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NEARLY EINSTEIN MANIFOLDS

Swapan Kumar Saha1

Abstract. The object of this paper is to define and study a new type
of non-flat Riemannian manifolds called nearly Einstein manifolds. The
notion of this nearly Einstein manifold has been established by an exam-
ple and an existence theorem. Some geometric properties are obtained.
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1. Introduction

Generalizing the Einstein manifold Prof. M. C. Chaki and R. K. Maity
introduced and studied quasi Einstein manifold. The aim of this paper is to
define and study a type of non-flat Riemannian manifold called nearly Einstein
manifold. This manifold is defined in the next section. Such an n-dimensional
manifold shall be denoted by the symbol (NE)n. In existence of nearly Einstein
manifold it is shown that every Einstein manifold is a nearly Einstein manifold.
But it is not true conversely. So it is meaningful to study the nearly Einstein
manifold.

In this paper it is shown that in a (NE)n, the associated scalar is 1
n |S|

2,
where |S| is the length of the Ricci tensor S and in an Einstein (NE)n, the
length of the Ricci tensor is r√

n
, where r is the scalar curvature of the manifold.

In a (NE)n, the Ricci tensor L of type (1,1) has two eigenvalues, namely,
√
λ

and -
√
λ, where λ is the associated scalar defined by (2.1) and the scalar

curvature is zero if and only if it is even dimensional. It is shown that in a
quasi Einstein (NE)n, the Ricci curvature in the direction of U defined by (2.5)

is n(λ−a2)−ab
b and it is shown that in a Ricci recurrent (NE)n,

2λ
r , r ̸= 0, is an

eigenvalue of the Ricci tensor L of type (1,1) corresponding to the eigenvector
which is the vector of recurrence. It is proved that a conharmonically flat
manifold is a (NE)n if and only if it is a Ricci semi symmetric manifold.
Next an example of nearly Einstein manifold has been constructed in local
coordinates. Finally, it is shown that if in a (NE)4 perfect fluid space time in
which Einstein equation without cosmological constant holds and the energy
momentum tensor obeys the time like convergence condition, then such a space

time contains pure matter and in this case isotropic pressure is
√

λ
3K2 and

energy density is
√

3λ
K2 .
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2. Definitions

In this section we first define a nearly Einstein manifold.

Definition 2.1. A non-flat Riemannian manifold (Mn, g), n > 2, is called a
nearly Einstein manifold if its Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition

(2.1) S(LX, Y ) = λg(X,Y ) for all vector fields X,Y.

where λ is a non-zero scalar called the associated scalar and L is the symmetric
endomorphism of the tangent space at each point corresponding to the Ricci
tensor S of type (0,2) defined by

(2.2) g(LX, Y ) = S(X,Y ) for all vector fields X,Y.

Such an n-dimensional manifold shall be denoted by the symbol (NE)n.

Some definitions are stated below. These will be used in the sequel.

Definition 2.2 ([1]). A Riemannian Manifold (Mn, g), n ≥ 2, is called an
Einstein manifold if the Ricci tensor S of type (0,2) satisfies the following
condition

(2.3) S(X,Y ) =
r

n
g(X,Y ) for every vector field X,Y,

where r is the scalar curvature of the manifold.

Einstein manifolds play an important role in Riemannian geometry as well
as in general theory of relativity.

In a paper in 2000, M.C. Chaki and R.K. Maity generalized the Einstein
manifold as follows:

Definition 2.3 ([2]). A non-flat Riemannian manifold (Mn, g), n > 2, is called
a quasi Einstein manifold if its Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition

(2.4) S(X,Y ) = ag(X,Y ) + bA(X)A(Y ) for all vector fields X,Y,

where a and b are scalars and b ̸= 0 and A is an associated 1-form defined by

(2.5) g(X,U) = A(X),

U is a unit vector field called the generator of the manifold. Since then works
on quasi Einstein manifolds and its generalizations are going on. Some of them
are [3, 8, 9, 10, 11].

