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ON A SYSTEM OF NONLINEAR PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS"

L4szl6 Simon?

Abstract. We consider a system of a semilinear hyperbolic functional
differential equation (where the lower order terms contain functional de-
pendence on the unknown functions) with initial and boundary condi-
tions and a quasilinear elliptic functional differential equation (contain-
ing ¢ as a parameter) with boundary conditions. Existence of solutions
for t € (0,T) will be shown and some examples will be formulated.
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1. Introduction

In the present paper we consider weak solutions of the following system of
equations:

(L.1) " (t) + Q(u(t) + (x)h' (u(t)) + H(t, ;3 u, 2) + P(2)u'(t) = Fi(t, z; 2),

(1.2) — Z Djla;(t,z, Dz(t), 2(t); u)| + ao(t, x, Dz(t), 2(t); u, z) = F(t, x;u)
j=1
(t,z) € Qr = (0,T) x Q

where  C R” is a bounded domain and we use the notations u(t) = u(t, x),

v = Dyu, v = D?u, 2(t) = z(t,z), Dz = (8‘%,... ai_z" , Q may be e.g. a
linear second order symmetric elliptic differential operator in the variable z;
h is a C? function having certain polynomial growth, H contains nonlinear
functional (non-local) dependence on u and z, with some polynomial growth
and F) contains some functional dependence on z. Further, the functions a;
define a quasilinear elliptic differential operator in z (for fixed ¢) with functional
dependence on u for s = 1,...,n and on u, z for i = 0, respectively. Finally, F}
may non-locally depending on w. The system (), (IZ2) consists of a semilinear
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hyperbolic functional equation and an elliptic functional equation (containing
the time ¢ as a parameter).

This paper was motivated by some problems which were modelled by sys-
tems consisting of (functional) differential equations of different types (see [I].
In [B8] S. Cinca investigated a model, consiting of an elliptic, a parabolic and
an ordinary nonlinear differential equation, which arise when modelling diffu-
sion and transport in porous media with variable porosity. In [6] J.D. Logan,
M.R. Petersen and T.S. Shores considered and numerically studied a similar
system which describes reaction-mineralogy-porosity changes in porous media
with one-dimensional space variable. J. H. Merkin, D.J. Needham and B.D.
Sleeman considered in [B] a system, consisting of a nonlinear parabolic and an
ordinary differential equation, as a mathematical model for the spread of mor-
phogens with density dependent chemosensitivity. In [2], [7], [§] the existence
of solutions of such systems were studied.

In Section 2 the existence of weak solutions will be proved for ¢ € (0,7),
in Section 3 some examples will be shown. In a separate paper we shall prove
existence and certain properties of solutions for t € (0, 00).

2. Solutions in (0,7

Denote by 2 C R"™ a bounded domain having the uniform C' regularity
property (see [1]), Q7 = (0,T) x Q. Denote by WP(Q) the Sobolev space of
real valued functions with the norm

1/p

Jull = / SO Dl + | de|  @<p<oo, Dyu=

j=1

ou
oz,

The number ¢ is defined by 1/p + 1/q¢ = 1. Further, let V; ¢ WH2(Q) and
Vo C WHP(Q) be closed linear subspaces containing C§°(9)), V;* the dual
spaces of Vj, the duality between V;* and V; will be denoted by (-,-), the scalar
product in L?(£2) will be denoted by (-,-). Finally, denote by L?(0,T;V;) the
Banach space consisting of the set of measurable functions w : (0,7') — V; with

the norm
1/p

T
lullzeo,7v;) = [/O [u (@), dt

and L>(0,T;V;), L>=(0,T; L*()) the set of measurable functions u : (0,T) —
Vi, u: (0,T) — L?(52), respectively, with the L°(0,7) norm of the functions
t = [Ju(t)|lv;, t = |lu(t)]|z2(q), respectively.

Now we formulate the assumptions on the functions in (), (I32).

