NOTES ON PSEUDO-SEQUENCE-COVERING MAPS

Luong Quoc Tuyen¹

Abstract. In this paper, we prove that each sequentially-quotient and boundary-compact map on g-metrizable spaces is pseudo-sequence-covering, and each finite subsequence-covering (or 1-sequentially-quotient) map on snf-countable spaces is pseudo-sequence-covering.

AMS Mathematics Subject Classification (2010): 54C10, 54D65, 54E40, 54E99

Key words and phrases: g-metrizable; snf-countable; strongly g-developable; sequentially-quotient; 1-sequentially-quotient; pseudo-sequence-covering; finite subsequence-covering; compact map; boundary-compact map

1. Introduction

Pseudo-sequence-covering maps and sequentially-quotient maps play an important role in the study of images of metric spaces. It is well known that every pseudo-sequence-covering map on metric spaces is sequentially-quotient. But this implication can not be reversed. In 2005, S. Lin proved that each sequentially-quotient and compact map on metric spaces is pseudo-sequencecovering, and that there exists a sequentially-quotient π -map on metric spaces which is not pseudo-sequence-covering ([12]). After that, F. C. Lin and S. Lin proved that each sequentially-quotient and boundary-compact map on metric spaces is pseudo-sequence-covering ([9]). Recently, the same authors proved that if X is an open image of metric spaces, then each sequentially-quotient and boundary-compact map on X is pseudo-sequence-covering ([10]).

In this paper, we prove that each sequentially-quotient and boundarycompact map on g-metrizable spaces is pseudo-sequence-covering, and each finite subsequence-covering (or 1-sequentially-quotient) map on snf-countable spaces is pseudo-sequence-covering.

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} be a collection of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}$.

Definition 1.1. Let X be a space, $\{x_n\} \subset X$ and $P \subset X$.

1. $\{x_n\}$ is called *eventually* in P, if $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \bigcup \{x_n : n \ge m\} \subset P$.

 $^{^1 \}rm Department$ of Mathematics, Da Nang University of Education, Viet Nam, e-mail: luongtuyench12@yahoo.com

- 2. $\{x_n\}$ is called *frequently* in P, if some subsequence of $\{x_n\}$ is eventually in P.
- 3. P is called a sequential neighborhood of x in X [4], if whenever $\{x_n\}$ is a sequence converging to x in X, then $\{x_n\}$ is eventually in P.

Definition 1.2. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following (a) and (b) for every $x \in X$.

- (a) \mathcal{P}_x is a network at x.
- (b) If $P_1, P_2 \in \mathcal{P}_x$, then there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$.
- 1. \mathcal{P} is a weak base of X [1], if for $G \subset X$, G is open in X if and only if for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x in X.
- 2. \mathcal{P} is an *sn-network* for X [11], if each element of \mathcal{P}_x is a sequential neighborhood of x for all $x \in X$; \mathcal{P}_x is said to be an *sn-network at* x in X.

Definition 1.3. Let X be a space. Then,

- 1. X is gf-countable [1] (resp., snf-countable [5]), if X has a weak base (resp., sn-network) $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ such that each \mathcal{P}_x is countable.
- 2. X is g-metrizable [14], if X is regular and has a σ -locally finite weak base.
- 3. X is sequential [4], if whenever A is a non closed subset of X, then there is a sequence in A converging to a point not in A.
- 4. X is strongly g-developable [15], if X is sequential has a σ -locally finite strong network consisting of cs-covers.
- *Remark* 1.4. 1. Each strongly *g*-developable space is *g*-metrizable.
 - 2. A space X is gf-countable if and only if it is sequential and snf-countable.

Definition 1.5. Let $f: X \longrightarrow Y$ be a map.

- 1. f is a compact map [3], if each $f^{-1}(y)$ is compact in X.
- 2. f is a boundary-compact map [3], if each $\partial f^{-1}(y)$ is compact in X.
- 3. f is a pseudo-sequence-covering map [7], if for each convergent sequence L in Y, there is a compact subset K in X such that $f(K) = \overline{L}$.
- 4. f is a sequentially-quotient map [2], if whenever $\{y_n\}$ is a convergent sequence in Y, there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_{n_k})$.
- 5. f is a finite subsequence-covering map [13], if for each $y \in Y$, there is a finite subset F of $f^{-1}(y)$ such that for any sequence S converging to y in Y, there is a sequence L converging to some $x \in F$ in X and f(L) is a subsequence of S.

