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A NOTE ON CUT PROPERTIES OF SEMILATTICE
VALUED FUZZY SETS1

Harina O. L. Monim2, Indah E. Wijayanti3 and Sri Wahyuni4

Abstract. Semilattice valued fuzzy sets are investigated in the frame-
work of cuts. A theorem of synthesis for such fuzzy sets is proved. Fami-
lies of cuts for meet(join)-fuzzy sets are proved to be special semi-closure
systems. Conversely, for every such semi-closure system, we prove exis-
tence of a semilattice and a semilattice-valued fuzzy set whose collection
of cuts is the given semi-closure system. We also show that for an ar-
bitrary collection of subsets of a nonempty set, there is a semilattice
valued fuzzy set whose collection of cuts contains these subsets. Using
meet-irreducible elements in a finite meet-semilattice, we give conditions
under which all the cuts of a meet-semilattice-valued fuzzy set are differ-
ent and we describe a representation of the semilattice by the collection
of cuts ordered dually by inclusion.

AMS Mathematics Subject Classification (2010): 03E72, 06A12

Key words and phrases: meet (join)-fuzzy sets; cuts; semi-closure sys-
tems; dual semi-closure systems

1. Introduction

In this paper, a fuzzy set on an arbitrary nonempty set X is a function
from X into a meet (join)-semilattice S. A fuzzy set as a function can be
characterized by the particular collection of subsets of its domain. As it is
known, these subsets are called cut sets of the function (for details, see [2], [3]).
This collection is considered as a partially ordered set with respect to the set
inclusion. If the co-domain of a fuzzy set is a lattice, then the collection of cuts
of this fuzzy set formes a closure system on X.

Šešelja and Tepavčević ([2]) introduced poset-valued fuzzy sets for which
the co-domain is a poset. They gave necessary and sufficient conditions under
which a family of subsets of an arbitrary nonempty set represents a collection
of cuts of a fuzzy set whose co-domain is a partially ordered set. In [3], they
investigated the analogue representation for fuzzy sets whose co-domain is a
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meet (join)-semilattice. Such representations are an alternative way to find the
function from an arbitrary nonempty set to a poset, which may also be a lattice
or a semilattice.

In this paper, in connection to the above investigations, semilattice-valued
fuzzy sets are investigated from the point of view of cut sets. The theorem of
synthesis for semilattice-valued fuzzy sets by means of cuts is proved. Families
of cuts for meet(join)-fuzzy sets turn out to be special (dual) semi-closure
systems. Conversely, for every (dual) semi-closure system over a nonempty
domain, we prove that there is a semilattice and a semilattice-valued fuzzy
set, whose collection of cuts is the given semi-closure system. We also show
that for an arbitrary nonempty collection of subsets of a nonempty set, there
is a semilattice valued fuzzy set whose collection of cuts contains these subsets.
Finally, dealing with finite semilattices and using meet-irreducible elements, we
give conditions under which all the cuts of a meet-semilattice valued fuzzy sets
are different and we present a representation of a semilattice by the collection
of cuts of a semilattice valued fuzzy set, ordered dually to inclusion.

Notations and some basic facts about fuzzy sets with the co-domain which
is a meet (join)-semilattice are adopted from [3] and notions related to partially
ordered sets from [1].

2. Preliminaries

2.1. Ordered structures

We list some known notions related to order structures (including their
basic properties), mostly intending to introduce notation used in the text.

A partially ordered set – a poset (S,≤) is a nonempty set S equipped with
an ordering relation ≤. For every p ∈ S, the principal filter generated by
p is denoted by ↑p:

↑p = {x ∈ S | p ≤ x}.

Let (P,≤) be a poset. For arbitrary M ⊆ S, the set of upper bounds
of M is given by Mu := {p ∈ P | x ≤ p, for every x ∈ M}, and the set of
lower bounds of M is M l := {p ∈ P | x ≥ p, for every x ∈M}.

A poset is bounded if it has the smallest element, the bottom, denoted
by 0, and the greatest, the top, denoted by 1.

A meet-semilattice is a poset in which for every two-element subset {x, y}
there is the greatest lower bound (glb, meet, infimum), denoted by x ∧ y. A
meet-semilattice is complete if the greatest lower bound, infimum, exists for
every nonempty subset M of S. Infimum of M is denoted by

∧
M . A join-

semilattice is a poset in which for every two-element subset {x, y} there is the
least upper bound (lub, join, supremum), denoted by x ∨ y. It is complete if
for every nonempty M ⊆ S, supremum,

∨
M , exists. Meet and join are binary

operations on S, hence a meet and join-semilattices are algebras, denoted by
(S,∧) and (S,∨) respectively.

