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Abstract. Frames in Hilbert spaces generalize orthonormal bases and
allow stable representation of all the elements of the space via a given
frame and its dual frame. Frames are not only interesting from theoreti-
cal point of view, but play significant role in signal and image processing,
which leads to many applications in informatics, engineering, medicine,
and many other fields. In this paper we give a short survey on the the-
ory for frames in Hilbert spaces, with focus on the duality principle and
related open problems. It is the author’s hope that this presentation will
contribute to the solution of some of the deep problems that remain open
despite the intensive development of frame theory during the last decade.
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1. Introduction and Notation

The purpose of this paper is to give a self-contained introduction to some of
the central ingredients in frame theory, with particular focus on the parts that
are important in the analysis of the so-called R-duals. Frames are sequences
of elements in Hilbert spaces that can be used to obtain decompositions of ele-
ments in the Hilbert spaces of similar types as the well known ones arising from
orthonormal bases; however, in contrast with the ONB case, the corresponding
coefficients are not necessarily unique.

R-duals were introduced by Casazza, Kutyniok and Lammers in 2004, in an
attempt to generalize the famous duality principle for Gabor frames. Essen-
tially, the duality principle is a result that allows to check the frame condition
for so-called Gabor systems in a conceptually simpler way. The R-duals provide
a tool with a similar property for arbitrary sequences in general Hilbert spaces;
however, at present it is not known whether the theory for R-duals is actually
a generalization of the duality principle. We will discuss the known (partial)
results about R-duals, as well as a variant defined recently by the author and
Christensen (the so-called R-duals of type III). The hope is that the current
survey will contribute to a clarification of the remaining open problems.
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The paper is organized as follows. In Section 2, the frame concept is in-
troduced and characterization of frames based on the analysis, synthesis, and
frame operators are given. Operators which keep the frame-property are con-
sidered. The optimal frame bounds of a frame are related to the operators
associated to the frame. Some basic examples of frames are given. Further, the
class of frames which are at the same time Schauder bases (the so called Riesz
bases) are considered. Characterizations of Riesz bases are given, equivalent
conditions for a frame to be a Riesz basis are listed, and operators which pre-
serve the Riesz basis property are considered. The possibility to reconstruct
every element in the space based on the frame elements and a dual frame is
a very important frame-property. In Section 3 we briefly consider this topic.
Characterizations of all the dual frames of a frame are given (based on appro-
priate operators and based on the use of Bessel sequences). Tight frames and
their convenient representation-formulas are discussed. The ranges of the anal-
ysis operators of the dual frames are considered. For comprehensive exposition
of material on frames and in particular, on Gabor frames, see [4, 9, 17, 18].
Section 4 is devoted to the topic of the duality principle. First, Gabor frames
and the duality principle in Gabor analysis are recalled. Then R-duals and the
duality principle based on them in general Hilbert spaces are considered. The
R-duals cover the duality principle for Gabor tight frames and Gabor Riesz
bases; for the rest of the Gabor frames it is still an open question. As a relax-
ation of R-duals, R-duals of type IV are considered, but one of their properties
moves away from the desired duality principle. Finally, we consider the so
called R-duals of type III. The class of R-duals III is between the R-duals and
R-duals IV, and it covers the duality principle for all Gabor frames.

We end the current section with some notation. The letter H denotes
a separable Hilbert space and I denotes a countable index set. The notion
operator is used for a linear mapping. For a ∈ R, Ta denotes the translation
operator from L2(R) into L2(R) given by

(Taf)(x) = f(x− a)

and Ea : L2(R) → L2(R) denotes the modulation operator from L2(R) into
L2(R) given by

(Eaf)(x) = e2πiaxf(x).

The letter G (resp. F ) denotes a sequence {gi}i∈I (resp. {fi}i∈I) with ele-
ments fromH. Given operator L, its domain is denoted by dom(L), its range by
ran(L), and its kernel - by ker(L). Given sequence G, we will use the following
operators:

- the analysis operator UG given by UGh := {⟨h, gi⟩}i∈I for h ∈ dom(UG) ={
f ∈ H : {⟨f, gi⟩}i∈I ∈ ℓ2

}
;

- the synthesis operator TG given by TG{ci}i∈I :=
∑

i∈I cigi for {ci}i∈I ∈
dom(TG) =

{
{di}i∈I ∈ ℓ2 :

∑
i∈I digi converges in H

}
;

- the ’frame’ operator SG given by SGh :=
∑

i∈I⟨h, gi⟩gi for h ∈ dom(SG) ={
f ∈ H :

∑
i∈I⟨f, gi⟩gi converges in H

}
.
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2. Frames

First recall that a sequence G is a Schauder basis of H if every h ∈ H can
be represented as

∑
i∈I cigi with unique coefficients {ci}i∈I ; a sequence G is an

orthonormal basis of H if it is a Schauder basis of H and ⟨gi, gj⟩ = δi,j , ∀i, j.
As it is well known, every orthonormal basis {ei}i∈I for H satisfies the Parseval
equality:

(2.1)
∑
i∈I

|⟨h, ei⟩|2 = ∥h∥2, ∀h ∈ H.

