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ON TOPOLOGICAL NUMBERS OF GRAPHS

Ullas Thomas1 and Sunil C Mathew2

Abstract. This paper introduces the notion of discrete t-set graceful
graphs and obtains some of their properties. It also examines the in-
terrelations among different types of set-indexers, namely, set-graceful,
set-semigraceful, topologically set-graceful (t-set graceful), strongly t-set
graceful and discrete t-set graceful and establishes how all these notions
are interdependent or not.
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1. Introduction

Acharya introduced in [1] the notion of a set-indexer of a graph as
follows:
Let G be a graph and X be a nonempty set. A mapping f : V ∪ E → 2X is a
set-indexer of G if

(i) f(u, v) = f(u)⊕f(v), for all (u, v) ∈ E, where ‘⊕’ denotes the symmetric
difference of the sets in 2X , that is, f(u)⊕ f(v) = (f(u) \ f(v)) ∪ (f(v) \
f(u)) and

(ii) the restriction maps f |V and f |E are both injective.

In this case, X is called an indexing set of G. Clearly a graph can have many
indexing sets and the minimum of the cardinalities of the indexing sets is said
to be the set-indexing number of G, denoted by γ(G). The set-indexing number
of the trivial graph K1 is defined to be zero.

He also introduced the following notions:
A graph G is set-graceful if γ(G) = log2(|E| + 1) and the corresponding set-
indexer is called a set-graceful labeling of G.
A graph G is said to be set-semigraceful if γ(G) = ⌈log2(|E|+ 1)⌉ where ⌈ ⌉ is
the ceiling function.

Further, Acharya and Hegde [5] obtained some noteworthy results studying
set-sequential labeling as a set analogue of the sequential graphs.
A graph G is said to be set-sequential if there exists a nonempty set X and a
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bijective set-valued function f : V ∪E → 2X\{∅} such that f(u, v) = f(u)⊕f(v)
for every (u, v) ∈ E.

Later, Mollard and Payan [11] settled two conjectures about set-graceful
graphs suggested by Acharya in [1]. Hegde [8] obtained certain necessary
conditions for a graph to have set-graceful and set-sequential labeling. In
1999 Acharya and Hegde putforward many problems regarding set-valuation
of graphs in [6]. A new momentum to this area of study was triggered by
Acharya [3] in 2001. Many authors [4, 9, 13] later investigated various aspects
of set-valuation of graphs deriving new properties. Hegde’s [9] conjecture that
every complete bipartite graph that has a set-graceful labeling is a star, was
settled by Vijayakumar [20] in 2011. Motivated by this, the authors of the
paper studied set-indexers of graphs in [14], [16] and [19].

Introducing the concept of topological set-indexers (t-set indexers) in [2],
Acharya established a link between Graph Theory and Point Set Topology. He
also propounded the notion of the topological number (t-number) of a graph
as the following:
A set-indexer f of a graph G with indexing set X is said to be a topological
set-indexer (t-set indexer) if f(V ) = {f(v) : v ∈ V } is a topology on X and
X is called the topological indexing set (t-indexing set) of G. The minimum
number among the cardinalities of such topological indexing sets is said to be
the topological number (t-number) of G, denoted by τ(G) and the corresponding
t-set indexer is called the optimal t-set indexer of G.

A graph for which the set-indexing number and the t-number are equal is
termed topologically set graceful or t-set graceful by Acharya in [3].

K. L. Princy [12] contributed certain results about topological set-indexers
of graphs and obtained some classes of topologically set graceful graphs in
2007. The authors of the paper studied topological set-indexers in [15] and
t-set graceful graphs in [18]. Following this the authors introduced the concept
of strongly t-set graceful graphs in [10] as follows:
A graph G is said to be strongly t-set graceful, if every spanning subgraph of
G is t-set graceful.

This paper continues the study of topological numbers of graphs. It is
proved that every t-set indexer of the null graph is also a t-set indexer of the
star of the same order and vice-versa. A necessary condition for a t-set indexer
to be optimal is derived here. A special type of strongly t-set graceful graphs,
called discrete t-set graceful has been identified and certain properties of the
same are studied in detail. Though the notions “discrete t-set graceful” and
“set-graceful” are independent in general, they are identical in the case of a
tree. The interrelations among set-semigraceful, set-graceful, t-set graceful,
strongly t-set graceful and discrete t-set graceful graphs are brought out by
exploring various categories of graphs.

