
Novi Sad J. Math.
Vol. 45, No. 2, 2015, 39-46

RELATIONS BETWEEN UNION AND
INTERSECTION OF IDEALS AND THEIR
CORRESPONDING IDEAL TOPOLOGIES1

S. Suriyakala2 and R. Vembu3

Abstract. The concept of ideals on topological spaces is studied by
Vaidyanathaswamy, Kuratowski, Noiri and many others. In this paper we
discuss the relationship between the topologies generated by intersection
and union of ideals on a topological space. We also prove some results
on connected topologies in the context of ideal topological space.
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1. Introduction

Ideals in topological spaces were studied by Vaidyanathaswamy [11], Ku-
ratowski [8], Noiri [2, 3, 4] and many others [10, 5]. In 1990, Janković and
Hamlett [6] investigated further properties of ideal topological spaces. In a
topological space X, an ideal is defined as a nonempty collection I of subsets
of X which is closed under finite union and such that if A ∈ I and B ⊆ A, then
B ∈ I. These two properties are satisfied by the collection of nowhere dense
subsets of any topological space.

With the help of an ideal in a topological space X, we can construct an
operator on the collection P(X), the set of all subsets of X, which will become
a closure operator. The closure operator gives a topology T ∗ on X (see [7]).
This new topology is finer than the starting topology.

In almost all of the earlier works on ideal topological spaces some subsets of
the topological space are declared as I-open, α-I-open, Semi-I-open, or pre-
I-open and so on. Properties of such sets were studied. Noiri [2, 3, 4] and
others[6, 10] call the open subsets of the topological space (X, T ∗) as ∗-open
sets and study their properties. In these works only one ideal is considered
on a topological space. No significant work is available in the literature which
consider more than one ideal and the topologies generated by them on a single
topological space (X, T ). In this paper we consider several ideals on the same
topological space (X, T ) and construct new ideals using the set operations ∪
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and ∩. Also we study the relationship among the topologies generated by these
ideals.

In Section 2 we recall definitions and results from the literature; in Section
3 we discuss the relationship between the union and intersection of ideals and
topologies and in Section 4 we prove some results on ideal topological spaces
in the context of connectedness.

2. Preliminary Definitions and Results

We start with the definition of an ideal in a topological space.

Definition 2.1. Let X be any set. An ideal in X is a nonempty collection I
of subsets of X satisfying the following.

i. If A,B ∈ I, then A ∪B ∈ I.

ii. If A ∈ I and B ⊆ A, then B ∈ I.

If (X, T ) is a topological space and I is an ideal on X, then the triplet (X, T , I)
is called an ideal topological space.

Unless otherwise stated X will denote a topological space, T and I denote
the topology and the ideal on X under consideration. If (X, T ) is a topological
space and x ∈ X, T (x) denote the set {U ∈ T |x ∈ U}. We denote the
complement X −A of A in X by Ac.

A closure operator on a set X is a function on the collection of all subsets
of X taking A to A satisfying the following conditions:

i. ∅ = ∅

ii. For each A, A ⊆ A

iii. A = A

iv. For any A and B, A ∪B = A ∪B.

These four conditions are called Kuratowski closure axioms [7]. If “ ” is a
closure operator on a set X, F is the family of all subsets A of X for which
A = A, and if T is the family of complements of members of F , then T is
a topology on X and A is the T -closure of A for each subset A of X. This
topology is called the topology generated by the closure operator “ ”.

Definition 2.2. ([8]) For any subset A of X, define

A∗(I, T ) = {x ∈ X|U ∩A /∈ I for every U ∈ T (x)}.

The operator “ ” defined by A = A ∪ A∗ is a Kuratowski closure operator
which gives a topology on X called the topology generated by I.

This topology is usually denoted as T ∗, but as we are going to have many
topologies simultaneously on one space (X, T ), we prefer to denote it by TI .

Let (X, T ) be a topological space. Then the following results hold trivially.
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i. If I1 ⊆ I2 are two ideals on X, then TI1 ⊆ TI2 .

ii. If I = {∅}, then TI = T .

iii. If A is closed in TI , then A∗ ⊆ A.

iv. If A ∈ I, then A∗ = ∅ and A is closed in (X, TI).

Definition 2.3. ([1]) A topological space (X, T ) is called Alexandroff space
if the intersection of arbitrary family of open sets is open, or equivalently, the
union of arbitrary family of closed sets is closed.

3. Union and Intersections of Ideal Topological Spaces

If {Iα} is a collection of ideals on X, then ∩Iα is an ideal and the union
∪Iα need not be an ideal. But if {Iα} is a chain of ideals, then ∪Iα is an ideal.