Extending the concept of an orthonormal basis, the frame concept was
introduced by Duffin and Schaeffer [16] in 1952:

Definition 2.1. [16] A (non-zero) sequence G is called a frame for H if there
exist positive constants A,B so that

(2.2) A∥h∥2 ≤
∑
i∈I

|⟨h, gi⟩|2 ≤ B∥h∥2, ∀h ∈ H.

The constant A (resp. B) is called a lower (resp. upper) frame bound of G. The
supremum of all lower frame bounds of G is also a lower frame bound of G and
it is called the optimal lower frame bound of G; the infimum of all upper frame
bounds is also an upper frame bound of G and it is called the optimal upper
frame bound of G. The frame is called tight when its optimal frame bounds
coincide.

For validity of the frame condition, it is actually enough to check the in-
equalities for a dense subset:

Proposition 2.2. [9, Lem. 5.1.7] Assume that there exist positive constants
A,B so that

A∥h∥2 ≤
∑
i∈I

|⟨h, gi⟩|2 ≤ B∥h∥2 for all h in a dense subset of H.

Then G is a frame for H with frame bounds A,B.

Frames can be characterized based on the analysis, synthesis, and frame
operators:

Proposition 2.3. ([16], [9, Sec. 5], and [8, Theor. 2.1]) The sequence G is a
frame for H if and only if any one of the following statements hold.

(i) The analysis operator UG is well defined from H into ℓ2 (hence bounded),
injective and has a closed range ran(UG). In this case the inverse operator
U−1
G : ran(UG) → H is bounded with ∥U−1

G ∥ ≤ 1/
√
A.

(ii) The synthesis operator TG is well defined from ℓ2 into H (hence bounded)
and surjective.
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(iii) The frame operator SG is well defined from H into H (hence bounded)
and surjective. In this case SG is furthermore bijective, self-adjoint, and
positive; if A and B are frame bounds of SG, then A IdH ≤ SG ≤ B IdH.

Some of the above properties of the frame-related operators can already be
found in the first paper [16].

As a consequence of Proposition 2.3(ii), one can say that the frames for H
are precisely the sequences {Lδi}i∈I where L : ℓ2 → H is a bounded surjective
operator and {δi}i∈I is the canonical basis of ℓ2, or equivalently:

Proposition 2.4. [9, Theor. 5.5.5] Let {ei}i∈I denote an orthonormal basis
of H. The frames for H are precisely the sequences {Lei}i∈I where L : H → H
is a bounded surjective operator.

The above characterization of the class of frames is done via operators acting
on a basis. Another approach would be to start from a frame and aim to obtain
a frame as well. Such approach is considered by Aldroubi:

Proposition 2.5. [1] Let G be a frame for H and let V : H → H be a bounded
operator. The sequence {V gi}i∈I is a frame for H if and only if there exists a
positive constant γ so that

(2.3) ∥V ∗v∥2H ≥ γ∥v∥2H, ∀v ∈ H.

As it is well known (see, e.g., [23, Theor. 4.15]), (2.3) is equivalent to sur-
jectivity of V . So, again the surjectivity plays role as in the case of operators
acting on orthonormal bases (Prop. 2.4).

The optimal frame bounds of a frame can be expressed via the associated
analysis, synthesis, and frame operator:

Proposition 2.6. [9, Prop. 5.4.4 and Theor. 5.4.3] Let G be a frame for H.
Then the optimal frame bounds Aopt, Bopt of G fulfill

Aopt = ∥U−1
G ∥−2 = ∥T †

G∥
−2 = ∥S−1

G ∥−1, Bopt = ∥UG∥2 = ∥TG∥2 = ∥SG∥,

where T †
G is the pseudo-inverse of TG, i.e., the analysis operator of the sequence

{S−1
G gi}i∈I .

Below we list some simple examples of frames and non-frames [9, 12, 18, 19].

Example 2.7. Let {ei}∞i=1 be an orthonormal basis of H. Then the following
holds:

(i) {ei}∞i=1 is a tight frame for H (Aopt = Bopt = 1);

(ii) {e1, e2√
2
, e2√

2
, e3√

3
, e3√

3
, e3√

3
, ...} is a tight frame for H (Aopt = Bopt = 1);

(iii) {e1, e1, e2, e3, e4, ...} is a frame for H (Aopt = 1, Bopt = 2);

(iv) {2e1, e2, e3, e4, ...} is a frame for H (Aopt = 1, Bopt = 4);
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(v) {e1, e22 ,
e3
3 , ...} is not a frame for H (it satisfies the upper frame condition,

but not the lower one);

(vi) {e1, 2e2, 3e3, ...} is not a frame forH (it satisfies the lower frame condition,
but not the upper one).

(vii) {δ1,−1
2 δ1+

√
3
2 δ2,− 1

2 δ1−
√
3
2 δ2} is a frame for R2 (A = B = 3/2), where

δ1 = (1, 0) and δ2 = (0, 1) is the canonical basis for R2.

As the above examples show, one may construct simple frames using a
Schauder basis (based for example on an orthonormal basis) and adding some
elements. However, not all the frames can be constructed in such a way
(Schauder basis and some more elements) - for every Hilbert space, there exists
a frame such that no subset is a Schauder basis of the space [6]. Note that al-
though a frame does not need to be an orthonormal basis, nor even a Schauder
basis, it is always complete in the space (see Prop. 2.3(ii)).