(A1). Q : Vi — V{¥ is a linear continuous operator such that

(Qu,v) = (Qu,u), (Qu,u) > collul},

for all u,v € V7 with some constant ¢y > 0.
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(A2). ¢,1 : Q — R are measurable functions satisfying with constants ¢, ca
0<c <px)<cey, 1 <Y(x)<cyforaa ze
(A3). h: R — R is a twice continuously differentiable function satisfying

h(n) >0, |h"(n)| < const|n|*~! for |n| > 1 where

1< A< = ifn>3 1<A<ooifn=2.

n—2

(A4). H: Q7 x L*(Qr) x L?(0,T;V3) — R is a function for which (¢,z)
H(t,x;u,2) is measurable for all fixed u € L?(Qr), 2 € LP(0,T;Vz), H has
the Volterra property, i.e. for all ¢ € [0,T], H(t, z;u,z) depends only on the
restriction of u and z to @Q; (i.e. it does not depend on wu(r,x),z(r,x) for
7 > t). Further, the following inequality holds for all ¢ € [0, 7] and u € L?(f2),
z € LP(0,T; Va):

/ |H (t, z;u, 2)|*dx
Q

¢
< const {||z||2Lp(07T;V2) + 1] {./0 /Qh(u)dxdT —l—/ﬂh(u)dm—i— 1] ;

and for all fixed number K > 0, there exists a bounded (nonlinear) operator
z+— M(K,z) € Rt, z € LP(0,T;V2) such that

t
/ {/ |H(T,$;U1,Z)—H(T,JT;UQ,Z)QCZ,T] dr
o e

t
< M(K, z)/ [/ luy — U22d$] dr if [lujllpe=0.1v1) < K.
0 Q

(The last inequality means that H (¢, z;u, z) is locally Lipschitz in v and the
Lipschitz constant is bounded if z is bounded in L?(0,T;V3).)
Finally, (z;) — z in LP(0,T; V2) implies

H(t,x;up, 2x) — H(t, z;up, 2z) — 0 in L*(Qr) uniformly if |urllz2(Qp) < const.
(A5). F1: Qr x LP(0,T; Vo) — R is a function satisfying (¢,x) — Fi(t,x;2) €
L?(Qr) for all fixed z € LP(0,T;Vs) and (2x) — z in LP(0,T; V,) implies that

Fi(t,z;21) — Fi(t,z;2) in L2(Q7).
Further,

T
/o [Py (7, 25 2) | 320 d7 < const |1+ ||z||§1p(o7:r;v2)

with some constant §; > 0.
(B1) The functions

ajZQTXRn+1XL2(QT>—>R (]:1771),
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ap : Qr x R"™ x L2(Qr) x LP(0,T; V2) — R
are such that a;(t,z,&;u), ao(t, z, & u, 2) are measurable functions of variables
(t,z) € Qr for all fixed £ € R"™ € L3(Qr), 2 € LP(0,T; V) and continuous
functions of variable ¢ € R™*! for all fixed u € L?(Qr), z € LP(0,T;Vs) and
a.a. fixed (t,z) € Q7.

Further, if (uz) — v in L?(Qr) then for all z € LP(0,T;V5), £ € R a.a.

(t,x) € Qr, for a subsequence

a;j(t, @, Gug) = a;(t, @, Gu) (G=1,...,n),

aO(ta z, 67 Uk, Z) - aO(t7 xz, 55 u, Z)

(By) For j=1,...,n
laj(t, 2, &)l < gL (W€ + [k (w)](t, @)
where g1 : L?(Q7) — RT is a bounded, continuous (nonlinear) operator,
ki : L*(Qr) — LY(Q7) is continuous and

1k (W)l La@r) < comst(1+ [[ull}zq,);

lao(t, @, &u, 2)| < ga(u, 2)E[P7" + [ka(u, 2)](t, @)

where
g2 : L*(Qr) x LP(0,T;Va) — RT and ko : L*(Qr) x LP(0,T;Va) — LY(Qr)

are continuous bounded operators such that

(s 2) [ zacr) < const [1+ [[ulFaqq,)]

with some constant v > 0.
(B3) The following inequality holds for all ¢ € [0,7] with some constants
co >0, f >0 (not depending on t):

/Q Z[aj (t,x,Dz(t), z(t); u)—a;(t, x, Dz*(t), 2*(t); w)|[D; 2(t)—D; 2" (t)|dzdt+

T j=1

/ [ap(t,x, Dz(t), z(t); u, 2) — ag(t, z, Dz*(t), 2*(t); u, 2°)][2(t) — 2*(¢)]dxdt >
co

