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1. Introduction and preliminaries

Distributional chaos is still an active field of research in the theory of hy-
percyclicity. A strongly continuous semigroup (T (t))t≥0 on a Banach space X
is said to be distributionally chaotic iff there are an uncountable set S ⊆ X
and a number σ > 0 such that for each ϵ > 0 and for each pair x, y ∈ S of
distinct points we have that

Dens
(
{s ≥ 0 : ||T (s)x− T (s)y|| ≥ σ}

)
= 1 and

Dens
(
{s ≥ 0 : ||T (s)x− T (s)y|| < ϵ}

)
= 1,

where the upper density of a set D ⊆ [0,∞) is defined by

Dens(D) := lim sup
t→+∞

m(D ∩ [0, t])

t
,

with m(·) being the Lebesgue’s measure on [0,∞). If, moreover, we can choose
S to be dense in X, then (T (t))t≥0 is said to be densely distributionally chaotic.
As it is well known, the question whether (T (t))t≥0 is distributionally chaotic or
not is closely connected with the existence of distributionally irregular vectors
of (T (t))t≥0, i.e., those elements x ∈ X such that for each σ > 0 we have that

Dens
(
{s ≥ 0 : ||T (s)x|| > σ}

)
= 1 and Dens

(
{s ≥ 0 : ||T (s)x|| < σ}

)
= 1.

Fairly complete information on distributionally chaotic strongly continuous
semigroups in Banach spaces can be obtained by consulting [1], [5]-[8] and
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[14]; concerning Li-Yorke chaotic properties of translation semigroups, men-
tion should be made of [36]. Compared with the above, Devaney chaoticity
of strongly continuous semigroups in Banach spaces has received much more
attention so far; cf. [3]-[4], [12]-[14], [17]-[20], [23]-[25], [35], [28, Chapter 3] and
references cited there.

In a joint paper with J. A. Conejero, P. Miana and M. Murillo-Arcila
[15], the author has recently analyzed distributionally chaotic properties of
unbounded linear operators, strongly continuous semigroups and fractionally
integrated C-semigroups in the setting of infinite-dimensional Fréchet spaces;
cf. also [10]. The main aim of this paper is to consider the basic distribution-
ally chaotic properties of abstract (multi-term) fractional differential equations.
Although our results can be formulated in the setting of infinite-dimensional
Fréchet spaces, we shall work in Banach spaces for the sake of simplicity and
better exposition.

We assume that X is an infinite-dimensional complex Banach space; the
norm of an element x ∈ X is denoted by ∥x∥, and the space consisting of all
continuous linear mappings from X into X is denoted by L(X). We usually
denote a closed linear operator acting on X by A; unless stated otherwise,
we shall always assume henceforth that C ∈ L(X) is an injective operator
satisfying CA ⊆ AC. The domain, range, kernel space and point spectrum
of A are denoted by D(A), R(A), Kern(A) and σp(A), respectively. Since
no confusion seems likely, we will identify A with its graph. Recall that the
C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) :=
{
λ ∈ C : λ−A is injective and (λ−A)−1C ∈ L(X)

}
.

Suppose now that F is a linear subspace of X. Then the part of A in F, denoted
by A|F , is a linear operator defined by D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F}
and A|Fx := Ax, x ∈ D(A|F ).

Given s ∈ R in advance, set ⌈s⌉ := inf{l ∈ Z : s ≤ l}. The convolution-like

mapping ∗ is given by f ∗ g(t) :=
∫ t

0
f(t − s)g(s) ds. The Gamma function is

denoted by Γ(·) and the principal branch is always used to take the powers.
Set C+ := {z ∈ C : ℜz > 0}, 0ζ := 0, gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0), Nl :=
{1, . . . , l}, N0

l := {0, 1, . . . , l} (l ∈ N) and g0(t) := the Dirac δ-distribution.
The Laplace transform and its inverse transform will be denoted by L and
L−1, respectively. For more details about various applications of vector-valued
Laplace transform, see [2] and [28]. In this paper we shall consider only non-
degenerate operator families.

Assume α > 0, m = ⌈α⌉ and β > 0. Recall that the Caputo fractional
derivative Dα

t u ([9], [28]) is defined for those functions u ∈ Cm−1([0,∞) : X)

for which gm−α ∗ (u−
∑m−1

k=0 ukgk+1) ∈ Cm([0,∞) : X); if this is the case, then
we have

Dα
t u(t) =

dm

dtm

[
gm−α ∗

(
u−

m−1∑
k=0

ukgk+1

)]
.

Denote by Eα,β(z) the Mittag-Leffler function Eα,β(z) :=
∑∞

n=0 z
n/Γ(αn+β),

z ∈ C ([9]). Set, for short, Eα(z) := Eα,1(z), z ∈ C. We shall use the following
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asymptotic formulae ([9], [28]): If 0 < α < 2 and β > 0, then

(1.1) Eα,β(z) =
1

α
z(1−β)/αez

1/α

+ εα,β(z), | arg(z)| < απ/2,

and

(1.2) Eα,β(z) = εα,β(z), | arg(−z)| < π − απ/2,

where

(1.3) εα,β(z) =

N−1∑
n=1

z−n

Γ(β − αn)
+O

(
|z|−N

)
, |z| → ∞.