Below we list some more examples of frames which are not in the spirit of
Example 2.7, but are based on some appropriate modifications of a function
from L2(R). Such frames are very important for applications. For example,
frames consisting of translations and modulations of a function (the so called
Gabor frames) and frames consisting of translations and dilations of a function
(the so called wavelet frames) play significant role in signal and image process-
ing, which has broad applications to physics, engineering, medicine, and many
other areas.

Example 2.8. (a Gabor frame) Let g(x) = π−1/4e−x2/2. For appropriate a>0
and b > 0, the Gabor system

{
e2πimbxg(x− na)

}
m,n∈Z is a frame for L2(R).

More information concerning this example can be found in [12].

Example 2.9. (a wavelet frame) Let ψ(x) = (1−x2)e−x2/2, the so called mex-

ican hat. Then for appropriate a > 0, b > 0, the wavelet system {a−
j
2ψ(a−jx−

bk)}j,k∈Z is a frame for L2(R). More on this example can be found in [13].

Example 2.10. (a wavelet frame, orthonormal basis) Consider the function

ψ(x) =


1, x ∈ [0, 12 ),

−1, x ∈ [ 12 , 1),

0, otherwise.

Then the wavelet system

(2.4) {2
j
2ψ

(
2jx− k

)
}j,k∈Z

is a frame (actually, an orthonormal basis) for L2(R), called the Haar basis.
This is the oldest known example of a function ψ for which the system of the
type (2.4) forms an orthonormal basis of L2(R) (Haar, 1910). For more on the
Haar basis, see [13].
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2.1. Riesz bases

In the next subsection we consider the class of those frames, which are in
addition Schauder bases - the so called Riesz bases.

Definition 2.11. [27, Ch.1 Sec.8] A sequence G is called a Riesz basis for H if
it is equivalent to an orthonormal basis, i.e., a sequence of the form {Lei}i∈I ,
where L : H → H is a bounded bijective operator and {ei}i∈I is an orthonormal
basis of H.

The next statement gives an equivalent definition for a Riesz basis:

Proposition 2.12. [27, Ch.1 Sec.8, Theor. 9] A sequence G is a Riesz basis
for H if and only if it is complete in H and there exist positive constants A,B
so that

(2.5) A
∑
i∈I

|ci|2 ≤ ∥
∑
i∈I

cigi∥2 ≤ B
∑
i∈I

|ci|2, for all finite sequences {ci}

(hence, for all {ci}i∈I ∈ ℓ2).

The positive constant A (resp. B) in (2.5) is called a lower (resp. upper)
Riesz bound of G. The supremum of all lower Riesz bounds of G is also a
lower Riesz bound of G and it is called the optimal lower Riesz bound of G; the
infimum of all upper Riesz bounds is also an upper Riesz bound of G and it is
called the optimal upper Riesz bound of G.

Compare the definition of a Riesz basis to Proposition 2.4 which determines
the frames. For a Riesz basis one needs a bounded bijective operator, while for
frames it is enough to use bounded surjective operators. Thus, all the Riesz
bases are actually frames and furthermore, the Riesz bounds correspond to the
frame bounds:

Proposition 2.13. [9, Theor. 5.4.1] Every Riesz basis for H is a frame for H
and its optimal Riesz bounds coincide with its optimal frame bounds.

As frames were characterized based on the analysis, synthesis, and frame
operators (Prop. 2.3), Riesz bases can also be characterized based on these
three operators.

Proposition 2.14. [9, 2] The sequence G is a Riesz basis for H if and only if
any one of the following statements hold:

(i) dom(UG) = H and UG is bijective.

(ii) dom(TG) = ℓ2 and TG is bijective.

(ii) dom(SG) = H, SG is bijective, and {S−1
G gi}i∈I is biorthogonal to G.

As a consequence of the above and by [9, Theor. 6.1.1], one can give a
characterization of those frames which are Riesz bases:
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Proposition 2.15. [9, Theor. 6.1.1] Let G be a frame for H. The following
statements are equivalent:

(i) G is a Riesz basis for H.

(ii) G is a Schauder basis for H.

(iii) UG is surjective.

(iv) TG is injective.

(v) G has a biorthogonal sequence.

(vi) G and {S−1
G gi}i∈I are biorthogonal.

Thus, one can split the class of frames for H into two subclasses:
- the frames for H which are at the same time Schauder bases of H (these

are precisely the Riesz bases for H);
- the frames for H which are not Schauder bases of H (such frames are

called overcomplete frames).

Let {ei}∞i=1 be an orthonormal basis of H. As simple examples of Riesz bases
of H, see Example 2.7(i),(iv); the rest of the sequences in Example 2.7 are not
Riesz bases for H. As a further example, consider the sequence {ei+ 1

i ei+1}∞i=1,
which is a Riesz basis for H [5].

We end this subsection with an analogue to Proposition 2.5:

Proposition 2.16. [25] Let G be a Riesz basis for H and let V : H → H
be a bounded operator. The sequence {V gi}i∈I is a Riesz basis for H if and
only if V is bijective. Furthermore, the boundedness of V is also a necessary
condition, i.e., if V : lin{gi} → H and {V gi}i∈I is a Riesz basis for H, then V
is bounded.