A (complete) lattice is a poset which is a (complete) meet-semilattice and
a (complete) join-semilattice. Every complete lattice is bounded.
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If (S,≤) and (T,≤) are posets, then a map f : S −→ T is an order
isomorphism if it is a bijection compatible with the order in both directions,
i.e., if for x, y ∈ S,

(2.1) x ≤ y if and only if f(x) ≤ f(y).

If S and T are semilattices, then a function from S to T which preserve meets is
a meet-homomorphism and if it preserves joins, it is a join-homomorphism.
Namely these functions are given respectively by:

(2.2) f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y), for all x, y ∈ S.

If S and T are lattices, then a function f from S to T is a homomorphism if
it preserves meets and joins, namely if it satisfies both equalities in (2.2).

Two semilattices are isomorphic as algebras if and only if they are order
isomorphic in the sense of (2.1).

As usual in the set theory, a family of subsets of a set X is a function
from an index set I into the power set P (X). The co-domain of a family is the
corresponding collection of subsets of X. A family is empty if I = ∅.

Let C be a collection of subsets of a nonempty set X (i.e., let C ⊆ P(X),
where P(X) is the power set of X). As it is known, this collection is called a
closure system on X if it closed under set intersections of arbitrary (including
empty) subcollections. A closure system is a complete lattice under inclusion.

For the rest of this paper, a complete meet-semilattice contains the bottom
element, 0, and a complete join-semilattice contains the top, 1.

3. Main Results

Let (S,≤) be a meet (join)-semilattice and X 6= ∅. A mapping µ : X → S
is called a meet (join)-fuzzy set on X, or a fuzzy set on X. The collection

SX = {µ | µ : X → S},

is called the meet (join) fuzzy power set of X. The collection SX is ordered
with respect to the ordering relation in S:

µ ≤ ν if and only if for every x ∈ X, µ(x) ≤ ν(x).

Under this order, SX is a semilattice. The image of X under µ is denoted as
usual, by µ(X):

µ(X) = {p ∈ P | p = µ(x), for some x ∈ X}.

Let µ ∈ SX and p ∈ S. Then a cut set (cut) of µ is a subset of X defined by

µp = {x ∈ X | µ(x) ≥ p}.

In other words, a cut set of µ is the inverse image of the principal filter
generated by p under µ:

µp = µ−1(↑p).
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It is obvious that for p, q ∈ S,

(3.1) p ≤ q → µq ⊆ µp.

The collection of all cuts of µ is denoted by µS :

µS = {µp | p ∈ S}.

Here we investigate order theoretic properties of µS under the set inclusion.
In the following we use the known fact that if a particular subset of any

complete meet-semilattice S has an upper bound, then join of such subset
exists.

Proposition 3.1. If S is a complete meet-semilattice and µ : X → S is a
function in SX , then for every x ∈ X,

µ(x) =
∨
{p ∈ S | x ∈ µp},

which means that the join on the right hand side exists and is equal to µ(x).

Proof. Let M = {p ∈ S | x ∈ µp}. If s ∈M , then for every x ∈ X we have

x ∈ µs, if and only if s ≤ µ(x).

It means that µ(x) ∈ Mu, i.e., Mu 6= ∅ and thus the join of M exists, since it
is the meet of all upper bounds.

Since x ∈ µµ(x), µ(x) is an element of M . Due to the fact that it is an
upper bound of M , µ(x) =

∨
{p ∈ S | x ∈ µp}.

An analogous proposition concerning join-fuzzy sets is also valid.
In the following, we deal with the converse problem. Starting with a par-

ticular family of subsets of a domain, we describe a construction of a fuzzy set
whose cuts are members of the family.

Using the existence of the join of a nonempty subset M of a semilattice S,
we get the following lemma.

Lemma 3.2. Let (S,≤) be a complete meet-semilattice and µ ∈ SX . If Mu 6=
∅, for a subset M of S, then

(3.2)
⋂
{µp | p ∈M} = µ∨

{p|p∈M}.

Proof. If Mu 6= ∅, then
∨
{p | p ∈ M} exists. Since p ≤

∨
{p | p ∈ M} for

every p ∈ M , µ∨
{p|p∈M} ⊆

⋂
{µp | p ∈ M}. On the other hand, if x ∈

⋂
{µp |

p ∈ M}, then µ(x) ≥ p for every p ∈ M , hence µ(x) ≥
∨
{p | p ∈ M} and

x ∈ µ∨
{p|p∈M}. This means that the opposite inclusion holds, hence also the

equality.