The Ricci recurrent manifold is defined as follows:
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Definition 2.4 ([15]). A Riemannian manifold (Mn, g), n > 2, is said to be
Ricci recurrent if its Ricci tensor S of type (0,2) is not proportional to the
metric tensor g and satisfies the condition

(2.6) (∇XS)(Y, Z) = B(X)S(Y,Z), for all vector fields X,Y,Z,

where ∇ is the operator of covariant differentiation with respect to the metric
tensor g and B is a non-zero 1-form defined by g(X,V ) = B(X). The Ricci
recurrent manifolds and its generalizations were studied in [5, 6, 7, 15] and in
many other papers.

The conharmonically flat manifold is defined as follows:

Definition 2.5 ([12, 13]). Let Ĉ and R be the conharmonic curvature tensor
and Riemannian curvature tensor respectively, then
(2.7)

Ĉ(X,Y )Z=R(X,Y )Z− 1

n− 2
{g(Y,Z)LX−g(X,Z)LY+S(Y,Z)X−S(X,Z)Y }.

A non-flat Riemannian manifold (Mn, g), n > 2, is called conharmonically
flat if

(2.8) Ĉ(X,Y )Z = 0.

From (2.7) and (2.8) we get

(2.9) R(X,Y )Z =
1

n− 2
{g(Y,Z)LX − g(X,Z)LY + S(Y, Z)X − S(X,Z)Y }.

The Ricci semi symmetric manifold is defined as follows:

Definition 2.6 ([17]). A Riemannian manifold (Mn, g), n > 2, is called Ricci
semi symmetric if its Ricci tensor S of type (0,2) satisfies the condition

(2.10) [R(X,Y ).S](Z,W ) = 0 for all vector fields X,Y,Z,W.

3. Main results

To show the existence of a nearly Einstein manifold we prove the following
theorem:

Theorem 3.1. Every Einstein manifold is a nearly Einstein manifold.

Proof. Putting LX for X in (2.3) we get

(3.1) S(LX, Y ) =
r

n
S(X,Y ).

From (3.1) and (2.3) we get

(3.2) S(LX, Y ) =
r2

n2
g(X,Y ),

which shows that the manifold is a nearly Einstein manifold with associated

scalar r2

n2 . But the converse implication is not true.
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Some properties of the associated scalar and the scalar curvature of (NE)n
are shown in the following theorems:

Theorem 3.2. In a (NE)n, the associated scalar is 1
n |S|

2, where |S| is the
length of the Ricci tensor S.

Proof. PuttingX = Y = ei in (2.1), where {ei}, i = 1, 2, ..., n is an orthonormal
basis of the tangent space at each point and i is summed for 1 ≤ i ≤ n, we get

(3.3) |S|2 = λn,

where
|S| =

√
S(Lei, ei)

is the length of the Ricci tensor S. Hence the theorem.

Theorem 3.3. In an Einstein (NE)n, the length of the Ricci tensor is 1√
n
r.

Proof. If a (NE)n is an Einstein manifold, then we get from (2.3) and (2.1)

(3.4) λ =
r2

n2
.

From (3.3) and (3.4) we get

(3.5) |S| = 1√
n
r.

Hence we get the above theorem.

Theorem 3.4. In a (NE)n, the Ricci tensor L of type (1,1) has two eigen-
values, namely,

√
λ and -

√
λ. The scalar curvature is zero if and only if it is

even dimensional.

Proof. Let ρ be the eigenvalue of the Ricci tensor L of type (1,1) corresponding
to any vector field X, then

(3.6) LX = ρX.

From (3.6), (2.1) and (2.2) we get

(ρ2 − λ)X = 0,

for all X. This shows that the Ricci tensor L of type (1,1) has two eigenvalues,
namely

√
λ, -

√
λ. Again let the multiplicity of

√
λ be m and the multiplicity

of -
√
λ be n−m. Since the scalar curvature is the trace of L, we have

(3.7) r = m
√
λ− (n−m)

√
λ = (2m− n)

√
λ.

Since λ ̸= 0, the scalar curvature vanishes if and only if the manifold is even
dimensional. This proves the theorem.
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Considering quasi Einstein nearly Einstein manifold we obtain the following
theorem:

Theorem 3.5. In a quasi Einstein (NE)n, the Ricci curvature in the direction

of U defined by (2.5) is n(λ−a2)−ab
b

Proof. Putting LX for X in (2.4) we get

(3.8) S(LX, Y ) = a2g(X,Y ) + abA(X)A(Y ) + bA(LX)A(Y ).