2.2. Frame sequences and Riesz sequences

While frames and Riesz bases are complete in the Hilbert space under con-
sideration, it is also of interest to consider sequences which are not complete,
but satisfy the frame or Riesz basis property just for the closed linear span.

Definition 2.17. A sequence G is called a frame sequence (resp. Riesz se-
quence) if it is a frame (resp. Riesz basis) for the closed linear span of its
elements.

Note that when we speak about bounds of a frame or a frame sequence, we
always mean the frame bounds; when we speak about bounds of a Riesz basis or
a Riesz sequence, we mean the Riesz bounds (which are actually frame bounds,
see Prop. 2.13).

Let {ei}∞i=1 be an orthonormal basis of H. As a simple example of a frame
sequence (resp. Riesz sequence) consider the sequence {e2, e2, e3, e3, e4, e4, . . .}
(resp. the sequence {e2, e3, e4, . . .}).

The next statement gives some characterizations of frame sequences.
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Proposition 2.18. [9, Corol. 5.5.2 and 5.5.3] The following statements are
equivalent:

(i) G is a frame sequence.

(ii) dom(UG) = H and ran(UG) is closed.

(iii) dom(TG) = ℓ2 and ran(TG) is closed.

3. Dual frames

When {ei}i∈I is an orthonormal basis for H, then every element h ∈ H can
be represented via the basis-elements in the way

(3.1) h =
∑
i∈I

⟨h, ei⟩ei

with unique coefficients ⟨h, ei⟩, i ∈ I. Although frames are not necessarily
orthonormal bases, they still allow representations of the space-elements via a
formula similar to (3.1):

Proposition 3.1. Let G be a frame for H. Then there exists a frame F for
H so that

(3.2) h =
∑
i∈I

⟨h, fi⟩gi = ⟨h, gi⟩fi, ∀h ∈ H;

such a frame F is called a dual frame of G.

Based on the frame operator, one can determine a specific dual frame:

Proposition 3.2. [16] Let G be a frame for H with frame bounds A,B. Then
the sequence {S−1

G gi}i∈I is a dual frame of G (called the canonical dual of G)
and it has frame bounds 1/B, 1/A.

Tight frames are very convenient to use in applications, because they pro-
vide representation-formulas with very easy and fast computations: if A > 0 is
the bound of a tight frame G, then SG = A IdH, the canonical dual of G is the
sequence { 1

Agi}i∈I , and the following representation-formula holds

(3.3) h =
1

A

∑
i∈I

⟨h, gi⟩gi, ∀h ∈ H.

The converse of the above statement also holds:

Proposition 3.3. (see [9, Lemma 5.7.1]) Let G be a frame for H and A > 0.
Then (3.3) holds if and only if G is tight with frame bound A.
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The above statement is also interesting in the sense that it characterizes
all the sequences which satisfy the Parseval equality (2.1). It is not only the
orthonormal bases, but all the tight frames with bound 1 which satisfy (2.1).
As an example of a tight frame with bound 1 which is not an orthonormal
basis, see the sequence in Example 2.7(ii).

The next statement determines the frames which have more then one dual
frame.

Proposition 3.4. Let G be a frame for H. The following statements hold.

(i) [9, Theor. 3.6.3 and 5.4.1] If G is a Riesz basis for H, then it has a unique
dual frame (the canonical dual) which is also a Riesz basis for H and it
is biorthogonal to G.

(ii) [9, Lemma 5.6.1] If G is an overcomplete frame for H, then in addition
to the canonical dual, G has other dual frames.

Thus, for an overcomplete frame G for H, one has many representations of
the form

(3.4) h =
∑
i∈I

⟨h, fi⟩gi, ∀h ∈ H,

using different possibilities for a dual frame F of G (including the canonical
dual). The canonical dual has the ℓ2-minimal property in the sense that for
any h ∈ H, the coefficients {⟨h, fi⟩}i∈I in (3.4) have minimal ℓ2-norm when
F is the canonical dual of G compare to F being any other dual frame of G.
More general, the following statement holds:

Proposition 3.5. [9, Lemma 5.4.2] Let G be a frame for H. If h ∈ H is
written as h =

∑
i∈I cigi for some coefficients {ci}i∈I , then∑

i∈I

|ci|2 =
∑
i∈I

|⟨h, S−1
G gi⟩|2 +

∑
i∈I

|ci − ⟨h, S−1
G gi⟩|2.

Even though the canonical dual has some special properties, for example
the ℓ2-minimality-property, for some applications other dual frames might be
of interest. For example, when frames with specific structure are used, then
it might be useful for particular application to use representations based on
a dual frame with the same structure. In this sense Gabor frames are nice,
the canonical dual of a Gabor frame is always a Gabor frame. In contrary, as
determined in [11, 12], the canonical dual of a wavelet frame is not necessarily
with the wavelet structure. In [14] one can find an example of a wavelet frame,
whose canonical dual is not a wavelet frame, but there are infinitely many other
dual frames having the wavelet-structure. This motivates the consideration of
dual frames other then the canonical dual. Below we consider characterizations
of all the dual frames of a given frame.
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3.1. Characterization of the dual frames

We consider two type of characterizations of all the dual frames - one char-
acterization based on the use of appropriate operators (Prop. 3.6) and another
characterization done using Bessel sequences (Prop. 3.7). Recall that a se-
quence G is called a Bessel sequence in H if there exists a positive constant B
so that

∑
i∈I |⟨h, gi⟩|2 ≤ B∥h∥2 for all h ∈ H.

