € S;‘(Rd). Then

<nh—>nclo Z w(t)Tt<f7<p>n_daX> = <<f7 <P>’nh_)H;O Z w(t)T—tXn_d>

teD, teD,
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= (£, o), xx) = (¥ * (£, 0),x).

ii) = ii1). Take x,, € Sf (R%), n € Z, to be as in ii) of Lemma 3. Then,
for every 1 € ¢ (R%) we have that v * x,, — 1 in 8! (R9) as n — oo, and hence

(4.12) D x (£, xn) = (£, % xn) = (£,9) as n — oco.

Thus {¢) * (f,xn)|n € Z,} is bounded in S (RY). Lemma P03 implies that
B = {{f, xn)|n € Z4} is bounded in Si* (RY). As St (R9) is Montel, its closure

B is compact and the weak and strong topologies on B coincide. As B is
equicontinuous and S;‘ (R9) is separable, the weak topology on B is metrizable
(cf. [2, Theorem 4.7, p. 87]), hence also the strong topology. Thus, there
exists a subsequence (f,x,,) € B, k € Z,, which converges to f € S](*(Rd).

Now (EI2) implies that (f, ) = 1) * f.
The implication 4ii) = ) is clear. O
If F'is al.c.s., as in [8], we define

Sy (RY F) = 8 (RY)eF = L, ((s;* &%), F) = L, (S;(RY), F),

where the indices € and ¢ stand for the topology of equicontinuous conver-
gence and the topology of compact convex circled convergence, respectively;
the last equality follows from the fact that St (R%) and S (R9) are complete
Montel spaces. If F is complete, since Si* (R9) is nuclear, it satisfies the weak
approximation property, hence Si* (R)eF = S™*(RY)KQF, cf. [8, Proposition
1.4] (for the definition of the € tensor product; for the definition of the weak
approximation property and their connection we refer to [I3] and [R]).

Corollary 4.11. Let f € S%*(Rd,E;(E,yE)). If £ commutes with every transla-

tion in sense of Proposition 10, then there exists f € D, such that £ is of
the form

(4.13) (f,0) =fx¢, ¢eSHRY.
Proof. The proof is analogous to the proof of [, Corollary 6.4]. O

Our results from above implicitly suggest to embed the ultradistribution
space D%, into the space of E'-valued ultradistributions as follows. Define first
the continuous injection ¢ : S%*(Rd) — S (Rd,S]’L*(Rd)), where ((f) = f is
given by (B13). Consider the restriction of ¢ to D,

(4.14) v: D — SR, EL),

(for f € DY, , the range of +(f) is subset of E), by Theorem B9). Let By be an

arbitrary bounded subset of S;(R?). The set B = {¢ x | ¢ € By, |||z < 1}
is bounded in D}, (by Lemma BXR). For f € D%,

sup |[(f, o)l|lpr = sup |[f x@llpr = sup sup [(f,¥*¢)| = sup [(f,x)]-
wEB pEB; pEB [|Y|lp<1 XEB



Translation-invariant spaces of quasianalytic ultradistributions 169

Hence, «(f) € S (R4, EY) (S]T(]Rd) is bornological) and ¢ is continuous. Fur-
thermore, Proposition B0 tells us that L('D/E*;) is precisely the subspace of
S (R4, E') consisting of those f which commute with all translations in the
sense of Proposition EI0. Since the translations T}, are continuous operators on
B, we actually obtain that the range «(D%; ) is a closed subspace of Si* (R EL).

Corollary 4.12. For B C S]'L* (RY) the equivalent conditions from Theorem F-3
are equivalent to the following:

(vi) «(B) is a bounded subset of Si* (R4, E') (or equivalently of S](*(]Rd,Efk))
Proof. (i) = (vi) and (vi) = (i7) are trivial. O

Corollary 4.13. Let {fa}ycpo € D3 be a bounded net (or similarly, a se-
quence). The following statements are equivalent:

(1) {fa}en is convergent in D, .
(@) {e(fr)}ren 18 convergent in Si* (R4 E") (or equivalently in S{*(]Rd,Efk)),

(#it) There exists a convergent bounded net {gx}rea n E' and an ultradiffer-
ential operator P(D) of class * such that each fx = P(D)gy.

