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Fourier transform.
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1. Introduction:

Almeida [0], Namias [8] and others introduced the fractional Fourier trans-
form which is a generalization of the Fourier transform. Fractional Fourier
transform is the most important tool, which is frequently used in signal pro-
cessing and other branches of mathematical sciences and engineerings.

The pseudo-differential operator is a generalization of the partial differ-
ential operator, and played an important role in study of the properties of
Sobolev spaces, partial differential equations and localization operators. Zaid-
mann [[1], Wong [I0] and Cappiello et al. [2, B] discussed the properties of
pseudo-differential operator on S(R™) space and certain types of Gelfand-Shilov
space by using Fourier transformation.

Pathak et al. [6], Prasad and Kumar [7] studied the properties of pseudo-
differential operator on the Schwartz space S(R) involving fractional Fourier
transformation. Motivated by Cappiello et al. [2], our main aim in this paper
is to study the properties of pseudo-differential operators and localization ope-
rators on S¥(R) space involving fractional Fourier transformation.

Now, from [2, @, B] we recall definitions and properties which are useful for
our further investigations:
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Definition 1.1. The fractional Fourier transform with rotational angle « of a
function ¢ € L'(R), is defined by

(L) 6al€) = (Fa0)(©) = [ KalwO0(w)ds,
R
where,
C'aei(mugj)mm*”‘f eseaif a £ nw
Koz(x7§>: 1 671@5 ifa:g, VTLEZv

(2m)2

and

o [T—dcot
(1.2) Co = (2misina) T e = ,/%.
Y8

Definition 1.2. The inversion formula of the fractional Fourier transform is
given by

1 [ .
(13) o) = 5 [ Fale€dale)de
™ JR
where
’ —i(z2+§2)cota .
C.e > Fizgesca if o £ g
K, = @ ) 7z
Oz(xvg) (2i)%€m§ ifa:g, Vn e s
and
’ 2 ) i l —ia
(1.4) c, = (WZS,S%Oé)QeT =/27(1+ icot ).
ino

Definition 1.3. Let m € (—oc,00). Define the symbol class I'}", (R) to be the
set of all functions p(z,£) € C°(R x R) such that for any two non-negative
integers a and 3, there exists a positive constant C, which satisfies the following
estimates

(1.5) |Dg DYp(a,€)| < CHPH (al)” (B! (€)™ ()™ 7,
for every (z,£) € R x R and pu, v are non-negative indices.

Definition 1.4. The generalized pseudo-differential operator P, associated
with p € T}, (R) is defined by

(16) Padle) = 5= [ FaleOn(e. u(€)ds.

where ¢ (€) and K, (z, ) are given in (D) and (IA).
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Definition 1.5. The ultra-differentiable test space S¥(R) is defined to be the
set of all functions f € C°°(R), such that

1
(1.7) |05 f (@) < CoFH(al)e™",

where C and € are suitable positive constants in R. The space S¥ is non-trivial,
if and only if u+v > 1 and u,v > 0.

Definition 1.6. An infinitely differential complex-valued function ¢ is a mem-
ber of the Schwartz space S(R) iff for every choice of 8 and v of non-negative
integers, it satisfies

(1.8) Yo (@) = sgg ‘xﬁD”¢(m)‘ < 0.

Definition 1.7. For a fixed non-zero function ¢, called “window”, the short
time Fourier transform (STFT) of f with respect to ¢ is given by

(19) (Vo).§) = (1. MeToo) = [ 03T =w)ear

Theorem 1.8. Let g € S,,(R?) and f € S!,(RY). Then Vyf is continuous, and
satisfies the following inequality

(1.10) (Vi f) (@, )] < Cere@Hmtd),

for every x,& € R% and constants C, \, ju > 0.

A self-adjoint differential operator P(x, D) with polynomial coefficient Cyp
is given by

(1.11) P(z,D)= Y Capz’Dg
a<mi

B<mo

satisfying global ellipticity condition of the form

(1.12) p(z,8)] = Co(§)™ (x)™,

for |x| +1¢| > R > 0.

