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LOCAL CONVERGENCE OF MODIFIED
HALLEY-LIKE METHODS WITH LESS

COMPUTATION OF INVERSION

Ioannis K. Argyros1 and Santhosh George2

Abstract. We present a local convergence analysis of a Modified
Halley-Like Method of high convergence order in order to approximate a
solution of a nonlinear equation in a Banach space. Our sufficient conver-
gence conditions involve only hypotheses on the first Fréchet-derivative
of the operator involved. Earlier studies use hypotheses up to the third
Fréchet-derivative [26]. Numerical examples are also provided in this
study.
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1. Introduction

In this study we are concerned with the problem of approximating a solution
x∗ of the nonlinear equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a subset D of a Banach
space X with values in a Banach space Y.

Many problems in computational sciences and other disciplines can be
brought in a form like (1.1) using mathematical modeling [3]. The solutions of
equation (1.1) can rarely be found in closed form. That is why most solution
methods for these equations are usually iterative. In particular, the practice
of Numerical Functional Analysis for finding such solutions is essentially con-
nected to Newton-like methods [1]-[27]. The study about convergence matter
of iterative procedures is usually based on two types: semi-local and local
convergence analyses. The semi-local convergence matter is, based on the in-
formation around an initial point, to give conditions ensuring the convergence
of the iterative procedure; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. There ex-
ist many studies which deal with the local and semi-local convergence analyses
of Newton-like methods such as [1]-[27].
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We present a local convergence analysis for the modified Halley-Like Method
[26] defined for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)
−1F (xn),

un = xn − θF ′(xn)
−1F (xn),(1.2)

= yn + (1− θ)F ′(xn)
−1F (xn),

zn = yn − γAθ,nF
′(xn)

−1F (xn),

xn+1 = zn − αBθ,nF
′(xn)

−1F (zn),

where x0 is an initial point, α, γ, θ ∈ (−∞,∞) − {0} are given parameters,
Hθ,n = 1

θF
′(xn)

−1(F ′(un)−F ′(xn)), Aθ,n = I− 1
2Hθ,n(I− 1

2Hθ,n) and Bθ,n =
I−H1,n+H2

θ,n. The semi-local convergence of method (1.2) was studied in [26]
in the special case when α = γ = 1 and θ ∈ [0, 1]. Moreover, if γ = 1, α = 0
and θ ∈ (0, 1], the semi-local convergence of the resulting method (1.2) was
given in [26].

The semi-local convergence results in [26] were given in a non-affine invariant
form. However, the results obtained in our paper are given in affine invariant
form. The sufficient semi-local convergence conditions (given in affine invariant
form) used in [26] are (C):
(C1) There exists F ′(x0)

−1 ∈ L(Y,X) and ∥F ′(x0)
−1∥ ≤ β;

(C2)
∥F ′(x0)

−1F (x0)∥ ≤ β1;

(C3)
∥F ′(x0)

−1F ′′(x)∥ ≤ β2 for each x ∈ D;

(C4)

∥F ′(x0)
−1(F ′′(x)− F ′′(y))∥ ≤β3∥x− y∥q

for each x, y ∈ D, and some q ∈ [0, 1].

Under the (C) conditions for α = γ = 1 and θ ∈ (0, 1] the convergence order
was shown to be 3 + 2q in [26]. Moreover, for γ = 1, α = 0 and θ ∈ (0, 1] the
convergence order was shown to be 2 + q in [9].

Similar conditions have been used by several authors on other high con-
vergence order methods [1]-[27]. The corresponding conditions for the local
convergence analysis are given by simply replacing x0 by x∗ in the preceding
(C) conditions. These conditions, however, are very restrictive. As a motiva-
tional example, let us define the function f on D = [−1

2 ,
5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x ̸= 0
0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, F ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.
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Then, e.g, the function f cannot satisfy the condition (C4), say for q = 1,
since the function f ′′′ is unbounded on D. In the present paper we only use
hypotheses on the first Fréchet derivative (see conditions (2.12)-(2.15)). Notice
that they used θ ∈ (0, 1], whereas in this paper θ can belong in a wider interval
than (0, 1] and γ = α = 1 in [26]. This way we expand the applicability of
method (1.2).