From (2.1) and (3.8) we get

(3.9) λg(X,Y ) = a2g(X,Y ) + abA(X)A(Y ) + bA(LX)A(Y ).

Putting X = Y = ei in (3.9), where {ei}, i = 1, 2, ..., n is an orthonormal
basis of the tangent space at each point and i is summed for 1 ≤ i ≤ n, we get

(3.10) S(U,U) =
n(λ− a2)− ab

b
.

Since U is a unit vector field, g(U,U) = 1, the Ricci curvature S(U,U)
g(U,U) in the

direction of U is n(λ−a2)−ab
b . Hence the theorem.

Considering Ricci recurrent nearly Einstein manifold we obtain the following
theorem:

Theorem 3.6. In a Ricci recurrent (NE)n,
2λ
r , r ̸= 0, is an eigenvalue of the

Ricci tensor L of type (1,1) corresponding to the eigenvector which is a vector
of recurrence.

Proof. Contracting (2.6) we get

(3.11) (divL)(X) = B(LX).

Again contracting (2.6) we get

(3.12) X.r = B(X)r.

Now since (divL)(X) = 1
2X.r, we get from (3.12)

(3.13) (divL)(X) =
1

2
B(X)r.

Putting LX for X in (3.11) using (2.1) and (2.2) we get

(3.14) (divL)(LX) = B(L2X) = B(λX) = λB(X).

Putting LX for X in (3.13) we get

(3.15) (divL)(LX) =
r

2
B(LX).
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From (3.14) and (3.15) we get

(3.16) LV =
2λ

r
V,

for all X. From (3.16) we conclude that 2λ
r ,r ̸= 0, is an eigenvalue of the Ricci

tensor L of type (1,1) corresponding to the eigenvector V which is a vector of
recurrence. This completes the proof.

Considering conharmonically flat Ricci semi symmetric manifold in a nearly
Einstein manifold we obtain the following theorem:

Theorem 3.7. Every conharmonically flat Ricci semi symmetric manifold is
a (NE)n.

Proof. From (2.10) and the Ricci identity we get

(3.17) S(R(X,Y )Z,W ) + S(Z,R(X,Y )W ) = 0.

From (2.9) and (3.17) we get
(3.18)
g(Y,Z)S(LX,W )−g(X,Z)S(LY,W )+g(Y,W )S(LX,Z)−g(X,W )S(LY,Z)=0.

Putting Y = Z = ei in (3.18), where {ei}, i = 1, 2, ..., n is an orthonormal
basis of the tangent space at each point and summing for 1 ≤ i ≤ n, we get

S(LX,W ) =
1

n
|S|2g(X,W ),

which shows that this manifold is a (NE)n. Hence the theorem.

Now we shall prove the converse part of the Theorem 3.7. We can state it
as follows:

Theorem 3.8. A conharmonically flat (NE)n is a Ricci semi symmetric ma-
nifold.

Proof. We suppose that the condition (2.1) holds in a conharmonically flat
manifold. We have from (2.9)

[R(X,Y ).S](Z,W )

= −[S(R(X,Y )Z,W ) + S(Z,R(X,Y )W )](3.19)

= − 1

n− 2
[g(Y,Z)S(LX,W )− g(X,Z)S(LY,W )

+g(Y,W )S(LX,Z)− g(X,W )S(LY,Z)]

= 0 [by (2.1)]

Thus we see that a conharmonically flat (NE)n is a Ricci semi symmetric
manifold. Hence the theorem.
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From Theorem 3.7 and Theorem 3.8 we can state the following:

Theorem 3.9. A conharmonically flat manifold (Mn, g), n > 2, is a (NE)n
if and only if it is a Ricci semi symmetric manifold.

An example of (NE)n: We construct a manifold (M3, g) whose metric in
local coordinates (x1, x2, x3) is

(3.20) ds2 = ex
1+x2

(dx1)2 + 2dx1dx2 + (dx3)2.

From (3.20) we get the non-zero components of the metric tensors gij and
gij as follows:

(3.21) g11 = ex
1+x2

, g12 = g21 = 1, g33 = 1

and

(3.22) g12 = g21 = 1, g22 = −ex
1+x2

, g33 = 1.