The analogous statement for join-fuzzy sets follows.
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Lemma 3.3. Let (S,≤) be a complete join-semilattice and µ ∈ SX . If M is a
nonempty subset of S, then⋂

{µp | p ∈M} = µ∨
{p|p∈M}.

The proof is similar as in Lemma 3.2; upper bounds in a complete join-
semilattice S exist for every nonempty subset.

The next lemma is a straightforward application of properties of meet (join)-
semilattices to the collection of cuts of µ on X.

Lemma 3.4. Let µ be a meet (join)-fuzzy set on X and µS be a collection of
cuts of µ. Then the following conditions are satisfied.

1. If (S,≤) is a meet-semilattice, then (µS ,⊆) is a join-semilattice.

2. If (S,≤) is a join-semilattice, then (µS ,⊆) is a meet-semilattice.

The following property could be called the Theorem of synthesis for a fuzzy
set over a meet (join)-semilattice.

Theorem 3.5. Let {Mi | i ∈ S} be a family of subsets of a nonempty set X,
indexed by elements of meet-semilattice S in the following way:

For every x ∈ X,
∨
{p | x ∈Mp} exists in S and

(3.3)
⋂
{Mp | x ∈Mp} = M∨

{p|x∈Mp}.

Then, {Mi | i ∈ S} is the family of cut sets of fuzzy set µ : X → S, defined
by

(3.4) µ(x) =
∨
{p ∈ S | x ∈Mp}.

Proof. We note that from the condition (3.3) it follows that for all p, q ∈ S, if
p ≤ q then Mq ⊆Mp.

Function µ is well defined. Now we prove that µS = {Mi | i ∈ S}, i.e., for
every p ∈ S, µp = Mp.

Let p ∈ S and let x ∈ µp. This means that∨
{p ∈ S | x ∈Mp} = µ(x) ≥ p.

From
⋂
{Mp | x ∈Mp} = M∨

{p∈S|x∈Mp} ⊆Mp, we have x ∈Mp.
Now, suppose that x ∈ Mp for some p ∈ S. By the assumption

∨
{p ∈ S |

x ∈Mp} exist and µ(x) =
∨
{p ∈ S | x ∈Mp} ≥ p. Therefore, x ∈ µp.

We proved that for every p ∈ S, Mp = µp.

Remark 3.6. The theorem analogous to the previous one is valid also for join-
semilattices, in which case the condition that for every x ∈ X,

∨
{p | x ∈Mp}

exists in S is superfluous.

An illustration of the theorem is given in the following example.
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r

p

0

q

s

Figure 1: Meet-semilattice S

Example 3.7. Let X = {a, b, c} be an abstract finite set and let the meet-
semilattice S be as in Figure 1.

Let MS = {{b}, {c}, {a, b}, {b, c}, {a, b, c}} be the family indexed by ele-
ments from S by the mapping i : S → MS ⊆ P (X) defined by i(s) = Ms for
each s ∈ S as follows:

Mp = {b, c}, Mq = {a, c}, Mr = {b}, Ms = {c} M0 = {a, b, c}.

x Mt t N ∨N
a M0,Mq 0, q {0, q} q
b M0,Mp,Mr 0, p, r {0, p, r} r
c M0,Mp,Mq,Ms 0, p, q, s {0, p, q, s} s

Table 1: join of particular subset N of S

Using the formula (3.4) we formulate the definition of function µ as follows.

µ =

(
a b c
q r s

)
As a consequence, the collection of cuts of µ coincides with the starting family
MS of subsets of X.

The collection of cuts can be ordered by the inclusion as a join-semilattice
(Figure 2).

{b}

{b, c}
{a, b, c}

{a, c}

{c}

Figure 2: Join-semilattice of collection µS of cuts

In the case of fuzzy sets with the lattice co-domain, it is proved in [4] that
the collection of cuts is a closure system. In the present discussion, by the
construction of a meet (join)-fuzzy set µ, the collection of cuts of µ is not a
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closure system in general. The following is a counter example in the case of
meet-semilattices.

Example 3.8. Consider The abstract finite set X = {x, y, z} and the meet-
semilattice S given by the diagram in Figure 3.

r

p

0

q

s
t

u

Figure 3: Meet-semilattice S

Let µ be the meet-fuzzy set on X defined as follows:

µ =

(
x y z
r u t

)
.