Proposition 3.6. [21] Let G be a frame for H and let {δi}i∈I denote the
canonical basis of ℓ2. Then the dual frames of G are precisely the sequences
{V δi}i∈I with V being a bounded left inverse of UG.

Proposition 3.7. [21] Let G be a frame for H. Then the dual frames of G are
precisely the sequencesS−1

G gi + hi −
∑
j∈I

⟨S−1
G gi, gj⟩hj


i∈I

,

where {hi}i∈I runs through the Bessel sequences in H.

3.2. On the range of the analysis operators of the dual frames

A Riesz basis G has a unique dual frame, which is also a Riesz basis and the
range of its analysis operator is ℓ2 (see Prop. 2.14(i) and Prop. 3.4). When G is
an overcomplete frame, then any dual frame of G is also an overcomplete frame
and the range of its analysis operator is a strict subset of ℓ2. A natural question
would be whether one can cover ℓ2 using the ranges of the analysis operators
of the different dual frames and the answer is given in the next statement:

Proposition 3.8. [3] Let G be a frame for H. Then the closure of the union
of all sets ran(UGd), where Gd runs through the dual frames of G, is ℓ2.

Furthermore, the set of the dual frames determines a frame in unique way:

Proposition 3.9. [3] Let G and Ψ be frames for H. If every dual frame of G
is also a dual frame of Ψ, then Ψ = G.

In particular, it follows that the set of the dual frames of one frame can not
be a strict subset of the set of the dual frames of another frame.

4. Duality principle

The duality principle is one of the strongest results in Gabor analysis. Here
we discuss the duality principle and its extension to general Hilbert spaces.

We begin the section recalling Gabor systems, i.e. systems which are defined
based on translations and modulations of a fixed function in L2(R):

Definition 4.1. Let g ∈ L2(R) and a, b > 0. The sequence {EmbTnag}m,n∈Z
is called a Gabor system. A Gabor system is called a Gabor frame (resp. Gabor
Riesz basis) if it is a frame (resp. Riesz basis) for L2(R). A Gabor system
is called a Gabor frame sequence (resp. Gabor Riesz sequence) if it is a frame
sequence (resp. Riesz sequence).
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Given a Gabor system {EmbTnag}m,n∈Z, some values of the product ab are
important to determine whether we have a Gabor frame, Gabor Riesz basis, or
non-frame:

Theorem 4.2. [9, Theor. 8.3.1] Let g ∈ L2(R) and a, b > 0. Then the
following statements hold.

(i) If ab > 1, then {EmbTnag}m,n∈Z is not a frame for L2(R).

(ii) If {EmbTnag}m,n∈Z is a frame for L2(R), then

{EmbTnag}m,n∈Z is a Riesz basis for L2(R) if and only if ab = 1.

The above statement gives a sufficient condition for a Gabor system not to
be a frame, and distinguishes Riezs bases and overcomplete frames ones it is
known that the system is a frame. For sufficient conditions for a Gabor system
to form a frame and more on Gabor frames, see, e.g., [9, 17, 19]. Here we will
mainly concentrate on the duality principle.

4.1. Duality principle in Gabor analysis

The duality principle is one of the strongest results in Gabor analysis. It was
discovered at the same time by Janssen [20], Daubechies, Landau, and Landau
[15], and Ron and Shen [22]. The duality principle relates a Gabor system
with respect to a lattice (na,mb)n,m∈Z to the Gabor system with respect to
the lattice (n/b,m/a)n,m∈Z:

Theorem 4.3. [15, 20, 22] Let g ∈ L2(R) and a, b > 0 be given. Then the Gabor
system {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B if and only if
the Gabor system { 1√

ab
Em/aTn/bg}m,n∈Z is a Riesz sequence with bounds A,B.

Having in mind Theorem 4.2, one obtains the following known relation:

Proposition 4.4. Let g ∈ L2(R) and a, b > 0 be given. Then the Gabor system
{EmbTnag}m,n∈Z is a Riesz basis for L2(R) with bounds A,B if and only if the
Gabor system { 1√

ab
Em/aTn/bg}m,n∈Z is a Riesz basis for L2(R) with bounds

A,B.

The above two statements are the central point of our consideration in this
section. The aim is to consider extension of these statements to general Hilbert
spaces.