Ll 7o)

(B4) For all fixed u € L?(Qr) the function

||Z - Z*”Z[),p(o,T;vz)'

Fy:Qr x L2(QT) — R satisfies (¢, z) — Fy(t, z;u) € LY(Qr),

| Fa(t, 25 ) | gy < const [1+ [[ul}2q, |
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(see (Bg)) and
(ug) — w in L*(Qr) implies Fy(t, z;up) — Fo(t, z;u) in LYQr).

Finally,
PB4+
2 p—1
Theorem 2.1. Assume (A1) — (As) and (B1) — (Bs). Then for all ug € Vi,
uy € L?(Q) there exist u € L>=(0,T; V1), z € LP(0,T; Va) such that

<1

u' € L=(0,T; L*(Q)), " e L*(0,T;Vy),
u, z satisfy (I3) in the sense: for a.a. t € [0,T], allv € V}

(2.1)  (W'(t),v) + (Q(u(t)),v) + / o(x)h (u(t))vdz + | H(t, z;u, z)vdz+
Q Q

/ P(x)u (t)vde = / Fi(t,z; 2)v)dx
and the initial condz'tz'ogns "
(2.2) w(0) = ug, u'(0) = uy.
Further, u, z satisfy (I22) in the sense: for a.a. t € (0,T), allw € V4

(2.3) /Q ; a;(t,z, Dz(t), 2(t);u) | Djwdz+

/ao(t,:c,Dz(t),z(t);u,z)wdx:/Fg(t,m;u)wdac.
Q Q

Proof. The proof is based on the results of [I0], the theory of monotone ope-
rators (see, e.g., [@], [9], [[2]) and Schauder’s fixed point theorem as follows.

Consider the problem (), (22) for u with an arbitrary fixed z = 2z €
L?(0,T;Va). According to [M0] assumptions (A;) — (As) imply that there exists
a unique solution u = @ € L>(0, T’; V1) with the properties @' € L°(0,T; L?(2)),
@’ € L2(0,T;Vy) satisfying () and the initial condition (22). Then con-
sider problem (E33) for z with the above w = @. According to the the-
ory of monotone operators there exists a unique solution z € LP(0,T;V3)
of (Z33). By using the notation S(Z) = z, we shall show that the opera-
tor S : LP(0,T;V2) — LP(0,T;V,) satisfies the assumptions of Schauder’s
fixed point theorem: it is continuous, compact and there exists a closed ball
Bgr(0) € L?(0,T; V) such that

(2.4) S(Br(0)) € Br(0).

Then Schauder’s fixed point theorem will imply that S has a fixed point z* €
L?(0,T;Va). Defining u* by the solution of (21), (E22) with z = z*, functions
u*, z* satisfy (270) — (23). O
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Lemma 2.2. The operator S : LP(0,T; Vo) — LP(0,T;Va), defined by S(Z) = z
1§ compact.

Proof. Let (2x) be a bounded sequence in L?(0, T'; V) and consider the (unique)
solution @y, of (), (E2) with fixed z = Z;. We show that (i) is bounded
in L*>°(0,T; V1) and (a},) is bounded in L>(0,7T; L*(12)). Indeed, applying the
arguments in the proof of Theorem 2.1 in [IM], one gets the unique solutions
Uy of (1), (22) as the (weak) limit of Galerkin approximations

Ui () = Zglkm(t)wl, where gf € W22(0,T)

1=1
and wy, wa, ... is a linearly independent system in V; such that the linear com-
binations are dense in Vi, further, the functions @, satisfy (for j =1,...,m)

(2.5) (i (t), wy) + (Q(lmk (1)), wy) +/Qsﬁ(ff)h/(ﬁmk(t))wjdx+
/QH(t,x;ﬁmk,Zk)wjdx—i—/Qw(w)ﬁ;nk(t)wjdx:/QFl(t,x;Zk)wjdx,

(2.6) Uk (0) = Umo,  Ulpyp(0) = U1,

where Umo, um1 (m =1,2,...) are linear combinations of wy, wa, ... wy,, satis-
fying (umo) — up in Vi and (1) — u1 in L2(Q) as m — oo.