2. Preliminaries

Certain known results needed for the subsequent development of the
study are included here. We always denote a graph under consideration by G
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and its vertex and edge sets by V and E respectively. By G′ ⊆ G we mean G′

is a subgraph of G while G′ ⊂ G we mean G′ is a proper subgraph of G. The
empty graph of order n is denoted by Nn. The basic notations and definitions
in graph theory and topology are assumed to be familiar to the reader and can
be found in [7] and [21].

Theorem 2.1. ([2]) Every graph has a set-indexer.

Theorem 2.2. ([2]) If X is an indexing set of G = (V,E). Then

(i) |E| ≤ 2|X| − 1 and

(ii) ⌈log2(|E|+ 1)⌉ ≤ γ(G) ≤ |V | − 1, where ⌈ ⌉ is the ceiling function.

Theorem 2.3. ([10]) For any graph G, ⌈log2|V |⌉ ≤ γ(G).

Theorem 2.4. ([2]) If G′ is a subgraph of G, then γ(G′) ≤ γ(G).

Theorem 2.5. ([2]) γ(Kn) =

{
n− 1 if 1 ≤ n ≤ 5
n− 2 if 6 ≤ n ≤ 7

Theorem 2.6. ([14]) If G is a star graph, then γ(G) = ⌈log2 |V |⌉.

Theorem 2.7. ([14]) γ(K1,n) = γ(Nn+1).

Theorem 2.8. ([16]) For any integer n ≥ 2, γ(C2n−1 ∪K1) = n.

Theorem 2.9. ([16]) γ(Pn) =

{
n− 1 if n ≤ 2
⌊log2n⌋+ 1 if n ≥ 3

.

Theorem 2.10. ([2]) The star graph K1,2n−1 is set-graceful.

Theorem 2.11. ([11]) For any integer n ≥ 2, the cycle C2n−1 is set-graceful.

Theorem 2.12. ([16]) C2n−1 ∪K1 is set-graceful.

Theorem 2.13. ([11]) The complete graph Kn is set-graceful if and only if
n ∈ {2, 3, 6}.

Theorem 2.14. ([2]) For every integer n ≥ 2, the path P2n is not set-graceful.

Theorem 2.15. ([12]) If a (p, q)–graph G is set-graceful, then q = 2m − 1 for
some positive integer m.

Recall that the double star graph ST (m,n) is the graph formed by two stars
K1,m and K1,n by joining their centers by an edge.

Theorem 2.16. ([18]) For a double star graph ST (m,n) with |V | = 2l; l ≥ 2

γ(ST (m,n)) =

{
l if m is even,

l + 1 if m is odd.

Theorem 2.17. ([17]) The path Pn is set-semigraceful if and only if n ̸= 2m;
m > 1.
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Recall also that the wheel graph with n spokes, Wn, is the graph that
consists of an n-cycle and one additional vertex, say u, that is adjacent to all
the vertices of the cycle.

Theorem 2.18. ([17]) The wheel graphW6 is set-semigraceful with set-indexing
number 4.

3. Topological Set-Indexers

This section presents some results on topological set-indexers of graphs
subsequently deriving a necessary condition for a t-set indexer to be optimal.

It has been noted by Acharya [2] that every graph with at least two vertices
has a t-set indexer.

Since every t-set indexer is also a set-indexer, the next result follows.

Lemma 3.1. ([2]) Let G be any graph with at least two vertices. Then γ(G) ≤
τ(G).

Obviously, γ(G1) ≤ γ(G2) if G1 ⊆ G2. But this does not hold in the case of
t-numbers. However, for spanning subgraphs, the next result has been proved.

Theorem 3.2. ([15]) If G′ is a spanning subgraph of G, then τ(G′) ≤ τ(G).

The following two results on t-numbers of graphs are quoted for later use.

Theorem 3.3. ([15] ) Let G be a graph of order n where 3 · 2m−2 < n < 2m

for m ≥ 3. Then τ(G) ≥ m+ 1.

Theorem 3.4. ([10]) τ(K6 ∪K1) = 4.

Let G be any graph of order n. Obviously, every t-set indexer of G is also a
t-set indexer of Nn. Though the converse is not true in general, it holds good
in the case of stars.

Theorem 3.5. Every t-set indexer of Nn; n ≥ 2 can be extended to a t-set
indexer of K1,n−1.