The paper is organized as follows. The local convergence of method (1.2)
is given in Section 2, whereas the numerical examples are given in Section 3.
Finally, some remarks are given in the concluding Section 4.

2. Local convergence analysis

We present the local convergence analysis of method (1.2) in this section.
Denote by U(v, ρ), Ū(v, ρ) the open and closed balls, respectively, in X with
center at v ∈ X and of radius ρ > 0.

Let L0 > 0, L > 0, θ ∈ (−∞,∞) − {0}, α, γ ∈ (−∞,∞) and M > 0 be
given parameters. Define the following functions on the interval [0, 1

L0
) by

g1(r) =
Lr

2(1− L0r)
,

g2(r) = g1(r) +
M |1− θ|
1− L0r

,

g3(r) =
L0(1 + g2(r))

2|θ|(1− L0r)
,

g4(r) = 1 + g3(r)r + g23(r)r
2,

g5(r) = g1(r) +
|γ|Mg4(r)

1− L0r
,

g6(r) = 1 + 2g1,3(r)r + 4g23(r)r
2,

g1,3(r) =
L0(1 + g1(r))

2(1− L0r)

and

g7(r) = [1 +
|α|Mg6(r)

1− L0r
]g5(r).

Moreover, define the parameter

r2 =
2(1−M |1− θ|)

2L0 + L
.

Suppose

M |1− θ| < 1.

Then, it follows from the definition of the the functions g1 and g2 that

0 < g1(r) < 1, and 0 < g2(r) < 1, for each r ∈ (0, r2).
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Evidently, g5(r) ∈ (0, 1), if for each r ∈ (0, r5) and r5 < 1
L0

to be determined,
we have that

0 < g1(r) +
|γ|g4(r)M
1− L0r

< 1 for each r ∈ (0, r5).

Define the the function p5 on the interval [0, 1
L0

] by

p5(r) = |γ|Mg4(r)− (1− L0r)(1− g1(r)).

We have that

p5((
1

L0
)−) = |γ|Mg4((

1

L0
)−) > 0.

Suppose that

|γ|M < 1.

Then, we have that

p5(0) = M |γ| − 1 < 0.

It follows from the intermediate value theorem that the the function p5 has
zeros in the interval (0, 1

L0
). Denote by r5 the smallest such zero. Then, we

have that

p5(r) < 0 ⇒ 0 < g5(r) < 1 for each r ∈ (0, r5).

Similarly, the the function g7 ∈ (0, 1) for each r ∈ (0, r7) and r7 < 1
L0

to be
determined, if the the function p7(r) ∈ (0, 1) for each r ∈ [0, r7], where

p7(r) = (1− L0r + |α|Mg6(r))g5(r)− (1− L0r).

We get that

p7((
1

L0
)−) = |γ|Mg6((

1

L0
)−)g5((

1

L0
)−) > 0.

and

p7(0) = (1 + |α|Mg6(0))|γ|g5(0)− 1 = (1 + |α|M)|γ|M − 1.

Suppose that

(1 + |α|M)|γ|M < 1.

Then, we have p7(0) < 0. It follows that the the function p7 has zeros in the
interval (0, 1

L0
). Denote by r7 the smallest such zero. Then, we obtain that

p7(0) < 0 ⇒ 0 < g7(r) < 1, for each r ∈ (0, r7).

Set

(2.1) r∗ = min{r2, r5, r7}.
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Then, we have that

0 < g1(r) < 1,(2.2)

0 < g2(r) < 1(2.3)

0 < g3(r)(2.4)

0 < g4(r)(2.5)

0 < g5(r) < 1(2.6)

0 < g6(r)(2.7)

and

(2.8) 0 < g7(r) < 1, for each r ∈ (0, r∗).

Next, we present the local convergence analysis of method (1.2).