If {Iα} is a collection of ideals, then for simplicity we denote the topology
generated by the ideal Iα by Tα.

Theorem 3.1. Let {Iα} be a collection of ideals on (X, T ). If I = ∩Iα then

(3.1) TI ⊆ T0

where T0 = ∩Tα.

Proof. That T0 is a topology follows obviously. As I = ∩Iα, I ⊆ Iα and hence
TI ⊆ Tα for every α. This implies TI ⊆ ∩Tα = T0.

Strict inequality may hold in (3.1) and equality holds if and only if (X, T )
is an Alexandroff space as seen below.

Example 3.2. Let T be the usual topology on R. For every positive integer n,
let In be the collection of all subsets of the open interval (0, 1

n ). Let I = ∩In
and let T0 = ∩Tn. Then TI $ T0.

Let us justify our claim in the example. Clearly In is an ideal, I = {∅} and
hence TI = T . We claim that (−∞, 0] ∈ Tn for all n. As (0, 1

n ) ∈ In, (0, 1
n ) is

closed in Tn; as T ⊆ Tn, [ 1n ,∞) is closed in Tn. Hence (0, 1
n )∪ [ 1n ,∞) is closed

in Tn which shows that (0,∞) is closed in Tn. Thus (−∞, 0] ∈ Tn for all n and
hence (−∞, 0] ∈ ∩Tn = T0. But (−∞, 0] /∈ TI . Therefore TI $ T0.

Theorem 3.3. A topological space (X, T ) is Alexandroff if and only if for any
collection {Iα} of ideals on X, TI = T0 where I = ∩Iα and T0 = ∩Tα.

Proof. Assume that (X, T ) is Alexandroff. Let {Iα} be a collection of ideals
and I = ∩Iα. As I ⊆ Iα, TI ⊆ Tα for every α. This implies that

(3.2) TI ⊆ T0.

We claim that T0 ⊆ TI . Let V ∈ T0 and A = V c. As V ∈ Tα, A is closed in Tα
for all α. Thus

(3.3) A∗(Iα, T ) ⊆ A for every α.
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We aim to prove that A is closed in TI . It is enough to prove that A∗(I, T ) ⊆
A. Assume that x /∈ A. This implies x /∈ A∗(Iα, T ) for every α by (3.3). Then
for all α there exists Uα ∈ T (x) such that

(3.4) Uα ∩A ∈ Iα.

Let U = ∩Uα. Then x ∈ U and U is open in (X, T ) as (X, T ) is Alexandroff. As
U ⊆ Uα, U∩A ⊆ Uα∩A for every α. Therefore by (3.4), U∩A ∈ Iα for every α.
That is, U ∩ A ∈ ∩Iα = I. Thus we obtained an open set U in (X, T ) such
that U ∩ A ∈ I. Therefore x /∈ A∗(I, T ) and hence A∗(I, T ) ⊆ A. Thus A is
closed in TI . That is, V ∈ TI . Therefore T0 ⊆ TI . This together with (3.2),
implies that TI = T0.

To prove the converse assume that for any collection {Iα} of ideals on
(X, T ), TI = T0 where I = ∩Iα and T0 = ∩Tα. To prove (X, T ) is Alexandroff
let {Uα}α∈Λ be a collection of open sets in (X, T ). Let U = ∩Uα. We claim
that U is open in (X, T ).

For all α ∈ Λ, let Aα = Uα−U and let Iα be the collection of all the subsets
of the set Aα. Then Iα is an ideal on X. If A is any set in I, then for all
α, A ∈ Iα and hence A ⊆ Uα − U . As A is a subset of Uα for all α, A ⊆ U ;
as A ⊆ Uα − U , A = ∅. Hence I = ∩Iα = {∅}. Therefore TI = T . By our
assumption, TI = T0 and hence T0 = T .

As Aα ∈ Iα, Aα is closed in Tα. Since Uα is open in T , it is open in Tα
and as Aα is closed in Tα, Uα −Aα is open in Tα. Hence U = Uα −Aα is open
in Tα for all α ∈ Λ. Thus U ∈ Tα and hence U ∈ T0. Thus U ∈ T . Therefore
(X, T ) is Alexandroff.

Now we turn our attention towards union of ideals. The union of a chain of
ideals is always an ideal, but the union of an arbitrary collection of ideals need
not be an ideal.