4.2. Duality principle in abstract Hilbert spaces

R-duals of type I

In 2014, Casazza, Kutyniok, and Lammers [7] aimed to obtain an analogue of
the duality principle to general Hilbert spaces. They introduced the concept
of R-duals of a frame as follows:
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Definition 4.5. [7] Let {ei}i∈I and {hi}i∈I denote orthonormal bases for H,
and let {fi}i∈I be any sequence in H for which

∑
i∈I |⟨fi, ej⟩|2 < ∞, ∀j ∈

I. The R-dual of {fi}i∈I with respect to the orthonormal bases {ei}i∈I and
{hi}i∈I is defined as the sequence {ωj}j∈I given by

ωj =
∑
i∈I

⟨fi, ej⟩hi, j ∈ I.(4.1)

Since we will also consider other versions of R-duals (called R-duals of type
III and R-duals of type IV), from now on we will refer to {ωj}j∈I in (4.1) as
an R-dual of type I of {fi}i∈I .

The following statements give an analogue of Theorem 4.3 and Proposition
4.4 to general Hilbert spaces.

Theorem 4.6. [7] Let {ei}i∈I and {hi}i∈I denote orthonormal bases for H,
and let {fi}i∈I be any sequence in H for which

∑
i∈I |⟨fi, ej⟩|2 < ∞ for all

j ∈ I. Define the R-dual {ωj}j∈I of type I as in (4.1). Then the following hold:

(i) {fi}i∈I is a frame for H with bounds A,B if and only if {ωj}j∈I is a
Riesz sequence in H with bounds A,B.

(ii) {ωj}j∈I is a Riesz basis for H if and only if {fi}i∈I is a Riesz basis for
H.

(iii) fi =
∑

j∈I⟨ωj , hi⟩ej for all i ∈ I, implying that {fi}i∈I is an R-dual
of type I of {ωj}j∈I with respect to the orthonormal bases {hi}i∈I and
{ei}i∈I .

The above analogue of the duality principle has naturally led the authors
of [7] to the question whether the Gabor system { 1√

ab
Em/aTn/bg}m,n∈Z is an

R-dual of type I of {EmbTnag}m,n∈Z and they have answered partially, giving
affirmative answer for two classes of frames:

Theorem 4.7. [7] Assume that {EmbTnag}m,n∈Z is a tight frame or a Riesz
basis for L2(R). Then { 1√

ab
Em/aTn/bg}m,n∈Z can be realized as an R-dual of

type I of {EmbTnag}m,n∈Z with respect to certain choices of orthonormal bases
{em,n}m,n∈Z and {hm,n}m,n∈Z.

It is still an open question whether the above theorem holds for overcomplete
frames which are not tight.

In the next subsection we consider a natural relaxation of the R-duals of type
I (the so called R-duals of type IV), using Riesz bases instead of orthonormal
bases. However, in this way the concept becomes too general. Then we consider
another relaxation of the R-duals of type I (called R-duals of type III), give an
analogue to the duality principle and show that for any frame {EmbTnag}m,n∈Z
for L2(R), the Gabor system { 1√

ab
Em/aTn/bg}m,n∈Z can be written as an R-

dual of type III of {EmbTnag}m,n∈Z.
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Below we discuss characterizations of the R-duals of type I. By Theorem
4.6, a necessary condition for a Riesz sequence to be an R-dual of type I of
a frame {fi}i∈I is to have the same optimal bounds as {fi}i∈I . In [7], one
more necessary condition for a Riesz sequence to be an R-dual of type I is
determined:

Lemma 4.8. [7] If {fi}i∈I is a frame for H and {ωj}j∈I is an R-dual of type
I of {fi}i∈I , then

dim(kerTF ) = dim(span{ωj}⊥j∈I).(4.2)

The next two examples show that in general the condition (4.2) and same
optimal bounds are not sufficient. The first example concerns the Riesz basis
case and the second one - the overcomplete case.

Example 4.9. [24] Let {zi}∞i=1 be an orthonormal basis for H. Consider the
Riesz bases {fi}∞i=1 = {

√
2z1, z2,

√
2z3,

√
2z4,

√
2z5,

√
2z6, . . .} and {vj}∞j=1 =

{
√
2z1, z2, z3, z4, z5, . . .}. Both {fi}∞i=1 and {vj}∞j=1 have optimal bounds A = 1,

B = 2, and (4.2) holds. However, {νj}∞i=j is not an R-dual of type I of {fi}∞i=1.

Example 4.10. Let {zi}∞i=1 be an orthonormal basis for H. Consider the
overcomplete frame {fi}∞i=1 = {z1, z1, z2, z3, z3, z4, z5, z5, z6, . . .} for H and the
Riesz sequence {gj}∞j=1 = (

√
2z1, z3, z5, z7, z9, . . .). Both {fi}∞i=1 and {gj}∞j=1

have the same optimal bounds A = 1, B = 2, and (4.2) holds. However,
{gj}∞j=1 can not be written as an R-dual of type I of {fi}∞i=1. Indeed, assume
that there exist orthonormal bases {ei}i∈I and {hi}i∈I for H so that gj =∑∞

i=1⟨fi, ej⟩hi, j ∈ N. Then for every n ∈ N, z2n+1 = gn+1 =
∑∞

i=1⟨fi, en+1⟩hi,
which implies that ⟨z2n+1, hi⟩ = ⟨fi, en+1⟩ for all i ∈ N. Then for every n ∈ N,

1 = ∥z2n+1∥2 =
∞∑
i=1

|⟨z2n+1, hi⟩|2 =
∞∑
i=1

|⟨fi, en+1⟩|2

=
∞∑
i=1

|⟨zi, en+1⟩|2 +
∞∑
i=1

|⟨z2i−1, en+1⟩|2 = 1 +
∞∑
i=1

|⟨z2i−1, en+1⟩|2.