Multiplying (258) by (gF,,)’(t), summing with respect to j and integrating
over (0,t), by Young’s inequality we find

1) GOl + 5 (QUint 0. i) + | ola)h ()t

[ [0 50tsoyas | [ ] vt or -

! = \z! 1 ~/ 2 1 ~ ~
[ A 0t )] dr + 31,00 + 5(QUims 0 s (0)+

i 1T . IR
| et )de < 5 [ IRz qdreg [ 150 oot

where the constant does not depend on m, k,t. (See [I0].)
By using (As), (A4), (A5) and the Cauchy-Schwarz inequality, we obtain
from (272)

1, . Co |~ -
(2.8) 5||U§nk(t)lliz<m + 5Humk(t))l|2vl + /Q h(tim(t))dz <

T
/0||F1(7',33;2k)||2L2(Q)d7'+
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t t
const {H— ||ﬂ;nk(7')H%2(Q)dT+/ [/ h(ﬂmk(T))dx] dT} .
0 0o L/a
Consequently,
it (s + | M) <

const {1+ [ 18Iy + [ W@matra] ar}.

where the constant does not depend on k,m,t. Thus by Gronwall’s lemma
(2.9) ||ﬂ’mk(t)||%2(m + /Q h(tm (t))dz < const

and so by (A;) and (E3)
(2.10) |tmmi (8)||v, < const,

where the constants do not depend on k,m,t. The inequalities (E9), (EZIM)
imply that the weak limits iy, @}, of (@) and (u),,.), respectively, are bounded
in L>°(0,T; V1), L>=(0,T; L?(Q2)), respectively.

Consequently, by the well known compact embedding theorem (see [d])
there is a subsequence of (@), again denoted by (ay), for simplicity, which
is convergent in L?(Qr) to some @ and (7iy) — @ a.e. in Qr.

Now we show that the sequence of solutions zj of (B33) with u = @y con-
verges in LP(0,T; V3) to the solution of (E233) with u = 4. By (Bs)

C2

(2.11) (B leiP(QT;Vz) <

Ll 2 gy

/ Z[aj(t, x, Dz, zi; Ux) — a;(t, x, Dz, z;0%)] (D2, — Djz)dtdx+
Qr j=1

/ [ao(t, x, Dzg, 2x; Uk, 28) — ao(t, x, Dz, z; U, )| (2 — 2)dtdz =

T

/ [Fo(t, x;uy) — Fo(t,x; )] (2 — 2)dtdz—

T

/ Z[aj(t,x, Dz, z;uy) — a;(t,x, Dz, z;0)|(D; 2z, — Djz)dtdx—

T j=1

/ [ao(t,z, Dz, z; Uy, 2) — ag(t,x, Dz, z; 4, z)| (2, — z)dtdz.

T

By using Holder’s inequality, it is not difficult to show that all the terms on
the right hand side of () converge to 0 as k — oo. Indeed, by (By)

(2.12) klirilo ||F2(t, T, ftk) — FQ(t, x; ﬁ)”L‘?(QT) =0
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and z — z is bounded in LP(0,T; V) and thus in LP(Qr), since (B3) implies

(2.13) / Z[aj(t,x, Dzy, z;tx) — a;(t,2,0,0;Gy)| Dj 2z dtda+
Q

T j=1

/ [ao(t, z, Dzg, 2k; Uk, 21) — ao(t, x, 0,0; G, 0)]zrdtde >

T

%o o)
Lt lakllzz g,

and for the left hand side of (Z13) we have by Holder’s inequality and (Bs)

n
(2.14) / Z[aj(t,x, Dzy, zi; k) — a;(t,2,0,0; 0y)]| Dz dtde+
Q

T j=1
/ [ao (¢, z, Dzg, 2k; Uk, 2x) — ao(t, z, 0, 0; Ug, 0)]zrdtdz =
Qr

/ By (t, x; ay) zidtdr—
T

/ Z a;(t,z,0,0;4x) Dz + ao(t, x,0,0; Ug, 0) 2k | dtdx

T |j=1

and the absolute value of the right hand side of (Z14) can be estimated by

{1 F2(t, @3 t) || La(gry + const [|[k1 () || La(gr) + c(@r)] } 12kl Le0,1;v2)

and so (Z13), (214) and p > 1 imply that ||zx||Ls(0,1;v;) is bounded.
The further terms on the right hand side of (BZ1I) can be estimated similarly,
by using Holder’s inequality. E.g.