6. f is a 1-sequentially-quotient map [6], if for each $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y, there is a sequence $\{x_{n_k}\}$ converging to x_y in X with each $x_{n_k} \in f^{-1}(y_{n_k})$.

Remark 1.6. 1. Each compact map is a compact-boundary map.

2. Each 1-sequentially-quotient map is a finite subsequence-covering map.

Definition 1.7 ([8]). A function $g : \mathbb{N} \times X \longrightarrow \mathcal{P}(X)$ is a CWC-map, if it satisfies the following conditions.

- 1. $x \in g(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$.
- 2. $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$.
- 3. $\{g(n,x): n \in \mathbb{N}\}$ is a weak neighborhood base at x for all $x \in X$.

2. Main results

Theorem 2.1. Let $f : X \longrightarrow Y$ be a boundary-compact map. If X is a gmetrizable space, then f is a sequentially-quotient map if and only if it is a pseudo-sequence-covering map.

Proof. Necessity. Let f be a sequentially-quotient map and $\{y_n\}$ be a nontrivial sequence converging to y in Y. Since X is g-metrizable, it follows from Theorem 2.5 in [16] that there exists a CWC-map g on X satisfying, for any sequences $\{x_n\}$ and $\{y_n\}$ of X, if $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$, then $y_n \to x$. For $n \in \mathbb{N}$, let

$$U_{y,n} = \bigcup \{g(n,x) : x \in \partial f^{-1}(y)\}, \text{ and } P_{y,n} = f(U_{y,n}).$$

It is obvious that $\{P_{y,n} : n \in \mathbb{N}\}$ is a decreasing sequence in X. Furthermore, $P_{n,y}$ is a sequential neighborhood of y in Y for all $n \in \mathbb{N}$. If not, there exists $n \in \mathbb{N}$ such that $P_{y,n}$ is not a sequential neighborhood of y in Y. Thus, there exists a sequence L converging to y in Y such that $L \cap P_{y,n} = \emptyset$. Since f is sequentially-quotient, there exists a sequence S converging to $x \in \partial f^{-1}(y)$ such that f(S) is a subsequence of L. On the other hand, because g(n,x)is a sequential neighborhood of x in X, S is eventually in g(n,x). Thus, S is eventually in $U_{y,n}$. Therefore, L is frequently in $P_{y,n}$. This contradicts $L \cap P_{y,n} = \emptyset$.

Then for each $n \in \mathbb{N}$, there exists $i_n \in \mathbb{N}$ such that $y_i \in P_{y,n}$ for all $i \ge i_n$. So $f^{-1}(y_i) \cap U_{y,n} \ne \emptyset$. We can suppose that $1 < i_n < i_{n+1}$. For each $j \in \mathbb{N}$, we take

$$x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap U_{y,n}, & \text{if } i_n \le j < i_{n+1} \end{cases}$$

Let $K = \partial f^{-1}(y) \cup \{x_j : j \in \mathbb{N}\}$. Clearly, $f(K) = \{y\} \cup \{y_n : n \in \mathbb{N}\}$. Furthermore, K is a compact subset in X. In fact, let \mathcal{U} be an open cover for K in X. Since $\partial f^{-1}(y)$ is a compact subset in X, there exists a finite subfamily $\mathcal{H} \subset \mathcal{U}$ such that $\partial f^{-1}(y) \subset \bigcup \mathcal{H}$. Then there exists $m \in \mathbb{N}$ such that $U_{n,y} \subset U$. $\bigcup \mathcal{H}$ for all $n \geq m$. If not, for each $n \in \mathbb{N}$, there exists $v_n \in U_{y,n} - \bigcup \mathcal{H}$. It implies that $v_n \in g(n, u_n) - \bigcup \mathcal{H}$ for some $u_n \in \partial f^{-1}(y)$. Since $\{u_n\} \subset \partial f^{-1}(y)$ and each compact subset of X is metrizable, there exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that $u_{n_k} \to x \in \partial f^{-1}(y)$. Now, for each $i \in \mathbb{N}$, we put

$$a_{i} = \begin{cases} u_{n_{1}} & \text{if} \quad i \leq n_{1} \\ u_{n_{k+1}} & \text{if} \quad n_{k} < i \leq n_{k+1}; \end{cases}$$
$$b_{i} = \begin{cases} v_{n_{1}} & \text{if} \quad i \leq n_{1} \\ v_{n_{k+1}} & \text{if} \quad n_{k} < i \leq n_{k+1}. \end{cases}$$