Proof. Let V (Nn) = {v1, . . . , vn}. Let f be any t-set indexer of Nn. Without
loss of generality, let f(v1) = ∅. Now, drawing the n − 1 lines (v1, vi) for
2 ≤ i ≤ n, we get the graph K1,n−1. By assigning f(v1, vi) = f(vi), we clearly
have f(v1, vi) = f(v1)⊕f(vi) for i = 2, . . . , n. Consequently, f is a t-set indexer
of K1,n−1 also.

A necessary condition for a t-set indexer to be optimal is given below.

Theorem 3.6. Let f be a t-set indexer of a graph G with indexing set X
and τ be a maximal chain topology contained in f(V ). If f is optimal, then
|τ | = |X|+ 1.
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Proof. If |f(V )| = 2 or 3, then the result is obvious. So we may assume that
|f(V )| ≥ 4. Let |τ | = m and τ = {Ai ∈ f(V ) : ∅ = A1 ⊂ A2 ⊂ . . . ⊂ Am = X}.
Suppose |τ | < |X| + 1, then there exists an Ak; 2 ≤ k ≤ m in τ such that
|Ak \Ak−1| ≥ 2. Let a, b ∈ X such that {a, b} ⊆ Ak \Ak−1. Since f is optimal,
there is an A in f(V ), containing exactly one of a, b. Otherwise, every open
set containing a also contains b and vice versa. Then, g(v) = f(v) \ {b}; v ∈ V
defines a new t-set indexer of G on X \ {b}, contradicting the optimality of f .

Without loss of generality it is assumed that a ∈ A and b /∈ A. Let C =
A ∩ Ak and B = Ak−1 ∪ C. Note that Ak−1 ⊂ B ⊂ Ak. Consequently,
τ1 = τ ∪ {B} is also a chain topology contained in f(V ). This contradicts the
maximality of τ and hence |τ | = |X|+ 1.

Remark 3.7. The converse of Theorem 3.6 is not true. For instance a t-set
indexer f of the path P5 = (v1, . . . , v5) can be obtained by assigning the subsets
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d} of X = {a, b, c, d} to the vertices v1, . . . , v5 in
that order. The maximal chain topology contained in f(V ) is f(V ) itself and
|τ | = |X| + 1. But f is not optimal since by assigning the subsets {x, y}, ∅,
{x}, {x, y, z} and {y} of the set Y = {x, y, z} to the vertices v1, . . . , v5 in that
order we get a t-set indexer of P5 with indexing set Y of cardinality 3.

Recall that a graph G is said to be topologically set graceful or t-set graceful
if γ(G) = τ(G). Some topologically set-graceful graphs are listed below.

Theorem 3.8. ([18]) P2n+2 is t-set graceful.

Theorem 3.9. ([10]) C6 ∪K1 is t-set graceful with t-number 4.

Theorem 3.10. ([10]) The wheel graph W6 is t-set graceful with t-number 4.

Theorem 3.11. ([10]) Kn is t-set graceful if and only if 2 ≤ n ≤ 5.

The following two theorems identify certain graphs for which every spanning
subgraph is topologically set graceful.

Theorem 3.12. ([10]) Every t-set graceful path Pn; n ̸= 2m is strongly t-set
graceful.

Theorem 3.13. ([10]) Every graph of order m; 2 ≤ m ≤ 5 is strongly t-set
graceful.

4. Discrete T-set Graceful Graphs

By Theorem 2.3, every graph G has |V (G)| ≤ 2γ(G). This sec-
tion attempts to answer the natural question, what are the graphs for which
|V (G)| = 2γ(G). Surprisingly, these graphs form a subclass of strongly t-set
graceful graphs.

Definition 4.1. A graph G with optimal set-indexer f is said to be discrete
topologically set-graceful (discrete t-set graceful) if G is t-set graceful and f(V )
is the discrete topology.
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Example 4.2. K1,6 ∪ K1 is discrete t-set graceful. Let G = K1,6 ∪ K1. By
Theorem 2.3 and Theorem 3.1, τ(G) ≥ γ(G) ≥ 3. But by assigning ∅ to the
central vertex of K1,6 and the distinct nonempty subsets of X = {a, b, c} to
the other vertices of G in any order we get an optimal t-set indexer of G.
Consequently, τ(G) = 3 = γ(G).

Remark 4.3. Discrete t-set graceful and set-graceful are two independent no-
tions. For instance, K6 is set-graceful (by Theorem 2.13) but it is not discrete
t-set graceful as it is not t-set graceful by Theorem 3.11. On the other hand
K1,6 ∪K1, according to Example 4.2, is discrete t-set graceful but it is not set
graceful (by Theorem 2.15).