(2.15) / lao(t,z, Dz, z; U, 2) — ao(t, x, Dz, z; 4, 2)|Pdtde — 0
T

because by (Bj;) the integrand converges to 0 a.e. in Q for a subsequence and
by (B2) the sequence of the integrands is equiintegrable, so Vitali’s theorem
implies (213) for a subsequence, which holds for the original sequence, too, by
Cantor’s trick.

Consequently, from (EZII) one obtains
(2.16)

kli_glo Izt = 2llLe0,73v5) = 0.

Lemma 2.3. The operator S : LP(0,T; Vo) — LP(0,T;V3) is continuous.
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Proof. Assume that

(2.17) (%) — Z in LP(0,T; V).

Now we show that for the solutions 4y, of (1), (B22) with z = 2

(2.18) (@g) — @ in L*(Qr)

and a.e. in Qr for a subsequence where @ is the solution of (21), (B2) with
z = Z. Then from the second part of the proof of Lemma =2 we shall obtain

(2.19) (zx) = z in LP(0,T;Va)

for the original sequence (by using Cantor’s trick) where z; and z are the
solutions of (E3) with u = 4 and uw = 4, respectively.

In the proof of (EI8) we use the (uniqueness) Theorem 4.1 of [I0]. Since
(%) is bounded in LP(0,T;Va), (i) is bounded in L?(Qr) (see the proof of
Lemma £9). Further, @ and iy, are weak solutions of (ITW) (i.e. of (EX1)) with
z = Z and z = Zj, respectively and satisfy the initial conditions (272), thus

(2.20) a"(t) + Q(a(t)) + () (a(t)) + H(t, x5 1, 2)+

()i’ (t) = Fu(t, 25 2),

(2.21) g (t) + QUik (1)) + p(x)h/ (@ (t)) + H(t, w5 i, 2)+

Y(x)uy,(t) = Fi(t,a; 2) + H(t, x5 0k, 2) — H (L, @5 Gk, Z5).-

Theorem 4.1 of [I0] implies that for the solutions @ of (220) and iy, of (2221)
we have for any s € [0,7] an estimation of the form

2

an(s) — a(s)[172(q) < const/ dtdx+

Qr
const /
Qr

where the right hand side is converging to 0 as k — oo by (A44), (As).
So, we have proved (ZI8) which completes the proof of Lemma 3. O

/0 [F1(T, 25 2) — Fu(T, 05 2)]dT

2

t
/[H(T7$;ﬂk75k)—H(T,x;ﬂk,é)]dT dtdz,
0

Lemma 2.4. There is a closed ball

Br(0) = {z € LP(0,T;V2) : ||zl Lr0,7v2) < R}

such that S(Br(0)) C Br(0).
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Proof. According to (28) we have for the sequence (i,,) of Galerkin approxi-
mation of the solution of (E0), (B32) (with z = 2)

02) IO + Pl @ + e [ hn()ds <

T
/ VFy (7,25 2) |2y dr+

const{1+/ [ty (711720 d7+/t |:/Qh(’l~lzm(7'))d1‘:| dT}

where the constants do not depend on m, t, Z. Hence, by Gronwall’s lemma one
obtains

T
(2:23) 1Ol + [ blan®)do < const [ [Fy(rai2) oyt
Q 0

t
const /
0

T
const/ | Fy (7, 2; 2)||%,dT + const,
0

T
[ 4 1R ] 4o
0

where the constants are independent of m,t, 2. Thus by (E222) and (As) we
find

i (8)]3, < const

T
1 +/ |Fy (7, z)|%,dT] < const [1+ 12073 0,715) |
0
which implies (for the limit of (@,,))

(2.24) 1@l22 (0, < comst [1 n ||z\|§;(O,T;V2)} .

