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PARTIAL REDUCTION FOR LINEAR SYSTEMS OF
OPERATOR EQUATIONS WITH SYSTEM MATRIX

IN COMPANION FORM1

Ivana Jovović2

Abstract. In this paper we will consider a partial reduction for non-
homogeneous linear systems of the operator equations with the system
matrix in the companion form and with different operators. As a result
of this method we will get an equivalent system consisting of the linear
operator equations having only one or two variables. Homogeneous part
of the equation in one unknown is obtained using generalized character-
istic polynomial of the system matrix. We will also look more closely at
some properties of the doubly companion matrix.
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1. Introduction

A common method for solving linear systems of the operator equations with
constant coefficients is to decompose it into several subsystems using Jordan
canonical form, and then to solve each of these subsystems separately. In
paper [6] the idea was to use the rational instead of the Jordan canonical form
to reduce a linear system of the first order operator equations to an equivalent
partially reduced system, i.e. to the system which consists of a higher order
linear operator equations having only one variable and the first order linear
operator equations in two variables. By the order of a linear operator equation
we mean the highest power of the operator in the equation. The reduction
process was divided into two steps. The first step was to reduce a linear system,
by using some basic properties of the rational canonical form, into a proper
system for a further study. More precisely, let K be a field and V be a vector
space over K. For a positive integer n, let Kn×n be the set of all n×n matrices
over K and let V n×1 be the set of all n× 1 matrices over V . Let φ1 φ2 . . . φn

be given vectors in V and let A : V → V be a linear operator on V . We write
x1 x2 . . . xn for an unknown vectors in V . If we assume that the system matrix
B = [bij ] ∈ Kn×n is similar to the matrix C in the companion form, then the
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linear system of the first order operator equations in unknowns x1, x2, . . . , xn
of the form

A(x1) = b11x1 + b12x2 + . . .+ b1nxn + φ1

A(x2) = b21x1 + b22x2 + . . .+ b2nxn + φ2

...
A(xn) = bn1x1 + bn2x2 + . . .+ bnnxn + φn,

can be transformed to an equivalent system in unknowns y1, y2, . . . , yn of the
form

A(y1) = y2 + ψ1

A(y2) = y3 + ψ2

...

A(yn−1) = yn + ψn−1

A(yn) = −dny1 − dn−1y2 − . . .− d1yn + ψn,

where the columns y⃗ = [y1 . . . yn]
T ∈ V n×1 and ψ⃗ = [ψ1 . . . ψn]

T ∈ V n×1

are determined by y⃗ = P−1x⃗ i ψ⃗ = P−1φ⃗ for regular matrix P ∈ Kn×n such
that C = P−1BP and where d1, d2, . . . , dn are coefficients of the character-
istic polynomial of the matrices B and C. The second step of reduction is to
obtain the partially reduced system from the system in companion form. If we

write δ1k(C;A
n−k(ψ1), . . . , A

n−k(ψn)) for the sum of principal minors of order
k containing elements of the first column of the matrix obtained by substituting
column [An−k(ψ1) . . . A

n−k(ψn)]
T ∈ V n×1 in place of the first column of C and

if we set ∆C(A) = An+d1A
n−1+ . . .+dn−1A+dnI, then the partially reduced

system is of the form

∆C(A)(y1) =
n∑

k=1

(−1)k+1δ1k(C;A
n−k(ψ1), . . . , A

n−k(ψn))

y2 = A(y1)− ψ1

y3 = A(y2)− ψ2

...

yn = A(yn−1)− ψn−1.

In paper [5] we introduced a method for total reduction for linear systems of
the operator equations with the system matrix in the companion form, not
by a change of basis, but by finding the adjugate matrix of the characteristic
matrix of the system matrix. We also indicated how this technique may be
used to connect differential transcendence of the solution with the coefficients
of the system. In this paper we will replace single operator A with a sequence
of linear operators A1, A2, . . . , An, and concern more closely the second step of
the reduction process.
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Let C be a n×n matrix with coefficients in the field K in companion form, i.e.

C =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 1

−dn −dn−1 . . . −d2 −d1

 ∈ Kn×n.