All cut sets of function µ are:

µ0 = {x, y, z}, µp = {x, y}, µq = {y, z}, µr = {x}, µs = µu = {y}, µt = {z}.

The collection of cuts µS is a join-semilattice but it is not closed under inter-
sections.

Hence, in general the collection of cuts of a meet (join)-fuzzy set is not a
closure system.

However, such collection of cuts satisfies a similar property, but it is weaker
than the mentioned one, as defined in the sequel.

Definition 3.9. Let X be a nonempty set and F a collection of subsets in X.
Then F is called

a semi-closure system if it is closed under nonempty intersection of
arbitrary subcollection, i.e., if F1 ⊆ F , and ∩F1 6= ∅, then ∩F1 ∈ F .

a dual semi-closure system if it closed under intersection of arbitrary
nonempty subcollection, i.e., if F1 ⊆ F and F1 6= ∅, then ∩F1 ∈ F .

Since the intersection of an empty family of subsets of X is X, we have that
a semi-closure system is a complete join-semilattice under inclusion.

Analogously, if F is a dual semi-closure system, then
⋂
F (possibly empty)

is the smallest set in F under inclusion. Hence, a dual semi-closure system is
a complete meet-semilattice under inclusion.

Theorem 3.10. Let X be a nonempty set.
(i) If S is a complete meet-semilattice and µ is a fuzzy set in SX , then the

collection µS of cut sets of µ, ordered by inclusion, is a semi-closure system on
X.
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(ii) If S is a complete join-semilattice and µ is a fuzzy set in SX , then
the collection µS of cut sets of µ, ordered by inclusion, is a dual semi-closure
system on X.

Proof. (i) By Proposition 3.1 there is R = {s ∈ S|x ∈ µs} ⊆ S such that
µ(x) =

∨
R = q for some q ∈ S. Let F ⊆ µS , it means that F = {µp|p ∈ M}

for some M ⊆ S. Let M = R. Then the smallest cut
⋂
F =

⋂
{µp|p ∈ M} is

not empty as there is the greatest element q =
∨
R in S. We obtain directly

by Lemma 3.2
⋂
F =

⋂
{µp|p ∈ R} = µ∨

R = µq for some q ∈ S. It means
that µS closed under intersection. Therefore µS is semi-closure system on X.

(ii) Let F = {µp|p ∈ M} ⊆ µS for some M = R and F 6= ∅ immediately.
It is proved by Lemma 3.3.

The following theorem is the converse of the Theorem 3.10 (ii). By a fuzzy
set construction, we identify the collection of cuts of join-fuzzy sets with semi-
closure systems.

Theorem 3.11. Let F be a semi-closure system over X such that
⋃
F = X.

Then there is a complete meet-semilattice S and a meet-fuzzy set µ : X → S
such that µS = F .

Proof. From the assumption that F is a semi-closure system over X, (F ,⊆) is
a complete join-semilattice. By dual inclusion ⊇F , we have that (S,⊇F ) is a
complete meet-semilattice.

Let µ : X → S be defined by: µ(x) =
⋂
{f ∈ F | x ∈ f} (as in [3]

for poset-valued fuzzy sets). The mapping µ is well defined, since the set⋂
{f ∈ F | x ∈ f} is not empty (contains at least x) and F is closed under

intersections (if not empty).
Now, we can prove that for every f ∈ F , µf = f , similarly as in [3].

Example 3.12. Let X = {a, b, c} be an abstract finite set and let F be the
following collection of subsets of X:

F = {{a}, {b}, {a, b}, {b, c}, {a, b, c}},

which is a semi-closure system. F is a join-semilattice under inclusion (Figure
4). Under the dual inclusion, we found meet-semilattice in Figure 5.

{a}

{a, b}

{a, b, c}

{b, c}

{b}

{a, b}

Figure 4: Join-semilattice F
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{a}

{a, b}
{a, b, c}

{b, c}

{b}

Figure 5: Meet-semilattice S

We calculated intersection of all subsets in F containing x for every x ∈ X and
we obtain a meet-fuzzy set µ:

µ =

(
a b c
{a} {b} {c}

)
with the following cuts of the meet-fuzzy set µ.

µ{a} = {a}, µ{b} = {b}, µ{a,b} = {a, b}, µ{b,c} = {b, c}, ν{a,b,c} = {a, b, c}.

Therefore, we have for every f ∈ F , µf = f , i.e., µF = F .

The following theorem is analogous to Theorem 3.11, dealing with fuzzy
sets obtained from dual semi-closure systems.