Then $a_i \to x$. Because $g(n+1, x) \subset g(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$, it implies that $b_i \in g(i, a_i)$ for all $i \in \mathbb{N}$. By property of g, it implies that $b_i \to x$. Thus, $v_{n_k} \to x$. This contradicts to $\bigcup \mathcal{H}$ is a neighborhood of x and $v_{n_k} \notin \bigcup \mathcal{H}$ for all $k \in \mathbb{N}$.

Because $P_{y,i+1} \subset P_{y,i}$ for all $i \in \mathbb{N}$, it implies that $\partial f^{-1}(y) \cup \{x_i : i \geq m\} \subset \bigcup \mathcal{H}$. For each i < m, take $V_i \in \mathcal{U}$ such that $x_i \in V_i$. Put $\mathcal{V} = \mathcal{U} \cup \{V_i : i < m\}$. Then $\mathcal{V} \subset \mathcal{U}$ and $K \subset \bigcup \mathcal{V}$. Therefore, K is compact in X, and f is pseudo-sequence-covering.

Sufficiency. Suppose that f is a pseudo-sequence-covering map. If $\{y_n\}$ is a convergent sequence in Y, then there is a compact subset K in X such that $f(K) = \overline{\{y_n\}}$. For each $n \in \mathbb{N}$, take a point $x_n \in f^{-1}(y_n) \cap K$. Since K is compact and metrizable, $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$, and $\{f(x_{n_k})\}$ is a subsequence of $\{y_n\}$. Therefore, f is sequentially-quotient. \Box

By Remark 1.4, Remark 1.6 and Theorem 2.1, we obtain the following corollaries.

Corollary 2.2. Let $f : X \longrightarrow Y$ be a boundary-compact map. If X is strongly g-developable, then f is sequentially-quotient if and only if it is pseudo-sequence-covering.

Corollary 2.3. Let $f : X \longrightarrow Y$ be a compact map. If X is g-metrizable, then f is sequentially-quotient if and only if it is pseudo-sequence-covering.

Corollary 2.4. Let $f : X \longrightarrow Y$ be a compact map. If X is strongly gdevelopable, then f is sequentially-quotient if and only if it is pseudo-sequencecovering.

Theorem 2.5. Let $f : X \longrightarrow Y$ be a finite subsequence-covering map. If X is an snf-countable space, then f is a pseudo-sequence-covering map.

Proof. Let $\{y_n\}$ be a non-trivial sequence converging to y in Y and $\mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X\}$ be an *sn*-network for X such that each \mathcal{B}_x is countable. Since f is finite subsequence-covering, there exists a finite subset $F_y \subset f^{-1}(y)$ such that for each sequence S converging to y in Y, there is a sequence L in X such that L converging to some $x \in F_y$ and f(L) is a subsequence of S. Since each \mathcal{B}_x is a countable *sn*-network at x, for each $x \in X$, we can choose a decreasing countable network $\{B_{x,n} : n \in \mathbb{N}\} \subset \mathcal{B}_x$. Put

$$U_{y,n} = \bigcup \{ B_{x,n} : x \in F_y \}$$
 and $P_{y,n} = f(U_{y,n}).$

Then $P_{y,n+1} \subset P_{y,n}$ for all $n \in \mathbb{N}$. Furthermore, each $P_{y,n}$ is a sequential neighborhood of y in Y. If not, there exists $n \in \mathbb{N}$ such that $P_{y,n}$ is not a sequential neighborhood of y in Y. Thus, there exists a sequence L converging to y in Y such that $L \cap P_{y,n} = \emptyset$. Since f is finite subsequence-covering, there exists a sequence S in X such that S converges to some $x \in F_y$ and f(S) is a subsequence of L. On the other hand, because $B_{x,n}$ is a sequential neighborhood of x in X, S is eventually in $B_{x,n}$. It implies that S is eventually in $U_{y,n}$. Therefore, L is frequently in $P_{y,n}$. This contradicts to $L \cap P_{y,n} = \emptyset$.