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Suppose that there exist x∗ ∈ D, parameters L0 > 0, L > 0, M > 0, θ ∈
(−∞,∞)− {0} and α, γ ∈ (−∞,∞) such that for each x ∈ D

(2.9) M |1− θ| < 1,

(2.10) M |γ| < 1,

(2.11) (1 + |α|M)|γ|M < 1,

(2.12) F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X),

(2.13) ∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ L0∥x− x∗∥,

(2.14) ∥F ′(x∗)−1(F (x)− F (x∗)− F ′(x)(x− x∗)∥ ≤ L

2
∥x− x∗∥2,

(2.15) ∥F ′(x∗)−1F ′(x)∥ ≤ M

and

(2.16) Ū(x∗, r∗) ⊆ D,

where r∗ is given in (2.1). Then, the sequence {xn} generated by method
(1.2) for x0 ∈ U(x∗, r∗) is well defined, remains in U(x∗, r∗) for each n =
0, 1, 2, · · · and converges to x∗. Moreover, the following estimates hold for each
n = 0, 1, 2, · · · ,

(2.17) ∥yn − x∗∥ ≤ g1(∥xn − x∗∥)∥xn − x∗∥ < ∥xn − x∗∥ < r∗,
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(2.18) ∥un − x∗∥ ≤ g2(∥xn − x∗∥)∥xn − x∗∥ < ∥xn − x∗∥,

(2.19) ∥Hθ,n∥ ≤ 2g3(∥xn − x∗∥)∥xn − x∗∥,

(2.20) ∥Aθ,n∥ ≤ g4(∥xn − x∗∥)

(2.21) ∥zn − x∗∥ ≤ g5(∥xn − x∗∥)∥xn − x∗∥ < ∥xn − x∗∥,

(2.22) ∥Bθ,n∥ ≤ g6(∥xn − x∗∥)

and

(2.23) ∥xn+1 − x∗∥ ≤ g7(∥xn − x∗∥)∥xn − x∗∥ < ∥xn − x∗∥.

where the ”g” the functions are defined above Theorem 2.1.

Proof. Using (2.13), the definition of r∗ and the hypothesis x0 ∈ U(x∗, r∗) we
get that

(2.24) ∥F ′(x∗)−1(F ′(x0)− F ′(x∗))∥ ≤ L0∥x0 − x∗∥ < L0r
∗ < 1.

It follows from (2.24) and the Banach Lemma on invertible operators [3, 4] that
F ′(x0)

−1 ∈ L(Y,X) and

(2.25) ∥F ′(x0)
−1F ′(x∗)∥ ≤ 1

1− L0∥x0 − x∗∥
<

1

1− L0r∗
.

Hence, y0 and u0 are well defined. Using the first substep in method (1.2) for
n = 0, (2.2), (2.14), (2.25) and the definition of the function g1 we obtain in
turn that

y0 − x∗ = x0 − x∗ − F ′(x0)
−1F (x0)

= −F ′(x0)
−1F ′(x∗)F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]

so,

∥y0 − x∗∥
≤ ∥F ′(x0)

−1F ′(x∗)∥∥F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]∥

≤ L∥x0 − x∗∥2

2(1− L0∥x0 − x∗∥)
= g1(∥x0 − x∗∥)∥x0 − x∗∥ < ∥x0 − x∗∥ < r∗,

which shows (2.17) for n = 0. We also have from the second substep of method
(1.2) for n = 0, (2.9), (2.15), (2.17) and the definition of the functions g1 and
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g2 that

∥u0 − x∗∥ ≤ ∥y0 − x∗∥+ |1− θ|∥F ′(x0)
−1F ′(x∗)∥

×∥
∫ 1

0

F ′(x∗ + t(x0 − x∗)dt∥∥x0 − x∗∥

≤ [g1(∥x0 − x∗∥) + M |1− θ|
1− L0∥x0 − x∗∥

]∥x0 − x∗∥

= g2(∥x0 − x∗∥)∥x0 − x∗∥ < ∥x0 − x∗∥ < r∗,(2.26)

which shows (2.18) for n = 0.
Next, we need an estimate on 1

2∥Hθ,0∥. We have from (2.4),(2.13), (2.25),
(2.26) and the definition of the functions g2 and g3 that

1

2
∥Hθ,0∥ ≤ 1

2|θ|
∥F ′(x0)

−1F ′(x∗)∥(∥F ′(x∗)−1(F ′(u0)− F ′(x∗))∥

+∥F ′(x∗)−1(F ′(x0)− F ′(x∗))∥)