If o > p, v > v, then SH(R) — Sff,/ (R) and Fourier transform acts as an
isomorphism interchanging the indices p and v

(1.13) F: SE(R) — S(R).

Furthermore, Let P be a self-adjoint SG-elliptic operator of the form (I"TT) and
let A € C\spec(P). Then on SG pseudo-differential calculus, if m; > 0,mge >0
the operator (P — \) is also SG-elliptic and

(1.14) (P—=X\)"toxi0?: H*(R) — H*(R),
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is continuous for all p,q € Zy,p < my,q < mg and for every s € R, it satisfies
the following norm inequality

(1.15)
O )@=+
(P =XN)"1P2P02)9||, < (al)*(BY)” <Z<5 (1()7')“(0) 2707l
(v+o) < (@t B)

for a, B € Z 4 and positive constant Cy independent of «, 3.
From Groéchenig [@], continuity of a linear functional f means that there
exist constants C, A, 1 > 0 and integers M, N > 0 such that for all g € S,,(R9),

(1.16) (Lol <C( Y [DPgll e+ D ller DG ).

llpll, <M llall, <N

In Section 2 of this paper we use the Leibnitz’ formula which is given below:

e = X () (7).

j<nj<m N

Now, this paper is divided into three sections:

Section 1 is introductory, the various definitions and properties related to
this paper are given.

In Section 2, properties of pseudo-differential operators associated with sym-
bol p € I'},(R) on SY(R) space are studied using fractional Fourier transfor-
mation, and commutator identities for differential operators on Schwartz space
S(R) are obtained using the same transformation.

Finally in Section 3, the properties of localization operators involving frac-
tional Fourier transform on S#(R) space are studied. We are able to find the
solution of heat equation in form of pseudo-differential operator by exploiting
fractional Fourier transform technique.

2. Pseudo-differential operators and commutator identi-
ties for differential operator

In this section, we find the action of pseudo-differential operators on the
SE(R) space, 1 > 1,7 > 1 and obtain the relation of composition of operator
and parametrices. Commutator identities associated with fractional Fourier
transform on S(R) space are studied. These commutator identities are useful
to show the assumption (II3) in case of SG-elliptic differential operators with
polynomial coefficients.

Theorem 2.1. Given p € I, the operator P, defined by (@) is linear and
continuous from SL‘,/ into itself for any p',v" with p' > p, v’ > v. Furthermore,

P, can be extended to a linear and continuous map from (Sﬁ;)’ into itself.
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Proof. By Definition I and for 8, € Z, and any positive integer N, we can
write

DﬁPasb( )

—z(z +§ ) cot

TECp(z,€)) al)dE

B / Z; ( >D (T ) DI o, €)) o ()
3
B1<p1
( M)Dﬂl( iz&csca)DBQ( (.’L’ E))an(g)dg
_ %C& Z ( > < ) Dﬁl —ix QCota)e—i£2200ta
B1<B B1<h1
1 —ix?  cota —tcota, —ig2cota
— 70/ P , IR
ey ()2 >/Re e

> ()12 ()
x D1 (e
x [(i€ csc @)™ e <] D2 (p(a, €)) da (€)dE
(p(=

B1<B1

[(zf csc a)Bl e”‘fcsw}D% (z ) )dé
81
- %C‘/“ Z ( > < > e )Commgcsw)zanx" cot o
B1<B B1<B1 n=0
x [(i€ esc )P et CSW}D?} (p(z, ) g
= %C’(’l Z < > < > zcscaﬁi/Zanx”cota
B1<B B1<B1
y /]R (e —i(x? +§ )cmu—i-ixﬁcsca)g,@i/Dgz (p($,§))¢3a(§)d§
Then,
2D Pod(z)
_ 1 C/ /8 /81 . //3{’ ﬁi N, t _9N
= 5-Ca Z 5 Z g (i csca) (Zanmx cot ) (z)
pL<p pr<p VL n=0
x /R (=t ing ey (1 AN [ DP2 (pla, €)) du(€)] de.
B1
Choosing (z)% = Zo ayx"™| and N = [#H2] 4 1, using (IT3) and by stan-
’r]:

dard factorial inequality, we obtain

1

()72 |(1-8)V [€7 D (pla €))da ()] [CTHH (@) (B (Bal)e ",
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for 8/ = B + B2 and some positive contants C, a.