If {Iα} is a collection of ideals on X, then the collection P(X) of all subsets
of X is an ideal containing all members of all the ideals Iα; so, the family C of
all ideals on X containing all members of all Iα’s is nonempty and hence the
intersection of all ideals in C is the smallest ideal containing all members of
all these ideals Iα. So, for any collection of ideals there exists a smallest ideal
containing all these ideals.

Fact: Let {Iα} be a collection of ideals and let I be the smallest ideal containing
all Iα’s. Then I is the collection of all sets formed by taking the union of finitely
many members from ∪Iα.

Proof. Let I0 be the collection of all sets formed by taking the union of finitely
many members from ∪Iα. We claim that I0 = I. We first show that I0 is an
ideal. Let A,B ∈ I0. Then A and B are the union of finitely many members
from ∪Iα and hence A ∪B is also so.

Let A ∈ I0 and B ⊆ A. Then A = A1 ∪ A2 ∪ · · · ∪ An where Ai ∈ Iαi and
hence

B = (B ∩A1) ∪ (B ∩A2) ∪ · · · ∪ (B ∩An).
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But (B∩Ai) is a subset of Ai and hence in Iαi . Thus B is the union of finitely
many members from ∪Iα and hence B ∈ I0. Thus I0 is an ideal containing all
members of all Iα’s.

Let I ′ be an ideal containing all members of all Iα’s. If A is in I0, then
A = A1 ∪ A2 ∪ · · · ∪ An where Ai ∈ Iαi . As Ai ∈ Iαi , Ai ∈ I ′; an ideal is
closed under finite union; hence A1 ∪A2 ∪ · · · ∪An ∈ I ′. That is, A ∈ I ′. Thus
I0 ⊆ I ′. This proves that I0 is the smallest ideal containing all Iα’s.

Theorem 3.4. Let (X, T ) be a topological space. Let {Iα} be a collection of
ideals on X. Let I be the smallest ideal containing all Iα’s. Let T0 be the
smallest topology containing all Tα’s. Then TI = T0.

Proof. As {Iα} is a collection of ideals and I is the smallest ideal containing
Iα’s, Iα ⊆ I and hence Tα ⊆ TI . But T0 is the smallest topology containing
all Tα’s. Therefore

(3.5) T0 ⊆ TI .

Next we claim that TI ⊆ T0. Let V ∈ TI and x ∈ V ; we shall construct a
T0-open set W ⊆ V containing x. Let A = V c; then A is closed in TI and
x /∈ A. Then A∗(I, T ) ⊆ A. This implies that x /∈ A∗(I, T ). Then there exists
an open set U ∈ T (x) such that U ∩ A ∈ I. Let K = U ∩ A. Then K ∈ I.
Now, by Fact stated above,

K = K1 ∪K2 ∪ · · · ∪Kn

where Ki ∈ Iαi for some finitely many αi’s. As Ki ∈ Iαi , Ki is closed in Tαi

and hence Ki is closed in T0. Therefore
n
∪
i=1

Ki is closed in T0. That is, K is

closed in T0. Hence Kc ∈ T0. Since U ∈ T , we have U ∈ T0. Let W = U ∩Kc.
Then W ∈ T0 and x ∈ W . Also

W ∩A = (U ∩Kc) ∩A = (U ∩A) ∩Kc = K ∩Kc = ∅.

Thus W ∩ A = ∅. That is, W ⊆ Ac. Hence W is an open set in T0 containing
x such that W ⊆ Ac. Therefore Ac is open in T0. This implies that V is open
in T0. Therefore TI ⊆ T0. This, together with (3.5), implies that TI = T0.

We know that the union of a collection of topologies need not be a topology.
Even if the collection of topologies is a chain, the union need not be a topology.
For example, on R, if for n ∈ N,

Tn = {∅,R, {1}, {1, 2}, {1, 2, 3}, . . . {1, 2, 3, . . . n}}

then {Tn} is a chain of topologies on R; if Un = {1, 2, 3, . . . n}, then Un ∈ Tn
and hence Un ∈ T = ∪Tk; but

∞
∪

n=1
Un /∈ T ; hence T is not a topology.

But if {Tα} is a chain of topologies generated by a chain of ideals, then the
union is a topology as seen in the following theorem.
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Theorem 3.5. Let {Iα} be a chain of ideals. Let T0 = ∪Tα and I = ∪Iα.
Then TI = T0 and hence T0 is a topology.