Remark 4.4. LetG be any graph. By Theorem 2.3 and Theorem 3.1, ⌈log2 |V |⌉ ≤
γ(G) ≤ τ(G). Thus, |V | ≤ 2γ(G) ≤ 2τ(G).
K1,6 is an example for which these inequalities become strict. Recall that
γ(K1,6) = 3 and τ(K1,6) = 4. Again, there are graphs that make only the first
inequality strict. Note that γ(P6) = τ(P6) = 3. However, if |V | = 2γ(G),
then the optimal set-indexer f corresponding to γ(G) becomes a t-set in-
dexer of G with discrete topology f(V ). Consequently, γ(G) = τ(G) so that
|V | = 2γ(G) = 2τ(G).

Thus, we obtain the next result.

Theorem 4.5. A graph G is discrete t-set graceful if and only if |V | = 2γ(G).

Remark 4.6. From the above theorem it follows that a graph whose order is
not a power of 2 is never discrete t-set graceful. For example, K5 is not discrete
t-set graceful even though it is t-set graceful by Theorem 3.11.

Corollary 4.7. If G is discrete t-set graceful, then |E(G)| < |V (G)|.

Proof. By Theorem 2.2, ⌈log2(|E|+ 1)⌉ ≤ γ(G)
= log2 |V |, by Theorem 4.5.

Hence, |E|+ 1 ≤ |V | so that |E(G)| < |V (G)|.

Remark 4.8. Since K1,5 is not discrete t-set graceful, the converse of Corollary
4.7 is not true.

Corollary 4.9. C2n−1 ∪K1 is discrete t-set graceful.

Proof. By Theorem 2.8, γ(C2n−1∪K1) = n. Now by Theorem 4.5, C2n−1∪K1

is discrete t-set graceful.

The following theorem characterizes discrete t-set graceful trees.

Theorem 4.10. A tree is discrete t-set graceful if and only if it is set-graceful.

Proof. Let T be a set-graceful tree. Then γ(T ) = log2(|E| + 1) = log2 |V |.
Therefore, |V (T )| = 2γ(T ) and T is discrete t-set graceful by Theorem 4.5.

Conversely, let T be discrete t-set graceful. Then by Theorem 4.5,
γ(T ) = τ(T ) = log2 |V |

= log2(|E|+ 1), since T is a tree.
Thus, T is set-graceful.
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Corollary 4.11. K1,2n−1 is discrete t-set graceful.

Proof. By Theorem 2.10, K1,2n−1 is set-graceful. Now the corollary follows
from Theorem 4.10.

Corollary 4.12. Let m, n and l be positive integers such that m+ n+ 2 = 2l

and m is even. Then the double star ST (m,n) is discrete t-set graceful.

Proof. By Theorem 2.16, γ(ST (m,n)) = l so that it is set-graceful. Now, the
corollary follows from Theorem 4.10.

Theorem 4.13. Every spanning subgraph of a discrete t-set graceful graph is
discrete t-set graceful.

Proof. Let H be any spanning subgraph of a discrete t-set graceful graph G.
By Theorem 2.3,
⌈log2 |V |⌉ ≤ γ(H)

≤ τ(H), by Theorem 3.1
≤ τ(G), by Theorem 3.2
= log2 |V |, by Theorem 4.5.

Consequently, τ(H) = log2 |V | and H is discrete t-set graceful, by Theorem
4.5.

Corollary 4.14. Every discrete t-set graceful graph is strongly t-set graceful.

Proof. Since every discrete t-set graceful graph is t-set graceful, the corollary
follows from Theorem 4.13.

Remark 4.15. Obviously, all discrete t-set graceful graphs that are set-graceful
will also be set-semigraceful, t-set graceful and strongly t-set graceful. By
Theorem 2.10 and Corollary 4.11, star graphs of order a power of 2 belong
to the above category. However, not all graphs in this category are trees. For
example, C2n−1∪K1 is both discrete t-set graceful and set-graceful by Corollary
4.9 and Theorem 2.8.

Note 4.16. The next items show a summary of what has been stated in this
paper.