Then, by the conditions p' > u,v’ > v, it follows that P, is continuous from
Sff,l into itself.

Next, for ¢,1 € 5" (R)

[ (Paste))vta)da
_ i ’ 771‘(”2+§2)°°ta+iw§cs0a n
JRE=AC p(,€)) b ()] )
~ 1 —i(z24¢?) cot o | .
/R 3(&) 5=t /R (7 T it e (g, €))op(a)dr] dE

/R G ()0 (€)de

i [ (Padla))bl@)de = [ Gul€lpal)de
R R

—1 m2 2 cot o .
where pw(f) _ %C& fR (e%ﬁ-sz csc ozp(x7 f))i/)(m)dx
Furthermore, by the same argument as in the first part of the proof, it follows

that the map 1) — py is linear and continuous from S,‘f,/ to SZ:
Then, for ¢ € (SL‘,/)’(R), we can define

Pad() = 6(py)i ¥ € S}, (R)
This is a linear continuous map from (S’l’f,/)’ into itself and it extends F,. O

Lemma 2.2. Let o, 8,p,0 € Z1 and u € S(R). Then the following identity
holds:

|
(2.1) 2?02 (") = 3 ﬁ (") 27 2P 9P (9 Tu).
= I\
Proof. See [@, p.307]. O

Lemma 2.3. Let 5,5,p,6 € Zy and u € S(R). Then the following identity
holds:

22 sopu= Y (1) 0t ),
=

Proof. Using Definition 2, the inversion fractional Fourier transform for u €
S(R), we have

, —i(a?4+€?) cota iz§ csca
(2.3) u(z) = —C., /R(e 2 e g, (6)de.
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For p € Z, we calculate
1 ’ —i(z? 2)cota | . .
Oule) = -C [ op(en T e (€)ag
2w R
1 —i¢2 cota —iz? cot . )
_ 7ca/ e TEFE g (e TEFS ¢ einEesea) g ()dg.
2w R
Using (ICT4), we have
Fgu(x)

1 —ig2cota LCO“" iz€ csca
[ (i

Ji<p

1 / p —1icot . i —i@?+e?) cota iz csc )
=5 O (0 Pl I [y (e e e,

1 —ticot ,
= %O‘X Z <5) P,_j(z, %)(i csca)’ (i esc o) 7P

J<p
. —i(z24e2) cota
x/ﬁje S et e (a0 ese o) Pl (€)dE
R
1 p —tcotay . o iz cota
= %Caz<j)Pp_j(a:,2)(zcsca)J Be=2
i<p
iT csca i€ cota “O'” ~
< [ ey (e i) de
’ p —tcot oy . . 5 —iz2cota
= 27rC Z(])PP i(z, 5 J(icsca) e 2 (—1)°
Ji<p
iz csc o i —i€cota
X/Re Sescagl(ele™ 2" " ia(€))]de
—1 t - 7'i12(:ota
= —C Z( ) %)(icsca)g_ﬂef(—l)ﬁ Z (

Ji<p B1<B

ixfcscaaﬁl @ 8’8/ jAa J
[ g ()0 (©ae)de

1~ P —icota, . . 3
- 2770a2<j)Pp—j($72)(zcsca)ﬂ 5(_1)B > (61)

Ji<p

—1cot o

X/ (eerimgcsca)Pﬁl (57 )85 (ﬁjua( ))dﬁ
R

_ % ZS:() @)(imay—ﬁ( 1y (51) 3 aycota

B1<B n<p1

i+ covar ix€ csc o ! j ~
x /R (e pinteseay englF (634, (€)) de

)