(iv) There exists a net {gax}aea C E.NUC,, which is convergent and bounded
in E, and in UC,, and an ultradifferential operator P(D) of class * such
that fx = P(D)gy; if E is reflexive one may choose {gx}rxean € E'NC,.

Proof. We consider the Roumieu case as the Beurling case is similar. Let (i4)

hold. Since the image of DgiM”} under ¢ is a closed subspace of S&Aﬁ } (R, E"),

W(fa) = u(f), for £ € DA As B = {u(f)} U {u(fr)| X € A} is bounded in
Ly (Sfﬁip}}(Rd),EQ, it is equicontinuous (Sf{{xp}} (R%) is barreled) and thus,
there exists (r,) € PR such that the elements of B can be extended to a

—_—

bounded subset B = {u(f)} U {t(fr)| X € A} of Ly (X(r,), EL). Moreover,

L(f/_\;)(go) — L(Af/)(go) for each ¢ in the dense subset S}Zp}} (R?) of X, . Since

—_  —

B is bounded in L (X(,,p),Ef,‘)7 t(fx) = o(f) in L, (X(Tp),E;), the Banach-
Steinhaus theorem implies that it is also bounded in £, (X(rp), E;) Pick now

(rp) € R, with (r;,) < (rp), such that the inclusion Xy — X(.,) is com-

pact. Then the inclusion £, (X, ), E.) = Ly (X (rt)s Efk) is continuous. Thus

t(fx) = o(f) in Ly (X(TL)’ E;) Now one can use a similar technique as in the
proof of (i7) = (iv) of Theorem B to conclude (iii) and similar technique as
in the proof of (i7) = (v) of Theorem B to conclude (iv). The implications
(1) = (1), (413) = (¢) and (iv) = (i) are obvious. O

This corollary implies that the restriction of ¢ on each bounded subset B of
’D/E*; is topological homeomorphism between B and ¢(B).

For the proof of the following two results we refer to [d, Proposition 6.7,
Proposition 6.8]
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Theorem 4.14. The spaces D{EM”} and f)gM"} are tsomorphic as l.c.s.

Proposition 4.15. If E is reflexive, then DEEMP) and Dg,Mp} are (F'S*)-spaces,
DJ{EM”} and DjE(M”) are (DFS*)-spaces. Consequently, they are reflexive. In
addition, S;(R?) is dense in Dp,.

4.3. Weighted DLp spaces

In this subsection we discuss some important examples of the spaces D,
and D7 B where E is taken as a weighted L7 space In the next conslderatlons
we retain the notation exactly as in Example In particular, n is ultra-
polynomially bounded weight of class { and the number q always stands for
pt+q ' =1 (pel,o00]). It should be mentioned that in the case n = 1 and
M, = A, satisfying (M.3) the spaces we study below were considered in [d]
(see also [ ]). The non-quasianalytic case with A, = M, for general weights n
was studied in detail in [d].

Consider now the spaces D7 » L for p € [1, 00] and ’Diw"} defined as in Section

@ by taking £ = LI. We also treat D¢, defined via E= C). Once again, the

case p = o0 is an exception since S (Rd) is not dense in DLOO nor in D! m"}.

Nonetheless, we can repeat the proof of Lemma EZ1 to prove that D{M }

regular and complete. Also, similarly as in Lemmas B=3 and B, one can obtaln

that each ultradifferential operator of * class acts continuously on Dj .. and each
n

ultradifferential operator of {M,,} class acts continuously on 75{%?}. Obviously

D{M Vs continuously injected into 75{(,0 and by using [R, Lemma 3.4] and

employlng a similar technique as in the proof of Lemma B, one can prove that
this inclusion is in fact surjective. We denote by B the space DLOQ and by B*

the closure of Sy (R?) in B;. We denote by l”;’?gM”} the closure of S{{i\{ }} (RY) in

ﬁf‘ﬁp}. We immediately see that BgMp) = Dgf”). In the Roumieu case this is
n

result is given by the following theorem. Its proof is analogous to that of [4,

Theorem 7.2] and we omit it.