≤ L0(∥u0 − x∗∥+ ∥x0 − x∗∥)
2|θ|(1− L0∥x0 − x∗∥)

≤ L0(∥x0 − x∗∥+ g2(∥x0 − x∗∥)∥x0 − x∗∥)
2|θ|(1− L0∥x0 − x∗∥)

≤ L0(1 + g2(∥x0 − x∗∥))∥x0 − x∗∥
2|θ|(1− L0∥x0 − x∗∥)

= g3(∥x0 − x∗∥)∥x0 − x∗∥,(2.27)

which shows (2.19) for n = 0. We also need an estimate on ∥Aθ,0∥. It follows
from (2.27) and the definition of Aθ,0, g3, g4 that

∥Aθ,0∥ ≤ 1 +
1

2
∥Hθ,0∥+

1

4
∥Hθ,0∥2

≤ 1 + g3(∥x0 − x∗∥)∥x0 − x∗∥+ g23(∥x0 − x∗∥)∥x0 − x∗∥2

= g4(∥x0 − x∗∥),(2.28)

which shows (2.20) for n = 0. Then, from the third substep of method (1.2) for
n = 0, (2.19), (2.20), (2.28) the definition of the functions g1, g5 and radius
r∗, we have that

∥z0 − x∗∥ ≤ ∥y0 − x∗∥+ |γ|∥Aθ,0∥∥F ′(x0)
−1F ′(x∗)∥

∥
∫ 1

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗)dt∥∥x0 − x∗∥

≤ [g1(∥x0 − x∗∥) + M |γ|g4(∥x0 − x∗∥)
1− L0∥x0 − x∗∥

]∥x0 − x∗∥

= g5(∥x0 − x∗∥)∥x0 − x∗∥ < ∥x0 − x∗∥ < r∗,(2.29)

which shows (2.21) for n = 0. Next, we need an estimate on ∥Bθ,0∥. We have
by the definition of the operator Bθ,0 and the functions g1,3, g3, g6 that
(2.30)
∥Bθ,0∥ ≤ 1+2g1,3(∥x0−x∗∥)∥x0−x∗∥+4g23(∥x0−x∗∥)∥x0−x∗∥2 = g6(∥x0−x∗∥),
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which shows (2.22) for n = 0. Using the fourth substep in method (1.2) for n =
0, (2.3), (2.15), (2.21), (2.22), (2.29) the definition of the functions g5, g6, g7
and radius r∗, we obtain that

∥x1 − x∗∥ ≤ ∥z0 − x∗∥+ |α|∥Bθ,0∥∥F ′(x0)
−1F ′(x∗)∥

∥
∫ 1

0

F ′(x∗)−1F ′(x∗ + t(z0 − x∗)dt∥∥z0 − x∗∥

≤ (1 +
M |α|g6(∥x0 − x∗∥)
(1− L0∥x0 − x∗∥)

)∥z0 − x∗∥

= (1 +
M |α|g6(∥x0 − x∗∥)
(1− L0∥x0 − x∗∥)

)g5(∥x0 − x∗∥)∥x0 − x∗∥,(2.31)

which shows (2.23) for n = 0. By simply replacing y0, u0, z0, x1 by yk, uk, zk, xk+1

in the preceding estimates we arrive at estimates (2.17)-(2.23). Finally, from
the estimate ∥xk+1 − x∗∥ < ∥xk − x∗∥, we deduce that limk→∞ xk = x∗.

Remark 2.2. 1. In view of (2.13) and the estimate

∥F ′(x∗)−1F ′(x)∥ = ∥F ′(x∗)−1(F ′(x)− F ′(x∗)) + I∥
≤ 1 + ∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥
≤ 1 + L0∥x− x∗∥

condition (2.15) can be dropped and M can be replaced by

M(r) = 1 + L0r.

Moreover, condition (2.14) can be replaced by the popular but stronger
conditions

(2.32) ∥F ′(x∗)−1(F ′(x)− F ′(y))∥ ≤ L∥x− y∥ for each x, y ∈ D

or

∥F ′(x∗)−1(F ′(x∗ + t(x− x∗))− F ′(x))∥ ≤ L(1− t)∥x− x∗∥ for each

x, y ∈ D and t ∈ [0, 1].