291
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(2.4) 2P 0u(x)
1 oot |
- %C‘* Z (j) Ppj(z, #)(i esca)l P (=1)P
Ji<p
+ 4!
X ﬁ;ﬁ (51) ; a, cot av) (n n!ﬁ )
B n<p1

R S

We assume that j +n+ 8’ =9 € Z4, then we have

(25)  2POu(a)
< ) *Z(;Ota)(i(:sca)jfg(il)ﬁ
25< )n%;l a, cot @) (n —;!ﬁ’)!
1

270 /R( wJﬂzécsea)a&ﬁ’ (§5ﬁa(§))d§

By using (23), (Z3) becomes

(2.6) 2P oPu(z)
g ( ) r G s (1)
><_ ;ﬁ( > Z a, cot a) (n ;!,3’)!

n<p1

F7 [0 (€0a(6))].
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293
Applying Leibnitz rule in (233), we get

27 0u(z)

= ;( ) _Z(;Oto‘)(z'csca)j—ﬁ(—1)ﬁ
x Y ( ) > ancota)(n+5l>!
ﬂ1<ﬂ

|
n<p1 T

700 Y (6>/ (o7 e €0) 0 (0 (©)

k<’

: (j)Ppj(a“;““)ucsca)w-nﬁ

ﬂ" 6(6—1)...(5—I<;+1)(6—k)...2.1
C Zk' 6 — k)

X
=
—

isx ol i ()

2P 0P u(z)
_Z< ( )7;5 ancota)(nz!ﬂ/)!

Sw-nl)

<B
1 ’ —i(x? 2) cot o
[%Ca/R(ei( +§) —focsca)fé kaﬂ k( (ﬁ))df]
From (E23), we have

(2.7)  2P0Pu(x)

X [Z (5>ij (, ﬁ)(msca)j*ﬁ(fl)ﬁ Z <5>

i<p Bi1<B h

X Z (ay cot ) (n —;!'6/) |Fy

n<p1

e kol ~F (aale)) de].
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Using (E8) in (272), we get

As an consequence of Lemma 2 and Lemma =3, we are able to show the
following commutator identity.

Lemma 2.4. Let o, 8,p,0,6',0 € Zy. Then the following commutator decom-
position is true

(2.8)
[9&58;‘, z70%u

’ ’

B () L ()t

v<a V) h<p
<o k<6

/ /

where > > means that v+ k > 0.

Proof. We know that
(2.9) (2708, 2700 |u = 2792 (27 90u) — 2792 (zP 5w).
Using Lemma P72, (E) yields

[mﬁﬁg‘, 2708 u

!
- 27( « )'(0>x"_”’x58§_w‘pu
a—7v)\Y

<
<o

p! (ﬁ) B—k, .0 ap—k+a
— E x” " x?00 U
= (p— k)N \k
k<pB

- Y i () e )

a—)!\y

<o
v<o

! 6 — o oo ap—
_k;)(ppk)!(JxB (@702,

k<p
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Applying Lemma 3 in above, we get
[°02, 2708 u

- S (v

7sa k<p’
y<o k<$
,0' ,8 B—k OJ! (5 S5— r_ _k

7 178 (2% v HP ]

> om0 S ) e e
> v<o
k<P V<6

Therefore

(2792, 2708 u

T S e e

<o k<pg’
v<o k<6
0! o B! <P> B—k 56—y (0"~ ap—k
— — —1)72P 7 0, (27 7700 ),
%(5—7)!(7>,§3(6—k)! k)Y ( :
~y<o’ k<p
which gives (23). O

Proposition 2.5. Let P be a self-adjoint SG-elliptic operator of the form
(M) with my > 0,m2 > 0 and let A € C\spec(P). Then, for every o, 8 € Z
and for every s € R the condition (CIH) holds with p =v = 1.