Therefore, en+1 ⊥ z2i−1, ∀i ∈ N,∀n ∈ N. In particular, this implies that
z1 ⊥ ei, ∀i ≥ 2, and z3 ⊥ ei, ∀i ≥ 2, which is a contradiction.

As shown in the above examples, for a non-tight frame {fi}i∈I and a Riesz
sequence {ωj}j∈I with the same optimal bounds, the condition (4.2) is not
sufficient for {ωj}j∈I to be an R-dual of type I of {fi}i∈I . However, for tight
frames, this condition is sufficient:

Proposition 4.11. [24] Let {fi}i∈I be a tight frame for H and let {ωj}j∈I be
a tight Riesz sequence in H with the same bound. Then {ωj}j∈I is an R-dual
of type I of {fi}i∈I if and only if (4.2) holds.
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R-duals of type IV

The R-duals of type I are known to cover the duality principle for the tight
Gabor frames and the Gabor Riesz bases. It is still an open question whether
they cover the duality principle for the rest of the Gabor frames. A natural
approach would be to consider a larger set then the set of the R-duals of
type I with the aim to cover the duality principle for all Gabor frames. The
simplest way to enlarge the set of the R-duals of type I would be to replace
the orthonormal bases in Definition 4.5 by Riesz bases. However, Proposition
4.12(i) below will show that in this way the frame bounds are not necessarily
kept, which will move us away from the main aim to obtain an analogue of the
duality principle.

The use of Riesz bases have been considered in the more general setting of
Banach spaces by Xiao and Zhu [26] and the statement below is a particular
case of their general statement in the Banach space setting.

Proposition 4.12. [26] Let {ai}i∈I and {bi}i∈I be Riesz bases for H with
bounds Aa, Ba and Ab, Bb, respectively, and with canonical duals {ãi}i∈I and

{b̃i}i∈I , respectively. Let {fi}i∈I be a sequence with elements from H so that
(⟨fi, aj⟩)i∈I ∈ ℓ2, ∀j ∈ I. Consider the sequence {θj}j∈I defined by

(4.3) θj :=
∑
i∈I

⟨fi, aj⟩bi, j ∈ I

(according to the notions in [24], the so called R-dual of type IV of {fi}i∈I with
respect to {ai}i∈I and {bi}i∈I). Then the following statements hold.

(i) If {fi}i∈I is a frame for H with bounds AF , BF , then {θj}j∈I is a Riesz
sequence with bounds AaAbAF , BaBbBF .

If {θj}j∈I is a Riesz sequence with bounds AΘ, BΘ, then {fi}i∈I is a
frame for H with bounds B−1

a B−1
b AΘ, A

−1
a A−1

b BΘ.

(ii) {θj}j∈I is a Riesz basis for H if and only if {fi}i∈I is a Riesz basis for
H.

(iii) fi =
∑

j∈I⟨θj , b̃i⟩ãj for all i ∈ I, implying that {fi}i∈I is an R-dual of

type IV of {θj}j∈I with respect to the Riesz bases {b̃i}i∈I and {ãi}i∈I .

R-duals of type III

As one can see above, some properties of R-duals of type IV (Prop. 4.12(ii)(iii))
are similar to the corresponding properties of the R-duals of type I (Theor.
4.6(ii)(iii)). However, contrary to the fact that R-duals of type I keep the frame
bounds (Theor. 4.6(i)), R-duals of type IV do not necessarily keep the frame
bounds (Prop. 4.12(i)). This has motivated the authors of [24] to introduce a
class of R-duals, which is between the class of the R-duals of type I and the
R-duals of type IV, and where the frame bounds are kept.
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Before writing the definition of R-duals of type III, recall that given a frame
G for H, the frame operator SG is bijective and positive, and thus SG and S−1

G

have square roots. When G is a just a frame sequence, the operator SG is
considered as a bijection on the closed linear span of the elements of G.

Relaxing the definition of R-duals I and tighten the definition of R-duals
IV, we consider the following type of R-duals:

Definition 4.13. [24] Let F = {fi}i∈I be a frame sequence in H. Let {ei}i∈I

and {hi}i∈I denote orthonormal bases for H and Q : H → H be a bounded
bijective operator with ∥Q∥ ≤

√
||S|| and ∥Q−1∥ ≤

√
||S−1||. The R-dual

of type III of {fi}i∈I with respect to the triplet ({ei}i∈I , {hi}i∈I , Q), is the
sequence {ωj}j∈I defined by

(4.4) ωj :=
∑
i∈I

⟨S−1/2
F fi, ej⟩Qhi j ∈ I.