2. The results obtained here can be used for operators F satisfying au-
tonomous differential equations [3] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) =
P (0), we can apply the results without actually knowing x∗. For example,
let F (x) = ex − 1. Then, we can choose: P (x) = x+ 1.

3. The local results obtained here can be used for projection methods such
as the Arnoldi’s method, the generalized minimum residual method (GM-
RES), the generalized conjugate method(GCR) for combined Newton/fi-
nite projection methods and in connection to the mesh independence prin-
ciple can be used to develop the cheapest and most efficient mesh refine-
ment strategies [3, 4].
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4. The radius rA given by

(2.33) r ≤ rA =
1

L0 +
L
2

.

was shown by us to be the convergence radius of Newton’s method [3, 4]

(2.34) xn+1 = xn − F ′(xn)
−1F (xn) for each n = 0, 1, 2, · · ·

under the conditions (2.13) and (2.32). It follows from (2.1) and (2.33)
that the convergence radius r∗ of the method (1.2) cannot be larger than
the convergence radius rA of the second order Newton’s method (2.33).
As already noted in [3, 4] rA is at least as large as the convergence ball
given by Rheinboldt [3, 4]

(2.35) rR =
2

3L
.

In particular, for L0 < L we have that

rR < rA

and
rR
rA

→ 1

3
as

L0

L
→ 0.

That is, our convergence ball rA is at most three times larger than Rhein-
boldt’s. The same value for rR was given by Traub [3, 4].

5. It is worth noticing that method (1.2) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger (C) conditions used in
[26]. Moreover, we can compute the computational order of convergence
(COC) defined by

ξ = ln

(
∥xn+1 − x∗∥
∥xn − x∗∥

)
/ ln

(
∥xn − x∗∥

∥xn−1 − x∗∥

)
or the approximate computational order of convergence

ξ1 = ln

(
∥xn+1 − xn∥
∥xn − xn−1∥

)
/ ln

(
∥xn − xn−1∥

∥xn−1 − xn−2∥

)
.

This way we obtain in practice the order of convergence in a way that
avoids the bounds given in [26] involving estimates up to the second
Fréchet derivative of operator F.

3. Numerical Examples

We present numerical examples in this section.
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Example 3.1. Let X = Y = R2, D = Ū(0, 1), x∗ = 0 and define the function F
on D by

(3.1) F (x) = (sinx,
1

3
(ex + 2x− 1)).

Then, using (2.9)-(2.15), we get L0 = L = 1, M = 1
3 (e+2), θ = 3

4 , γ = 3
5 , α =

3
100 . Then, by (2.1) we obtain

r∗ = 0.3161 < rR = rA = 0.6667

Example 3.2. Let X = Y = R3, D = U(0, 1). Define F on D for v = x, y, z)
by

(3.2) F (v) = (ex − 1,
e− 1

2
y2 + y, z).

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

Notice that x∗ = (0, 0, 0), F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 <
L = e, M = e, θ = 3

4 , γ = 3
10 , α = 3

100 . Then, by (2.1) we obtain

r∗ = 0.2136 < rR = 0.2453 < rA = 0.3249.

Example 3.3. Returning back to the motivational example at the introduc-
tion of this study, we see that conditions (2.12)–(2.15) are satisfied for x∗ =
1, f ′(x∗) = 3, f(1) = 0, L0 = L = 146.6629073 and M = 101.5578008. Hence,
the results of Theorem 2.1 can apply but not the ones in [26]. In particular,
for θ = 0.9902, α = 0.008 and γ = 0.005 hypotheses (2.9)-(2.15) are satisfied.
Moreover, we obtain

r∗ = 0.0032 < rR = 0.0045 ≤ rA = 0.0045.

4. Conclusion

We present a local convergence analysis of Modified Halley-Like Methods
with less computation of inversion in order to approximate a solution of an
equation in a Banach space setting. Earlier convergence analysis is based on
Lipschitz and Holder-type hypotheses up to the second Fréchet-derivative [1]–
[27]. In this paper the local convergence analysis is based only on Lipschitz
hypotheses of the first Fréchet-derivative. Hence, the applicability of these
methods is expanded under less computational cost of the constants involved
in the convergence analysis.
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