Proof. By using Lemma P32 and (), we can write

’

P 2O ) T (O

o<mg y<o k<6
(P A) 1 27 765 k( 153 7kasf’yu)7
with C,y = (=1)PClg. O

From (ICId), the operator (P — \)"'2°~792~* is bounded on H*(R) for
every s € R. Then

(P —X)"P, xﬁaa] H

< o2 T S m (e
1)

p<mi v<a k<8
oc<mso v<o <

S

’

al = B! e
= Clz(a—'y)! k%; (B — k) Hxﬂ U

7<a

)
S

which gives (ICIH).
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3. Localization operators and Weyl operators using frac-
tional Fourier transform:

In this Section, by fractional Fourier transform tool we study the properties
of localization operators and Weyl operators on S} (R) space and its dual space
(Sﬁ)l (R) in terms of time-frequency representation.

For parameter o and t,z,w € R:

Translation:
Tao(t) = ¢(t — ).

Modulation:

(w2 4t2) cot 3

My ad(t) = 1“7 —wbescal g gy,
Then,
My,oTed(t) = Muyad(t —x)

l[m —wt csc a

(31) - e

for a fixed non-zero function ¢ called the “window”.
Regarding to Definition 4, the short-time fractional Fourier transform
(STFRFT) of function f with respect to ¢ is defined by

V¢704f(x7w) = <f7 Mw,aTx¢>

L (w24t2)cota
(3.2) / FO)(E — z)e 1T —wtescal gy
R

For ¢1, ¢o with (@1, ¢2) = 1 the following inversion formula is valid:

(3.3) £(t) = /R Vi, af (2, 1) Moy o To b2 (8w,

For given function a(z,w), we define the localization operator using fractional
Fourier transform A(‘f}&‘z’? associated with symbol a, parameter o and windows

@1, P2; it is given by
(3.4) Af,l(;ﬁi)?f(t) = / a(x, w)Vp, o f (@, w) My, o Tpdo(t)drdw.
R

In view of (B2) and (B4), we get

(3'5) <A2,1o’¢¢2fv g> = <a7 V¢1,afv¢2,ag>’

where f,g,¢ and ¢1, ¢o are elements of S(R). Since Vj o is a continuous map
from S(R) to S(R x R), then from (B3H), a € S (R).
Using the arguments of [2, p.309], we prove the following proposition:
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Proposition 3.1. Let ¢1,¢2 € SL(R),pu > 1 and let a € (Sﬁ)/(Rz), Then
(B3) defines a linear map

(3.6) APo2 L SH(R) — (SH)'(R),

where A% is defined in (B4).

Proof. In view of Toft [d], we take the window ¢ € S (R), s > % and linear
functional f € S (R), then we estimate (B22) in the following way

V7. N (w2 4t2) cot a
‘qu,ozf(xaw” = (t)(b(t — x)efz[%fwt csca]dt

IN

ot — x) dt‘
)¢>(t—33)>\

Using (ITI8) the above expression becomes

(3.7)

(38)  WVoal@wl C( Y D70, + Y [enid] ),
llpll, <M llall, <N
for integers M, N > 0 and constants C, A\, u > 0. O

The above equation (BX) shows that STFRFT V., maps continuously
SH(R) into S%(R x R), for windows ¢ € SH(R);u > 3.

Since S4(R) is an algebra, therefore, Vi, o fVs, 09 € S (R x R).

By L?-duality, the right hand side of (B3) is well defined for a € (Sﬁ)/(R X
R). So, we get

APuO2 L SH(R) — (SH) (R).

Definition 3.2. For parameter o, Weyl pseudo-differential operator associated
with fractional Fourier transform L, , with symbol o is defined by

T ((z=—y)24w?) cot o .
(39) o' af / / € + y (y)el[i(( ) +2 ) 7(x7y)wcsca] dydw

Definition 3.3. Winger transform by using fractional Fourier transform asso-
ciated with functions f, g is defined by

a2 2
i[%—wt cse o‘]dt

B10)  Walf)aw) = [ fat Hata =5

Lemma 3.4. For Weyl pseudo-differential operator L, o and Winger trans-
form Wo(f,g)(x,w) associated with fractional Fourier transform defined in
(BX) and (BOW), respectively, we find the following relation:

(3.11) (Loafs9) = (o, Wa(f, 9)).
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Proof.