Calculating the Christoffel symbols Γ i
jk we find that such non-zero symbols

are as follows:

Γ1
11 = −1

2
ex

1+x2

,

(3.23) Γ2
11 =

1

2
ex

1+x2

+
1

2
e2(x

1+x2),

Γ2
12 =

1

2
ex

1+x2

.

Let Rij and Ri
j be the components in local coordinates of S and L, respectively.

Calculating Rij and Ri
j we find that its non-zero components are as follows:

R11 = −1

2
e2(x

1+x2),

(3.24) R12 = R21 = −1

2
ex

1+x2

,

R1
1 = R2

2 = −1

2
ex

1+x2

,

The scalar curvature r is obtained as follows:

r = −ex
1+x2

̸= 0.

From the above we can verify that

RijR
j
k = λgik
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where

λ =
1

4
e2(x

1+x2)

i.e. in the index free notation, the defining equation of (NE)n,

S(LX, Y ) = λg(X,Y ).

Thus we verify that the constructed (M3, g) is a nearly Einstein manifold.
From (3.21)and (3.24) it can be verified that (M3, g) can not be an Einstein
since r ̸= 0. Thus the above constructed example is an example of a nearly
Einstein manifold which is not an Einstein manifold.

Now we consider an application of (NE)n in a general relativistic spacetime
(M4, g) and prove the following theorem:

Theorem 3.10. If in a (NE)4 perfect fluid spacetime in which the Einstein
equation without cosmological constant holds and the energy momentum tensor
obeys the timelike convergence condition, then such a spacetime contains pure

matter and in this case isotropic pressure is
√

λ
3K2 and energy density is

√
3λ
K2 .

Proof. Let a semi Riemannian (NE)4 be a general relativistic spacetime (M4, g)
where g is a Lorentz metric with signature (+,+,+,-). We know from [14, 16]
that if the Ricci tensor S of type (0,2) of the spacetime satisfies the condition

(3.25) S(X,X) > 0,

for every timelike vector field X, then (3.25) is called the timelike convergence
condition. In this section we consider a perfect fluid spacetime (NE)4 with
unit time like velocity vector field U . Then we have

(3.26) g(U,U) = −1.

Let {ei}, i = 1, 2, 3, 4, be an orthonormal basis of the frame field at a point
of the spacetime and contracting (2.1) over X and Y , we obtain

(3.27) S(Lei, ei) = 4λ.

The sources of any gravitational field (matter and energy) are represented
in relativity by a type of (0,2) symmetric tensor T called the energy momentum
tensor [14]. T is given by

(3.28) T (X,Y ) = (σ + p)A(X)A(Y ) + pg(X,Y ),

where σ and p are the energy density and the isotropic pressure of the fluid
respectively, while A is defined by

(3.29) g(X,U) = A(X),

and we suppose that T obeys time like convergence condition. The Einstein
equation without cosmological constant [14, 4] can be written as

(3.30) S(X,Y )− 1

2
rg(X,Y ) = KT (X,Y ),
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where K is the gravitational constant. From (3.28) and (3.30) we get

(3.31) S(X,Y )− 1

2
rg(X,Y ) = K[(σ + p)A(X)A(Y ) + pg(X,Y )].

Taking frame field contracting (3.31) over X and Y we obtain

(3.32) r = K(σ − 3p).

Putting X = Y = U in (3.31) and using (3.26) and (3.32) we get

(3.33) S(U,U) =
K

2
(σ + 3p).

Putting LX for X in (3.31) and taking the frame field and contracting over
X and Y and using (3.26), (3.27), (3.32) and (3.33) we get

(3.34) 4λ = K2(σ2 + 3p2) > 0,

since λ is non-zero. Since the spacetime is even dimensional, by Theorem 3.4
we get the scalar curvature of (NE)4 spacetime is zero. Hence from (3.32) we
get

(3.35) σ = 3p.

From (3.33) and (3.35) we get

(3.36) S(U,U) = Kσ > 0,

by (3.25) i.e. σ > 0 which implies that this (NE)4 spacetime contains pure
matter. In this case, isotropic pressure p and energy density σ are given by
p2 = λ

3K2 and σ2 = 3λ
K2 , respectively. This completes the proof.
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