(i). There are set-semigraceful graphs which are not set-graceful as well as t-
set graceful. For example, P2n−1; n ≥ 3 is set-semigraceful (see Theorem
2.17) but not set-graceful (by Theorem 2.15). Again,
γ(P2n−1) = n, by Theorem 2.9

< τ(P2n−1), by Theorem 3.3
so that P2n−1; n ≥ 3 is not t-set graceful.

(ii). By Theorem 2.11, the cycles C2n−1; n ≥ 3 is set-graceful so that
γ(C2n−1) = n

< τ(C2n−1), by Theorem 3.3.
Therefore, the cycles C2n−1; n ≥ 3 constitute a class of set-graceful
graphs which are not t-set graceful.
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(iii). Recall from Theorem 3.4 that,
τ(K6 ∪K1) = 4

≥ γ(K6 ∪K1), by Theorem 3.1
≥ γ(K6), by Theorem 2.4
= 4, by Theorem 2.5
= log2(|E(K6 ∪K1)|+ 1).

Thus, K6 ∪K1 is set-graceful as well as t-set graceful. However, it is not
strongly t-set graceful as the spanning subgraph N7 is not t-set graceful.
Note that,
γ(N7) = γ(K1,6), by Theorem 2.7

= 3, by Theorem 2.6
< τ(N7), by Theorem 3.3.

(iv). It is known that, K3 is set-graceful (by Theorem 2.13) and strongly t-set
graceful (by Theorem 3.13). But, K3 is not discrete t-set graceful by
Theorem 4.5.

(v). The family of starsK1,2n−1 is set-graceful as well as discrete t-set graceful
by Theorem 2.10 and Corollary 4.11.

(vi). There are set-semigraceful graphs which are not set-graceful but discrete
t-set graceful. By Corollary 4.11 and Theorem 4.13, K1,2n−2 ∪K1 is dis-
crete t-set graceful. But by Theorem 2.15, it is not set-graceful. Further,
n = ⌈log2 |E(K1,2n−2 ∪K1)|+ 1⌉
≤ γ(K1,2n−2 ∪K1), by Theorem 2.2
≤ γ(K1,2n−1), by Theorem 2.4
= n, by Theorem 2.6

so that K1,2n−2 ∪K1 is set-semigraceful.

(vii). K1,2n−1 ∪N2n = G constitutes a family of discrete t-set graceful graphs
which are not set-semigraceful. We have,
⌈log2(|E|+ 1)⌉ = n

< n+ 1
= ⌈log2 |V |⌉
≤ γ(G), by Theorem 2.3
≤ γ(K1,2n+1−1), by Theorem 2.4
= n+ 1, by Theorem 2.6

so that G is not set-semigraceful and γ(G) = n + 1. Then by Theorem
4.5, G is discrete t-set graceful.

(viii). Now consider the family of graphs P2n−1 ∪ N3; n ≥ 3. Obviously,
⌈log2(|E|+ 1)⌉ = n

< n+ 1
= ⌈log2 |V |⌉
≤ γ(P2n−1 ∪N3), by Theorem 2.3
≤ γ(P2n+2), by Theorem 2.4
= n+ 1, by Theorem 2.9.

Thus, P2n−1 ∪N3 is not set-semigraceful and γ(P2n−1 ∪N3) = n + 1 ̸=
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log2 |V | so that by Theorem 4.5, P2n−1∪N3 is not discrete t-set graceful.
Now, by Theorem 3.8, P2n+2 is t-set graceful and hence strongly t-set
graceful, by Theorem 3.12. Being a spanning subgraph of a strongly t-set
graceful graph, then P2n−1 ∪ N3 is strongly t-set graceful. Thus, there
are strongly t-set graceful graphs that are neither discrete t-set graceful
nor set-semigraceful.

(ix). Further, there are t-set graceful graphs that are neither strongly t-set
graceful nor set-semigraceful. For example C6 ∪K1 is one of such graphs
as shown in Theorem 3.9.
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(x). We know thatW6 is set-semigraceful (by Theorem 2.18) and t-set graceful
(by Theorem 3.10). However, W6 is not strongly t-set graceful as the
spanning subgraph C6 ∪ K1 is not strongly t-set graceful. Again, by
Theorem 2.15, W6 is not set-graceful.

(xi). By Theorem 3.13 and Theorem 2.17, K4 is strongly t-set graceful and
set-semigraceful. But, K4 is not set-graceful by Theorem 2.13. Finally,
by Theorem 2.5 and Theorem 4.5, K4 is not discrete t-set graceful.

We summarize these discussions in the diagram given in Figure 1.
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