Theorem 4.16. The spaces Dgy’“}, By{,M‘”} and l’;’%M’“} are isomorphic one to
another as l.c.s.

Proposition B2 together with the estimate (EZd) (resp. Proposition B2
together with (E)) imply ng — B, for every p € [1,00). It follows from
Proposition B3 that D;, is reflexive when p € (1, c0).

In accordance to Subs],ectlon B2, the weighted spaces D Ly are defined as
Dify = (Dz:_l) where p~1 + ¢ 1 =1if p € (1,00); if p = 1, Df}] =(Dg,) =
(B:;) and for p = oo we define D’L*%C = D¢, = (Dz%)’. We write B = ’Df%o
and B;* for the closure of &7 (RY) in B

For f € D’Ij‘l , by Theorem B9, there exist an ultradifferential operator P(D)
of class * and g € L}] such that f = P(D)g. But, since S; (R9) is dense in L717,
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there exists a sequence g, € S;‘(Rd), n € Z, such that g, — g in L}]. Hence
S]T(]Rd) > fn = P(D)g, — f in D}J*}], ie., S;‘(Rd) is sequentially dense in
Dﬁl. Moreover, as an easy consequence of the Sobolev embedding theorem,
we obtain that ng is continuously injected into C>°(RY) for each p € [1,00).
Since Sf(R?) < S(RY) — C>(R?), Djyp is dense in C>(R%), hence &'(R?)
is continuously injected into D’ *1 . In particular the delta (ultra)distribution

/n
belongs to D7
1

/n

Theorem 4.17. The strong bidual of Bj; s isomorphic to D as l.c.s. In
n
)

the Roumieu case Digp} and @{Mp} are isomorphic l.c.s. Moreover B%Mp is

a distinguished (F')-space and consequently DL(1 ») is barreled and bornological.

Proof. We may assume that 7 is continuous (cf. Example B20). Let 7(x) =
1/ (n(z){z)**'). Then, clearly 7j(z) is a continuous ultrapolynomially bounded

weight of class t and B,’; — DZ%' Since S;‘(Rd) is dense in Df%, we have

/
D’* . This, together with Proposition 13, implies that (D’*l)b

(where b stands for the strong topology) is continuously injected into D3

!/
the elements of (’D’L*l) are smooth functions. In the Roumieu case, we already

L2,1e.,

saw that Diﬂo{” } and D{ o} are equal as sets. First we prove that the bidual of

Bj; is isomorphic to D(L%J’)7 and to @g;p}

and set R, H‘“l ;). Consider the set

respectively. Let r > 0 (let (r,) € R

—1,.]a| Do
BT{(U(Q))]\; D 5¢1 CLGRd7C¥€Nd}
-1 na

One easily proves that B, is a bounded subset of D}, (M ) (B(Tp) is a bounded

/!

subset of D/{M }) Hence if ¢ € (D’iﬁ)b, ¥(B,) (resp. ¢(B(rp))) is bounded in
C and thus

|(n(a)) ' r1* D ()|

sup = sup [{(¢, f)| <
U A sup (¥, F)]
|(n(a)) "' D(a)|
resp. sup = sup [(W,f)]<o0].
( a,o MuR,, fEB(ry) |< >‘

!
We obtain that (D’L*l) C D} - and the inclusion
n

’ -
( /<Mp>> %DEm)v((DL{f””})b%DE?})

n



172 Pavel Dimovski, Bojan Prangoski, Jasson Vindas

is continuous.
Let ¢ € Dj. If f € D}, by Theorem B there exist an ultradifferential
n n

operator P(D) of class * and g € L}7 such that f = P(D)g. Define Sy by

Su(h) = [ a@P(D)(z)dz.