Given a frame {fi}i∈I for H, it is clear that an R-dual of type III of {fi}i∈I

is also an R-dual of type IV of {fi}i∈I . When {fi}i∈I is just assumed to be a
frame sequence, at first glance (4.4) does not look like an R-dual of type IV of

{fi}i∈I , because S
−1/2
F is just defined on the closed linear span of {fi}i∈I and

not necessarily defined on all ej , j ∈ I. However, S
−1/2
F can be extended to a

bounded bijective self-adjoint operator V on H (see [24, Lemma 1.3]) and thus
(4.4) can be written as

ωj :=
∑
i∈I

⟨fi, V ej⟩Qhi, j ∈ I,

which is an R-dual of type IV of {fi}i∈I . Thus, for a frame sequence, the class
of the R-duals of type III is contained in the class of R-duals of type IV. That
R-duals of type I of a frame are contained in the class of R-duals of type III is
not an obvious fact either, but it holds true, see Proposition 4.17.

For R-duals of type III, we obtain an analogue to the duality principle
and similar properties compare to the properties of R-duals of type I listed in
Theorem 4.6:

Theorem 4.14. [24] Let {fi}i∈I be a frame sequence in H and let {ωi}i∈I be
an R-dual of {fi}i∈I of type III with respect to the triplet ({ei}i∈I , {hi}i∈I , Q).
Then the following statements hold.

(i1) {fi}i∈I is a frame for H if and only if {ωj}j∈I is a Riesz sequence; in
the affirmative case the bounds for {fi}i∈I are also bounds for {ωj}j∈I .

(i2) {fi}i∈I is a Riesz sequence if and only if {ωj}j∈I is a frame for H; in
the affirmative case the bounds for {fi}i∈I are also bounds for {ωj}j∈I .

(ii) {ωj}j∈I is a Riesz basis for H if and only if {fi}i∈I is a Riesz basis for
H.
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(iii) If {fi}i∈I is a frame for H, then fi =
∑

j∈I⟨Q−1ωj , hi⟩S1/2ej for all
i ∈ I, not implying automatically that {fi}i∈I is an R-dual of type III of
{ωj}j∈I .

(iv) If {fi}i∈I is a frame for H and {ωj}j∈I has the same optimal bounds as
{fi}i∈I , then {fi}i∈I is an R-dual of type III of {ωj}j∈I .

Note that the statements in Theorems 4.6(i) and 4.14(i1) are not completely
the same. While in Theorem 4.6(i) the optimal bounds of {fi}i∈I and {ωj}j∈I

are the same, in Theorem 4.14(i) it is only stated that the frame bounds for
{fi}i∈I are also bounds for {ωj}j∈I , the optimal bounds may differ:

Example 4.15. [24] Let {ei}∞i=1 denote an orthonormal basis of H. Con-
sider the frame {fi}∞i=1 = {e1, e1, e2, e3, e4, . . .} for H and the Riesz sequence
{ωj}∞j=1 = {e1 + 1√

2
e2, e3, e4, . . . }, which is an R-dual of type III of {fi}∞i=1.

The optimal bounds of {fi}∞i=1 are 1,2, which are also bounds for {ωj}∞j=1, but
the optimal bounds of {ωj}∞j=1 are 1, 3/2.

Notice that Theorem 4.14(iii) is not completely the same as Theorem 4.6(iii).
While the representation of {fi}i∈I in Theorem 4.6(iii) leads immediately to
the conclusion that {fi}i∈I is an R-dual of type I of {ωj}j∈I , similar conclusion
does not follow automatically from the representation of {fi}i∈I in Theorem
4.14(iii). However, as written in Theorem 4.14(iv), one can still claim a con-
clusion that {fi}i∈I is an R-dual of type III of {ωj}j∈I , under the assumption
that {ωj}j∈I has the same optimal bounds as {fi}i∈I .

Unlike the case with R-duals of type I, which up to now are known to cover
the duality principle for tight Gabor frame and Gabor Riesz bases, the R-duals
of type III cover the duality principle for all Gabor frames:

Theorem 4.16. [24] Let {EmbTnag}m,n∈Z be a Gabor frame for L2(R). Then
the Gabor Riesz sequence { 1√

ab
Em/aTn/bg}m,n∈Z can be realized as an R-dual

of type III of {EmbTnag}m,n∈Z.

It is interesting to consider the relation between R-duals of type I and R-
duals of type III. In this spirit, the following holds:

Proposition 4.17. Let {fi}i∈I be a frame for H.

(i) [24] The class of R-duals of type I of {fi}i∈I is contained in the class of
R-duals of type III of {fi}i∈I .

(ii) [24] If {fi}i∈I is tight, the classes of the R-duals of type I and III of
{fi}i∈I coincide.

(iii) [10] If {fi}i∈I is not tight, then the set of its R-duals of type I is a proper
subset of the set of its R-duals of type III.

In the tight case, the R-duals of type I are enough to cover the duality
principle and thus, for tight frames, one does not need to enlarge the class of
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R-duals of type I. From this point of view, Prop. 4.17(ii) shows a good property
of the R-duals of type III.

At the end we provide a characterization of the R-duals of type III:

Proposition 4.18. [24] Let {fi}i∈I be a frame for H, let {ωj}j∈I be a Riesz se-
quence in H and assume that the bounds of {fi}i∈I are also bounds for {ωj}j∈I .
Then

{ωj}j∈I is an R-dual of type III of {fi}i∈I if and only if (4.2) holds.
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