Theorem 3.13. Let F be a dual semi-closure system over a nonempty set X
such that

⋃
F = X. Then there is a complete join-semilattice S and a join

fuzzy set µ : X → S, such that µS = F .

Proof. Analogous to the proof of Theorem 3.11.

In the following theorem we generalize Theorems 3.11 and 3.13. Namely, we
prove that every nonempty collection of subsets on a nonempty set can consist
of some cuts of a suitable meet(join)-fuzzy set.

Theorem 3.14. Let F be an arbitrary nonempty collection of subsets of a
nonempty set X. Then there is a complete meet (join)-semilattice S and a
fuzzy set µ : X → S, such that F ⊆ µS, and for every f ∈ F , µf = f .

Proof. Let F ⊆ P(X) and F 6= ∅, for X 6= ∅. We construct a collection S
of subsets of X as follows. S = F ∪ G, where G consists of all nonempty
missing set-intersections of arbitrary subcollections of F , including X which
is the intersection of the empty set as a subcollection. Obviously, (S,≤) is a
complete meet-semilattice, where the order ≤ is the dual of the set inclusion.
Define µ : X → S by

µ(x) =
⋂

(s ∈ S | x ∈ s),

which is defined for every x ∈ X, since the intersection is not ∅, because it
contains at least x.

Now, if f ∈ F , then µf is a cut of µ, and we have:
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x ∈ µf if and only if µ(x) ≥ f if and only if
⋂

(s ∈ S | x ∈ s) ⊆ f if and
only if x ∈ f .

Hence, µf = f for every f ∈ F .
Similarly, starting with F , we can construct S to be a dual semi-closure

system. Namely, we add to F all missing set intersections of nonempty sub-
collections of F . Then obviously, (S,≤) is a complete join-semilattice, where,
as above, the order ≤ is the dual of the set inclusion. Now the construction of
the fuzzy set µ is analogous to the one described in the first part of the proof.
Again, as above, we have µf = f for every f ∈ F .

In the final part we represent a finite meet-semilattice as a family of cuts of
a semilattice valued fuzzy set. Recall that a is a meet irreducible element in a
meet-semilattice (S,∧), if from a = b∧ c it follows that a = b or a = c (see [5]).

Proposition 3.15. Let S be a finite meet-semilattice, M a set of all meet-
irreducible elements of S and µ : X → S a meet-fuzzy set. If M ⊆ µ(X),
then all the cuts are different and (µ(X),⊇) is a meet-semilattice isomorphic
to (S,≤).

Proof. For p ∈ S let Mp ⊆ M be the set of all meet-irreducible elements such
that pi ∈ Mp if and only if p ≤ pi. It is easy to prove that every element in a
meet semilattice is the meet of all meet-irreducible elements above it (the proof
goes by induction on the height of the semilattice). Let p 6= q. By p =

∧
Mp

and q =
∧
Mq, we have that Mp 6= Mq. This means that e.g., there is an

element x ∈ Mp such that x 6∈ Mq, hence q 6≤ x. Now, since µp = ↑p ∩ µ(X),
µq = ↑q ∩ µ(X), and x ∈ µp, we have that x 6∈ µq and µp 6= µq. Hence, all the
cuts are different.

Now, consider the mapping p 7→ µp, which is a bijection by previous con-
siderations. By 3.1, if p ≤ q, then µq ⊆ µp. Now, suppose that µq ⊆ µp, i.e.,
↑q ∩ µ(X) ⊆ ↑p ∩ µ(X). Since M ⊆ µ(X), we have that Mq ⊆ ↑p ∩ µ(X),
hence Mq ⊆ Mp and hence p =

∧
Mp ≤

∧
Mq = q. Thus, (µ(X),⊇) is order

isomorphic to (S,≤) and thus it is also a meet-semilattice.

The following example is a consequence stating that each meet-semilattice
can be represented by a semilattice of cuts of a meet-fuzzy set.

Corollary 3.16. Let S be a finite meet-semilattice, then there is a meet-fuzzy
set such that the family of cuts under inclusion is anti-isomorphic to S.

Conclusion and Future Work

Our investigation of semilattice-valued fuzzy sets is mostly oriented to spe-
cial collections of subsets of the domain, being cutsof these fuzzy sets. It turned
out that these are weaker than closure systems, and we were using them to give
representation theorems not only for semilattice-valued fuzzy sets, but also for
semilattices.
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As future work, we are planing to investigate under which condition the equiv-
alence relation induced by equality of cuts is a congruence relation on the
semilattice.
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