Obviously, the integral on the right hand side is absolutely convergent. We will
’ ~
prove that Sy is a well defined element of (D’L*l) . Let P(D), g € L, be such

that f = P(D)g. Let ¢, € S;(Rd), n € Zy, be as in i) of Lemma 23. Then
it is easy to verify that

/Rd P(=D) (pn(@)y(2)) g(z)dz  — P(=D)¢(x)g(x)dz,

R4
| PED ales@)itds [ PED@ds,
as n — oco. Also, observe that for each n € Z, g, € S]T(Rd) and thus

[ PED) en@iiena@as = splfoontls;
= [, PCD) ulwnite) s

Hence, Sy is a well defined mapping D/L{lM b C, since it does not depend

n
on the representation of f. To prove that it is continuous we consider first
/(Mp)

the Beurling case. The space D, ” is a complete (DF')-space. Thus it is
n

enough to prove that the restriction of Sy, on each bounded subset of D'L(fw")
B

is continuous (see the corollary to [[2, Theorem 6.7, p. 154]), i.e., we have

to prove that if {fy}rea is a bounded net which converges to f in D/L(fw"),
n

then Sy (fa) = Su(f). If {fa}rea is such a net, Corollary I3 implies that

there exists a net {ga}rea C L}] which is bounded and convergent in L,l7 and

an ultradifferential operator P(D) of class (M),) such that fy = P(D)g, and

f = P(D)g where g € L,l7 is the limit of {gx}aea. But then one easily

verifies that g\P(—D)y — gP(—D)v in L', hence Sy(fy) — Sy(f). Thus
/

Sy € (D'L(iwp)> . In the Roumieu case, as D'L{}jw‘?} is an (F)-space one can

! !
similarly prove that S, € (D/L{lM ”}) . We obtain that (D;f””) =D,
n n

/ _ /
(resp. (D/L{lM p}) = Dé{,‘f”}) as sets and (D’L*1> has stronger topology than
n n n/b

1(Mp)

!/
the latter. In the Beurling case, (’DL1 )b is an (F')-space as the strong dual
n

of the (DF)-space D/L(fw”). Hence the open mapping theorem proves that
n

!
(Dgpr))b = D(LAff) as l.c.s. In the Roumieu case, let V' = B° be a neigh-
n n

!
borhood of zero (D’L{lM P})b for B a bounded subset of D/L{IM ”}. By Theorem
n n
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B9, there exist an ultradifferential operator P(D) of class {M,} and bounded
subset By of L717 such that each f € B can be represented by f = P(D)g for
some g € By. There exists C1 > 1 such that ||g[|z; < C1 for all g € By. Also,
since P(D) = > caD* is of {M,} class, there exist (r,) € R and Cy > 1
such that |co| < Cy/(MyRy) (see the proof of Lemma BA). Observe the neigh-
-1 D 1

sap ) D] -
zo Mg Hja:1(7"j/2) 2010203
75%@}, where we put C3 = > 2-12l One easily verifies that W C V. We

n

borhood of zero W = {w € ﬁigp}

/ ~ ~
obtain that (D'L{IN Ip})b and Dﬁ.ﬁp} are isomorphic l.c.s. Hence Df}.fp} is a
n n n

complete (DF')-space (since D/L{IM”} is an (F')-space). As the identity map-
n
ping Dgﬁp} — Dig”} is continuous and bijective, it remains to prove that
n n

. . . . ~ M
the inverse is continuous. Since Dimf’}
a

is a (DF)-space, to prove the continu-
ity of the inverse mapping it is enough to prove that its restriction to every

bounded subset of f)g\o{”} is continuous (see the corollary to [[2, Theorem
n
6.7, p. 154]). If B is a bounded subset of 152%”} then for every (r,) € R,