Thus, for each $n \in \mathbb{N}$, there exists $i_n \in \mathbb{N}$ such that $y_i \in f(U_{y,n})$ for all $i \geq i_n$. So $g^{-1}(y_i) \cap U_{y,n} \neq \emptyset$. We can suppose that $1 < i_n < i_{n+1}$. For each $j \in \mathbb{N}$, we take

$$x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap U_{y,n}, & \text{if } i_n \le j < i_{n+1}. \end{cases}$$

Let $K = F_y \cup \{x_j : j \in \mathbb{N}\}$. Clearly, $f(K) = \{y\} \cup \{y_n : n \in \mathbb{N}\}$. Furthermore, K is a compact subset in X. In fact, let \mathcal{U} be an open cover for K in X. Since F_y is finite, there exists a finite subfamily $\mathcal{H} \subset \mathcal{U}$ such that $F_y \subset \bigcup \mathcal{H}$. For each $x \in F_y$, since $\{B_{x,n} : n \in \mathbb{N}\}$ is a decreasing network at x and $\bigcup \mathcal{H}$ is a neighborhood of x in X, $B_{x,n_x} \subset \bigcup \mathcal{H}$ for some $n_x \in \mathbb{N}$. If we put $k = \max\{n_x : x \in F_y\}$, then $U_{y,k} \subset \bigcup \mathcal{H}$. Furthermore, because $U_{y,i+1} \subset U_{y,i}$ for all $i \in \mathbb{N}$, $F_y \cup \{x_i : i \geq k\} \subset \bigcup \mathcal{H}$. For each i < k, take $V_i \in \mathcal{U}$ such that $x_i \in V_i$, and put $\mathcal{V} = \mathcal{H} \cup \{V_i : i < k\}$. Then $\mathcal{V} \subset \mathcal{U}$, $K \subset \bigcup \mathcal{V}$ and K is compact in X. Therefore, f is a pseudo-sequence-covering map. \Box

By Remark 1.4, Remark 1.6 and Theorem 2.5, we have

Corollary 2.6. Let $f : X \longrightarrow Y$ be a 1-sequentially-quotient map. If X is an snf-countable space, then f is a pseudo-sequence-covering map.

Corollary 2.7. Let $f : X \longrightarrow Y$ be a finite subsequence-covering map. If X is a gf-countable space, then f is a pseudo-sequence-covering map.

References

- Arhangel'skii, A.V., Mappings and spaces. Russian Math. Surveys 21(4) (1966), 115-162.
- [2] Boone, J.R., Siwiec, F., Sequentially quotient mappings. Czech. Math. J. 26 (1976), 174-182.
- [3] Engelking, R., General Topology (revised and completed edition). Berlin: Heldermann Verlag, 1989.
- [4] Franklin, S.P., Spaces in which sequences suffice. Fund. Math. 57 (1965), 107-115.
- [5] Ge, Y., Characterizations of sn-metrizable spaces. Publ. Inst. Math., Nouv. Ser. 74(88) (2003), 121-128.

- [6] Gu, J., On 1-sequential quotient mappings. J. Math. Study 44 (2003), 305-308.
- [7] Ikeda, Y., Liu, C., Tanaka, Y., Quotient compact images of metric spaces, and related matters. Topology Appl. 122 (2002), 237-252.
- [8] Lee, K.B., On certain g-first countable spaces. Pacific J. Math. 65(1) (1976), 113-118.
- [9] Lin, F.C., Lin, S., On sequence-covering boundary compact maps of metric spaces. Adv. Math. 39(1) (2010), 71-78. (in Chinese)
- [10] Lin, F.C., Lin, S., Sequence-covering maps on generalized metric spaces. in: arXiv: 1106.3806.
- [11] Lin, S., On sequence-covering s-mappings. Adv. Math. 25(6) (1996), 548-551. (in Chinese)
- [12] Lin, S., A note on sequence-covering mappings. Acta Math. Hungar. 107 (2005), 193-197.
- [13] Liu, C., Notes on weak bases. Q and A in General Topology 22 (2004), 39-42.
- [14] Siwiec, F., On defining a space by a weak base. Pacific J. Math. 52 (1974), 233-245.
- [15] Tanaka, Y., Ge, Y., Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32(1) (2006), 99-117.
- [16] Yan, P., Lin, S., CWC-mappings and metrization theorems. Adv. Math. 36(2) (2007), 153-158. (in Chinese)

Received by the editors June 11, 2013