Characteristic polynomial of the matrix C is

∆C(λ) = λn + d1λ
n−1 + . . .+ dn−1λ+ dn,

please refer to [3, p. 488]. Throughout the paper columns x⃗ = [x1 x2 . . . xn]
T ∈

V n×1 and φ⃗ = [φ1 φ2 . . . φn]
T ∈ V n×1 will be called column of unknowns and

nonhomogeneous term, respectively. Vector operator A⃗ : V n×1 → V n×1 is
defined componentwise by A⃗(x⃗) = [A1(x1)A2(x2) . . . An(xn)]

T . Matrix form
of the linear system of the operator equations with the system matrix in the
companion form and with different operators is

(1) A⃗(x⃗) = Cx⃗+ φ⃗.

The matrix form can be rewritten in the following system companion-like form

(2)

A1(x1) = x2 + φ1

A2(x2) = x3 + φ2

...

An−1(xn−1) = xn + φn−1

An(xn) = −dnx1 − dn−1x2 − . . .− d1xn + φn.

As we have already mentioned, the main topic of the paper is reduction of the
linear system (2) to the partially reduced system. In fulfilling this task we will
get some auxiliary results on doubly companion matrices.

2. Properties of Doubly Companion Matrix

Butcher and Chartier in [1, p. 274] introduced the notion of the doubly
companion matrix of polynomials α(λ) = λn + a1λ

n−1 + . . .+ an−1λ+ an and
β(λ) = λn + b1λ

n−1 + . . .+ bn−1λ+ bn as an n× n matrix over the field K of
the form

C = (α, β)


−a1 −a2 . . . −an−1 −an − bn
1 0 . . . 0 −bn−1

...
...

. . .
...

...
0 0 . . . 0 −b2
0 0 . . . 1 −b1

 .
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If b1 = b2 = . . . = bn = 0, we obtain the companion matrix of the polynomial
α(λ) = λn + a1λ

n−1 + . . .+ an−1λ+ an of the form

C(α) =


−a1 −a2 . . . −an−1 −an
1 0 . . . 0 0
...

...
. . .

... 0
0 0 . . . 0 0
0 0 . . . 1 0

 ,
and if a1 = a2 = . . . = an = 0, we get matrix

C(β) =


0 0 . . . 0 −bn
1 0 . . . 0 −bn−1

...
...

. . .
...

...
0 0 . . . 0 −b2
0 0 . . . 1 −b1

 .

with the characteristic polynomial β(λ) = λn + b1λ
n−1 + . . .+ bn−1λ+ bn.

Wanicharpichat in paper [10, p. 262], inspired by paper [1], defined the notion
of the lower doubly companion matrix as a matrix

C(α, β) =


−b1 1 0 . . . 0
−b2 0 1 . . . 0
...

...
...

. . .
...

−bn−1 0 0 . . . 1
−bn − an −an−1 −an−2 . . . −a1

 ,
which is for us more convenient to follow.
Butcher and Wright in [2, pp. 363-364], and Wright in [7] used the doubly
companion matrix as a tool for analyzing various extension of classical meth-
ods with inherent Runge–Kutta stability. Wanicharpichat in [8] proved that the
doubly companion matrix is nonderogatory and calculated its minimal polyno-
mial. In Wanicharpichat’s paper [10] we can find eigenvectors formulas for the
doubly companion matrix and in paper [9] explicit formula for a determinant
and an inverse formula of the doubly companion matrix were proved.
Butcher and Chartier in paper [1, Lemma 1.] asserted that the character-
istic polynomial of C(α, β) is given by omitting the negative powers of λ in
λ−nα(λ)β(λ). Wanicharpichat in paper [8, pp. 367–368] gave a direct calc-
ulation for finding the characteristic polynomial ∆C(α,β) = det(λI−C(α, β)) by
performing an elementary row and column operation on the matrix λI−C(α, β).

Lemma 2.1. The characteristic polynomial of the doubly companion matrix

M =


b1 1 0 . . . 0
b2 0 1 . . . 0
...

...
...

. . .
...

bn−1 0 0 . . . 1
bn an−1 an−2 . . . a1


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is polynomial

∆M (λ) = λn − (b1 + a1)λ
n−1 + (b1a1 − b2 − a2)λ

n−2 + . . .

. . .+ b1an−1 + b2an−2 + . . . bn−1a1 − bn,

i.e. for the coefficients dk of λk in the characteristic polynomial ∆M (λ) of the
matrix M following equality holds

dk =
k−1∑
j=1

bjak−j − bk − ak,

where 1 ≤ k ≤ n and an = 0.