1D Y| oo (e
sup sup ——— - B9

< oo. Hence, by [R, Lemma 3.4], there exists h > 0
YEB « MaRa

WD Y| o
such that sup sup i B
YEB « M

every bounded subset of Df‘ip} is obviously bounded in f)ﬁ.ﬁp}, Dig”} and
n n n
ﬁiﬁf”} have the same bounded sets. Let ¥ be a bounded net in 25“}.{1’} which
n n

converges to ¢ in 25{]:5”}. Then there exist 0 < h <1 and C > 0 such that
n

0, i.e., B is bounded in Digp}. Since

WDl WD
supsup ———— @ < (C'and sup—— " <
A o Ma 6% Ma

Choose 0 < hy < h. Let € > 0 be arbitrary but fixed. Take pg € Z, such
that (hy/h)lel < ¢/(20) for all |a| > py. Since ¥y — 1 in f)“ﬁp}, for the
n

sequence r, = p, p € Zy, there exists Ag such that for all A > Ay we have

I (2= Wlag e e
MaRa S pO' €en 1or |« Po, we nhave

sup
(63

BT D (r = )
<e
M, =

For |a| > pg, we have

WD (9 — )| o\l
n < - <e.
A < 2C < W ) <e
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{M b and hence in Dig”} We obtain that the

p}

It follows that 1y — 9 in D}

»}

induced topology by pM =" on every bounded subset of DY o is stronger than

the induced topology by D{ oop} Hence the identity mapping DM pe SN D{M '
is continuous. ]
It remains to prove that B,SM") is distinguished. Denote by D(Aff)g the space
o,
D(M’”) equipped with the weak topology from the duality < I(Mp) D(MP)> We
have to prove that each bounded subset of pMr) (the strong bldual of B ”))
M) Let B be

a bounded subset of Dg‘ip). Let ¢, € S((f)) (RY), n € Zy, be the sequence

from 4i) of Lemma EZ3. Then, ¢, € S((Ap) (RY) for each n € Z,, ¢ € B. For
r > 0 one easily verifies that [|ont)|Leer < [|¢l|Loe 27 ¥]| Loe 2. Hence the set

B = {pn¥|n € Z,,¢ € B} is a bounded subset of B(M" . Let ¢ € B and

fe D( 2 By Theorem B, there exist an ultradifferential operator P(D)

of class ( M,) and g € L1 such that f = P(D)g. Then one easily verifies that
D( which proves that B is contalned in the closure of B in D(LJZ)” 37 O
%,

is contained in the closure of a bounded subset of BS;M in D(

L°° o"
4.4. Convolution and multiplication

Our previous work allows us to extend all results on convolution and multi-
plicative products on Dgi from [2, 8] to our spaces. We omit the proofs of the
following propositions because they go in the same lines as those of [2, Theo-
rem 4 and Proposition 11] (adapting them with the aid of our results from the
previous subsections).

Proposition 4.18. We have the (continuous) inclusions D%, — Dj < B
and D’L*}J — D/ék; — B*. If E is reflezive, one has D/L*}, s DF, — B*.

In particular, we have D}, < D* s B* and D’L*l — D'* — B’*

for 1 <p < oo (forp=1in the latter dense 1nc1us10n we have used the fact
S*(Rd) DIL*n)' In addition, Bn — BU*J” and B;]* B"j”.

We can now define multiplicative and convolution operations on D%, . In
the next proposition we denote by O;L’fc}b the space Ofr":C equipped with the

strong topology from the duality <O:rk,C’ (’)fr’fc>.

Proposition 4.19. The convolution mappings * : D’E*i X DIL*E — D/E*; and
*: D x O (R 4y — DY, are continuous. The convolution and multiplicative
products are hypocontinuous in the following cases: - : Dy, X Dz — D,

D’*l x Dy — D}y. and  : D, x Dy — By, When E is reﬂe:m've, we have
w1 D, x DY, = By,
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