On the other hand, by (213), (212) we have for the solution z of (E3) with

U="1u

(2.25)

C2
12120 0.7v2) < I1E2(E 25 @) || Lo 12| o 0. 70v2) +
Hu”m(Q )

const [[k1 (@) za(@r) + c(@)] 2]l Lo 0.7:72),
where the first constant does not depend on @, further, by (B2)

(2.26) 2 (8) o) < const [1+ ]2, and

(@) < const [1 + H’&'”ZQ(QT)} :

The inequalities (223), (2228) imply

(2.27) 121025 iy <
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const [1+ 52| - (126,238l zager + 1+ lll}acq)]

thus by (224) and (By)

S By e+
== 1 B
(2.28) |zl zr0,7;v5) < const [1 + u||L”2(QT)} < const {1 + ||z||LpE’O,T;V2)} ,

where the constants do not depend on % and Z.
According to the assumption (By)

(2.29) CACE Y

2(p—1)

thus for sufficiently large R

zZ € BR(O) = {2 S LP(O,T, ‘/Z)a ||2||L7’(0,T;V2) S R}

implies

2]l 0,7;v2) < R, i.e. z € Br(0).
So the proof of Lemma P4 is completed. O

Finally, Lemmas =4 - I and Schauder’s fixed point theorem imply that
ST has a fixed point and, consequently, there exists a solution of (E71), (23).

3. Examples

Let the operator @ be defined by

n

(Qu,v) = /Q Z aji(xz)(Dyu)(Djv) + d(x)uv | de,

J,l=1

where aji,d € L®(Q), aji = aij, Y5,y au(x)€& > col€]?, d > ¢o with some
positive constant ¢p. Then, clearly, assumption (A7) is satisfied.
If b is a C? function such that h(n) = || 1 if || > 1 then (Aj3)is satisfied.
The condition (A4) is satisfied e.g. if

H(t,x;u, z) = x(t,2)91(L12)g2(Lou) where x € L=(Qr),

Ly : LP(0,T; Vo) — L2(Qr), Lo: L*(Qr) — L*(Qr)

are continuous linear operators (having the Volterra property); ¢; is a globally
Lipschitz bounded function, go is a globally Lipschitz function. The operator
Fy : Qr x LP(0,T; V) — R may have the form Fy(t,z;2) = f1(t, 2z, L3z), where
f1(t, @, u) is measurable in (¢, ), continuous in p and

| f1(t, x, )| < const|p|?/% + fi(t, x), where

0<B <2, fiel?Qr), Lz:LP(0,T;Va) — L*(Qr)
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is a linear continuous operator. Then (A4s5) is fulfilled.
Now we formulate examples for a; satisfying (B1) — (B3):

aj(t7x7£; u) = Oé(t,l’, L4U)£j|€|p72, j = 15 R where C = (517 e 7£n)7

a(t,z,v) is measurable in (¢, ), continuous in v and satisfies

const
_SOPh v
FRPE < a(t,z,v) < const(1 + |v|")
with some positive constants, Ly, Ls : L?(Q7) — L°(Qr) are continuous linear
operators;

ao(t,l',f; 'U,,Z) = Ck()(t,if, L5u)§0‘£0|p_2 +cz+ (Sgc)al(L6Z)7

where ag(t, x,v1) is measurable in (¢,z), continuous in v, ¢ > 0 is a constant
and

% < ag(t,z,v1) < const(l + |11]7)
with some positive constants, Lg : L?(Qr) — L*(Qr) is a continuous linear
operator and a; is a bounded globally Lipschitz function with sufficiently small
Lipschitz constant. If the values of a, ag are between two positive constants
then Ly, Ls may be L?(Qr) — L?(Qr) continuous linear operators.

Finally, the function F : Q7 x L?(Qr) — R may have the form Fy (¢, z;u) =
fa(t,x, Lyu) where fo(t, z, p) is measurable in (¢, ), continuous in p and

|fa(t, 2, 1)| < constlul” + fa(t, @),

0<v<1, freL*Qr)and Ly: LX(Qr) — L*(Qr)

is a continuous linear operator. Then (By) is satisfied.
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