Let M be an arbitrary n× n matrix over the field K. Let us denote by δk(M)

the sum of principal minors of the matrix M of the order k and by δ1k(M)
the sum of the principal minors of the matrix M of the order k containing
the first column, 1 ≤ k ≤ n. Coefficients of the characteristic polynomial
∆M (λ) = λn+d1λ

n−1+ . . .+dn of the matrixM can be expressed in the terms
of sums of its principal minors. More precisely we have dk = (−1)kδk(M), for
1 ≤ k ≤ n (please see [4, p. 203]).

The following result can be also found in paper [6]. In this paper we give
an elegant proof using previous lemma.

Lemma 2.2. If matrix M has the form

M =


b1 1 0 . . . 0
b2 0 1 . . . 0
...

...
...

. . .
...

bn−1 0 0 . . . 1
bn an−1 an−2 . . . a1


then it follows

δ1k(M) = (−1)k
( k−1∑

j=1

bjak−j−bk
)

(1 ≤ k ≤ n).

Proof. For the coefficients of the characteristic polynomial

∆M (λ) = λn + d1λ
n−1 + . . .+ dn−1λ+ dn

of the matrix M the equality dk = (−1)kδk(M) holds .
By deleting the first row and column of the matrixM we obtain (n−1)×(n−1)
matrix

M̃ =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

an−1 an−2 . . . a1

 .
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The matrix M̃ is the companion matrix of the polynomial

α(λ) = λn−1−a1λn−2−. . .−an−2λ−an−1,

and hence its characteristic polynomial is α(λ). Consequently it follows that

−ak = (−1)kδk(M̃), for 1 ≤ k ≤ n− 1.
The sum of all principal minors of the matrixM of the order k can be expressed
as the sum of its principal minors of the order k containing the first row, and
consequently the first column, and the sum of those which do not. Therefore,
we get connection between sums of principal minors of the order k of matrices

M and M̃ which states δk(M) = δ1k(M) + δk(M̃). Lemma 2.1 provides that

dk =
∑k−1

j=1 bjak−j − bk − ak and by assuming that an = 0, we conclude

δ1k(M) = δk(M)− δk(M̃) = (−1)kdk + (−1)kak = (−1)k

k−1∑
j=1

bjak−j − bk

 ,

for 1 ≤ k ≤ n.

3. Main Result

In this section we are returning on the reduction process of the system
(2). We write M1(v1, . . . , vn) for the matrix obtained by substituting column
v = [v1 . . . vn]

T ∈ V n×1 in place of the first column of M . As we mentioned

above, it is convenient to use δ1k(M ; v1, . . . , vn) = δ1k(M
1(v1, . . . , vn)) for the

sum of principal minors of the order k containing the first column of the matrix
M1(v1, . . . , vn).

Theorem 3.1. The linear system of the operator equations

A1(x1) = x2 + φ1

A2(x2) = x3 + φ2

...

An−1(xn−1) = xn + φn−1

An(xn) = −dnx1 − dn−1x2 − . . .− d1xn + φn,

can be transformed into partially reduced system

L(A⃗)(x1)

=

n∑
k=1

(−1)k+1δ1k(C;An−k+1◦. . .◦A2︸ ︷︷ ︸
n−k

(φ1), . . . , An−k◦. . .◦A1︸ ︷︷ ︸
n−k

(φn))

x2 = A1(x1)− φ1

x3 = A2(x2)− φ2

...

xn−1 = An−2(xn−2)− φn−2

xn = An−1(xn−1)− φn−1,
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where

L(A⃗)(x1) = An ◦An−1 ◦ . . . ◦A1(x1) + d1An−1 ◦An−2 ◦ . . .
. . . ◦A1(x1) +. . .+ dn−1A1(x1) + dnx1

and where

δ1k(C;An−k+1◦. . .◦A2(φ1), . . . , An−k◦. . .◦A1(φn))

is the sum of principal minors of the order k containing the first column of
matrix

An−k+1◦An−k ◦. . .◦A2(φ1) 1 0 . . . 0 0 0 . . . 0

An−k+2◦An−k+1◦. . .◦A3(φ2) 0 1 . . . 0 0 0 . . . 0

...
...

...
. . .

...
...

...
. . .

...