Proof. As I = ∪Iα, Iα ⊆ I and hence Tα ⊆ TI . This implies that

(3.6) T0 ⊆ TI

Next we claim that TI ⊆ T0. Let V ∈ TI and x ∈ V . Let A = V c; then A is
closed in TI , and x /∈ A. Then A∗(I, T ) ⊆ A. This implies that x /∈ A∗(I, T ).
Thus there exists an open set U ∈ T (x) such that U ∩A ∈ I. Let K = U ∩A.
Then K ∈ I. This implies that K ∈ ∪Iα. That is, K ∈ Iα for some α.
Therefore K is closed in Tα and hence Kc ∈ Tα. Since U ∈ T , we have U ∈ Tα.
Let W = U ∩Kc. Then W ∈ Tα and x ∈ W . As in the proof of Theorem 3.4,
W ∩ A = ∅. That is W ⊆ Ac. Therefore W is an open set in Tα containing
x such that W ⊆ Ac. Therefore Ac is open in Tα. This implies that V ∈ Tα
and hence V ∈ ∪Tα. Therefore TI ⊆ T0. This together with (3.6), implies that
TI = T0.

If {Tα} is an increasing chain of topologies and if ∪Tα is a topology on
X, then we may not find a chain of ideals {Iα} such that Tα is the topology
generated by Iα’s. The following example proves this.

Example 3.6. On R, let T0 = {∅,R} and for positive integers n, let

Tn = {∅,R, (−1, 1), (−2, 2), . . . , (−n, n)}.

Then Tn are topologies whose union T = {∅,R, (−1, 1), (−2, 2), . . . } is also a
topology on R. But there is no sequence {In} of ideals on R so that Tn, are
ideal topologies generated by In on any topology on R.

Indeed if at all there is such a sequence and a topology T on R, then T must
be {∅,R} as T0 should be finer than T ; I1 cannot be {∅}; if A is a nonempty
set in I1, then all of its subsets are in I1 and hence their complements must
be in T1 which is not so.

We have a question: If T and T ′ are topologies on a set X so that T ′ is finer
than T , is there any ideal I so that T ′ = TI ? The answer to this question is
“No” (See Example 3.7). Mahathalenal [9] defined the concept of semi-ideals
and proved that whenever T ′ is finer than T there is a semi-ideal J so that
the topology generated by J is T ′. But a nice characterization of topologies
having this property is given in Theorem 3.8.

Example 3.7. Let

X = {1, 2, 3, 4} T = {∅, X, {1, 2}} and T ′ = {∅, X, {1}, {1, 2}}.

Then there is no ideal I such that TI = T ′.

Proof. Suppose that there is an ideal I such that TI = T ′. Clearly I ̸= {∅}.
So there is a nonempty set A in I.

Since Ac ∈ TI , A must be either X, {2, 3, 4} or {3, 4}. In all the cases
{4} ⊆ A. Thus {4} ∈ I which implies that {4}c ∈ TI which is not so.
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Theorem 3.8. Let (X, T ) be a topological space. Let T ′ be a topology finer
than T . Then T ′ = TI for some ideal I if and only if there exists a chain of
ideals {Iα} such that ∪Tα = T ′.

Proof. Let T ′ = TI for some ideal I. Then {I} itself is a chain of ideals having
the desired properties. Conversely, let there be a chain of ideals {Iα} such that
∪Tα = T ′. Let I = ∪Iα. By Theorem 3.5, TI = ∪Tα. Then TI = T ′.

4. Connectedness and Ideal Topological Spaces

If {Tα} is a collection of connected topologies on a set X, then the smallest
topology containing all Tα’s need not be connected, even if {Tα} is a chain of
connected topologies as seen in the following example.

Example 4.1. Let

Tn = P({1, 2, 3, . . . , n}) ∪ {N}

where P(A) denotes the collection of all subsets on A. Each Tn is a connected
topology on N. But the smallest topology containing all the Tn’s is the discrete
topology on N which is not connected.

But if {Tα} is a chain of connected topologies generated by a chain of ideals,
then the union is a connected topology as seen in the following theorem.

Theorem 4.2. Let {Iα} be a chain of ideals so that each (X, Tα) is connected.
Then (X,∪Tα) is connected.

Proof. Let I = ∪Iα. By Theorem 3.5, TI = ∪Tα and is a topology on X.
Suppose that (X, TI) is not connected. Then X = A ∪ B where A and B are
nonempty open sets in TI and A ∩B = ∅.

Now A,B ∈ TI . This implies that A,B ∈ ∪Tα. Then A,B ∈ Tα for some α
as {Tα} is a chain. Thus we have two nonempty open sets A,B ∈ Tα such that
X = A ∪ B and A ∩ B = ∅. This implies that (X, Tα) is not connected which
is not so. Therefore (X,∪Tα) is connected.
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