(0, Wal(f,9)

= // oz, w)Wo(f, 9)(x, w)dzdw
// o(z,w /fx+ x—i) [M_wtcsm]dt]dxdw

t 72[7(2”2+t2)wta7wt csc o
o(z,w)drdw | f(x+ f)g(x - -)e 2 dt,
RJR R 2 2

putting x — % = wu, then the right hand side of the above equation becomes

(0, Wa(f,9)
= // z,w)dzdw| /f(2x—u)g(u)e“w*w@(rfu))Csco‘]du}

[o eliie elie o)

/ / / o(z, w 2:5 — u) ( ) [(u,2+(2(z—2u))2)cota 7w(2(m7u))csea]dud$dw’

— 00— 00— 00

putting 2z — v = z and omitting constant term, we have

(o0, Wa(f.9))
R (w24 (z—u)?) cot @

- / / o (M ) g luell T e el gy

—00 —00 —00

(o) oo oo

(w2 z—u)?) cot

= /[/ /U(ugz,w)g(u)el[( B 7w(27")csca]dudw] (2)dz
- / (Long(2) F2)dz
- <L0'7af7g>'

Hence,

(Loaf:g) = (0, Walf,9)).
Proposition 3.5. Ifo € (Sﬁ)/(R),u > 1 then

(3.12) Lo : SU(R) — (S4)' (R).

Proof. 1f f,g € SK(R), then in similar way as in Theorem 3.8 of [8], we can
find Wo(f, 9)(z,w) € SE(R x R).
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Using Definition B=3, we can write

t 3 —i[i(w2+t2)wta—wtcsc al
Walh ) w)l = | [ ft Dgla— e ™5 dt
R

< f(x—|—£) (x—E)dt

= i 9 g B s
let x + % = u, then the above equation becomes

|Wa(fag)($7w)‘ < u_t 2du
< g(u —1t) g(u—t)du
(3.13) Walf,9)(@,w)| < U) glu—1t)|.
Using (ICI8), (B13) becomes
(3.14)
|Wa(f7 g)(w,w)\gC( Z ||6Aprg(t - x)HLoo + Z ||eﬂqug(t - x)”L‘X’ )a
llpll, <M llall, <N

for integers M, N > 0 and constants C, A\, u > 0.
This shows that Winger transform associated with fractional Fourier transform

maps S (R) @ S#(R) continuously into S% (R x R). O
By L2-duality, the right hand side of (89) is well defined for o € (Sl‘j)l (R x

R).

So, we get

Lo : SE(R) — (S)) (R).
In view of Proposition Bl and Proposition B3, we obtain,
AP = .
Example 3.6. Consider the heat equation
ou

(3.15) Fri Au, u(0,2) = f(z), ueSLR),

where,
( 8 _; cot a)?
= (— —ixcota)”.
dx
Applying fractional Fourier transform on (BTH) and using Definition 32, we
get

Oy, 1 i(e24ed)cota - .
=-_C ef—zwgcscaAud )
ot 2r O‘/]R 3

From [[@, p.357], we have

g | d iz?+e) cota
T = 30 [ (G — imcorape e ey )¢

1 ’ i(a? 2) cot o .
= (—ifcsca)Q%Ca/e< 5 T TS escay (¢)dg.
R
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Hence
(3.16) %L: = —(£csca)?i,,
and

ﬁa(ovg) = fa(g)

Taking the inverse fractional Fourier transform of both sides on (B8), we find

the solution of the heat equation,

i(22+€2) cot a
2

| —t(csca)? p —izé csca
(3.17) u(t,x) = %Ca/Re Heesca)” £ (€)e gescage,

Since fo(€) € S#(R) and e *(€csc )?* ¢ 7, (R), therefore from Theorem 2.1
u(t,z) € S#(R). Hence we get the solution of the heat equation in a form of
a pseudo-differential operator with symbol a(tfcsca) = e~tEesca)” and it is an
element of the space S¥(R).
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