An◦An−1◦. . .◦Ak+1(φk) 0 0 . . . 1 0 0 . . . 0

A1◦An ◦. . .◦Ak+2(φk+1) 0 0 . . . 0 1 0 . . . 0

A2◦A1 ◦. . .◦Ak+3(φk+2) 0 0 . . . 0 0 1 . . . 0

...
...

...
. . .

...
...

...
. . . 0

An−k−1◦An−k−2◦. . .◦An(φn−1) 0 0 . . . 0 0 0 . . . 1

An−k ◦An−k−1◦. . .◦A1(φn) −dn−1 −dn−2 . . .−dn−k −dn−k−1 −dn−k−2 . . .−d1



.

Proof. From the first equation of the system we have x2 = A1(x1)− φ1. Sub-
stituting this expression into the second equation we get x3 = A2(x2) − φ2 =
A2 ◦ A1(x1) − A2(φ1) − φ2. So each xk, 2 ≤ k ≤ n, can be expressed as a
function of x1 in the following way

xk = Ak−1 ◦Ak−2 ◦ . . . ◦A1(x1)−
k−1∑
j=1

Ak−1 ◦Ak−2 ◦ . . . ◦Aj+1︸ ︷︷ ︸
k−1−j

(φj).

Hence substituting these expressions into the last equation yields

An ◦An−1 ◦ . . . ◦A1(x1)−
∑n−1

j=1 An ◦An−1 ◦ . . . ◦Aj+1(φj) =

−dnx1 − dn−1(A1(x1)− φ1)− dn−2(A2 ◦A1(x1)−A2(φ1)− φ2)− . . .−

−d1(An−1 ◦An−2 ◦ . . . ◦A1(x1)−
∑n−1

j=1 An−1 ◦An−2 ◦ . . . ◦Aj+1(φj)) + φn

i.e,

L(A⃗)(x1) =
(
An ◦An−1 ◦ . . . ◦A2(φ1)

)
+

(
An ◦An−1 ◦ . . . ◦A3(φ2) + d1An−1 ◦An−2 ◦ . . . ◦A2(φ1)

)
...

+
(
An(φn−1)+d1An−1(φn−2)+d2An−2(φn−3)+. . .+dn−2A2(φ1)

)
+

(
φn + d1φn−1 + d2φn−2 + . . .+ dn−2φ2 + dn−1φ1

)
.
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We have

L(A⃗)(x1) =

n∑
k=1

k∑
j=1

dk−j An−k+j ◦An−k+j−1 ◦ . . . ◦Aj+1︸ ︷︷ ︸
n−k

(φj),

where d0 = 1.

Lemma 2.2 leads to δ1k(C;An−k+1 ◦ . . . ◦ A2(φ1), . . . , An−k ◦ . . . ◦ A1(φn)) =

(−1)k+1
∑k

j=1 dk−jAn−k+j ◦ An−k+j−1 ◦ . . . ◦ Aj+1(φj), and in consequence

L(A⃗)(x1) =
∑n

k=1(−1)k+1δ1k(C;An−k+1◦ . . .◦A2(φ1), . . . , An−k ◦. . .◦A1(φn)),
which completes the proof.

The following construction was motivated by [6]. Operator L can also be
obtained by using generalized characteristic polynomial of the system matrix
C. Generalized characteristic polynomial of matrix C is defined by

∆C(λ⃗) = ∆C(λ1, λ2, . . . , λn) =

∣∣∣∣∣∣∣∣∣∣∣

λ1 −1 . . . 0 0
0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λn−1 −1
dn dn−1 . . . d2 λn + d1

∣∣∣∣∣∣∣∣∣∣∣
.

Let us denote by L(λ⃗) = L(λ1, λ2, . . . , λn) polynomial

λnλn−1 . . . λ1 + d1λn−1λn−2 . . . λ1 + . . .+ dn−1λ1 + dn.

Multiplying the last column of determinant ∆C(λ⃗) by λn−1 and adding it to
the penultimate, then multiplying obtained column with λn−2 and adding to
the previous one, and continuing in this fashion, we obtain

∆C(λ⃗) =

∣∣∣∣∣∣∣∣∣∣∣

0 −1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 −1

L(λ⃗) L(λ⃗)−dn

λ1
. . . λnλn−1 + d1λn−1 + d2 λn + d1

∣∣∣∣∣∣∣∣∣∣∣
.

The Laplace expansion along the first column of the previous determinant yields
∆C (⃗λ)=L(λ⃗).
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