2. Distributionally chaotic properties of certain classes of
abstract (multi-term) fractional differential equations

In the first part of this section, we consider distributionally chaotic proper-
ties of solutions of the following abstract evolution equation:

(2.1) Dα
t u(t) = Au(t), t ≥ 0; u(0) = x, u(k)(0) = 0, k = 1, . . . ,m− 1,

where α ∈ (0, 2)\{1} and m = ⌈α⌉. A function u ∈ Cm−1([0,∞) : E) is said to

be a (strong) solution of (2.1) if Au ∈ C([0,∞) : E),
∫ ·
0

(·−s)m−α−1

Γ(m−α)

[
u(s)−x

]
ds ∈

Cm([0,∞) : E) and (2.1) holds. If so, then we can apply the equality [9, (1.21)]
in order to see that the function t 7→ u(t), t ≥ 0 is a strong solution of the
associated Volterra integral equation:

(2.2) u(t) = x+

t∫
0

gα(t− s)Au(s) ds, t ≥ 0;

cf. [28, Subsection 2.1.1, p. 42] for the notion of a mild (strong, weak) solution
of the abstract Volterra equation:

u(t) = f(t) +

t∫
0

a(t− s)Au(s) ds, t ≥ 0,

where f ∈ C([0,∞) : E). The second part of section is devoted to the study
of distributionally chaotic properties of solutions of the following multi-term
problem:

Dαn
t u(t) +

n−1∑
i=1

ciD
αi
t u(t) = ADα

t u(t), t ≥ 0,

u(k)(0) = uk, k = 0, . . . , ⌈αn⌉ − 1,

(2.3)
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where n ∈ N \ {1}, A is a closed linear operator on X, ci ∈ C (1 ≤ i ≤ n− 1),
0 ≤ α1 < · · · < αn and 0 ≤ α < αn ([30]).

We refer the reader to [34] and [28] for some applications of various classes of
(a, k)-regularized C-resolvent families in the theory of abstract Volterra integro-
differential equations; the basic information on hypercyclic and topologically
mixing properties of abstract Volterra integro-differential equations and ab-
stract time-fractional equations can be obtained by consulting [28, Chapter
3]. The following definition, being sufficient for our purposes, is a very special
case of the general definition of an (a, k)-regularized C-resolvent family in a
sequentially complete locally convex space [29, Definition 2.1]; cf. [16] and [27]
for more details concerning the case α = 1.

Definition 2.1. Let α > 0, and let A be a closed linear operator on X. A
strongly continuous operator family (Rα(t))t≥0 is called an α-times C-regular-
ized resolvent family having A as a subgenerator iff the following holds:

(i) Rα(t)A ⊆ ARα(t), t ≥ 0, Rα(0) = C and CA ⊆ AC,

(ii) Rα(t)C = CRα(t), t ≥ 0 and

(iii) Rα(t)x = Cx+
∫ t

0
gα(t− s)ARα(s)x ds, t ≥ 0, x ∈ D(A);

(Rα(t))t≥0 is said to be exponentially bounded iff there exist M ≥ 1 and ω ≥ 0
such that ∥Rα(t)∥ ≤ Meωt, t ≥ 0. In the case C = I, it is also said that
(Rα(t))t≥0 is an α-times regularized resolvent family with subgenerator A.

The integral generator of (Rα(t))t≥0 is defined by

Â :=

{
(x, y) ∈ X ×X : Rα(t)x− Cx =

∫ t

0

gα(t− s)Rα(s)y ds for all t ≥ 0

}
,

and it is a closed linear operator which is an extension of any subgenerator of
(Rα(t))t≥0. In the sequel, we assume that A is a densely defined subgenerator
of an α-times C-regularized resolvent family (Rα(t))t≥0. Then the following
equality holds

Rα(t)x = Cx+A

t∫
0

gα(t− s)Rα(s)x ds, t ≥ 0, x ∈ X.

We define the solution space Zα(A) as the set which consists of those vectors
x ∈ X such that Rα(t)x ∈ R(C), t ≥ 0 and the mapping t 7→ C−1Rα(t)x,
t ≥ 0 is continuous. Then R(C) ⊆ Zα(A), and x ∈ Zα(A) iff there exists a
unique mild solution of the abstract Volterra equation (2.2); if this is the case,
the solution is given by u(t) = C−1Rα(t)x, t ≥ 0 (on l. 7, p. 410 of [28], we
have made an obvious mistake by stating that the function u(t) = C−1Rα(t)x,
t ≥ 0 is a strong solution of (2.1)).
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Definition 2.2. Let α > 0, let A be a densely defined subgenerator of an
α-times C-regularized resolvent family (Rα(t))t≥0, and let X̃ be a closed linear

subspace of X. Then it is said that (Rα(t))t≥0 is X̃-distributionally chaotic iff

there are an uncountable set S ⊆ Zα(A) ∩ X̃ and a number σ > 0 such that
for each ϵ > 0 and for each pair x, y ∈ S of distinct points we have that

Dens
({

s ≥ 0 :
∥∥C−1Rα(s)x− C−1Rα(s)y

∥∥ ≥ σ
})

= 1 and

Dens
({

s ≥ 0 :
∥∥C−1Rα(s)x− C−1Rα(s)y

∥∥ < ϵ
})

= 1.

If, moreover, S can be chosen to be dense in X̃, then (Rα(t))t≥0 is said to be

densely X̃-distributionally chaotic. In the case that X̃ = X, then it is also said
that (Rα(t))t≥0 is (densely) distributionally chaotic.

For the sequel, observe the following fact: If r > 0, θ ∈ (−π, π]\[−π/2, π/2],
λ = reiθ and α ∈ (0, 2), then

arg
(
−λαtα

)
=

{
θα− π, π/2 < θ ≤ π, t > 0,
θα+ π, −π < θ < (−π)/2, t > 0.

(2.4)

Set

Ω1
0,− :=

{
λ = reiθ ∈ C \ {0} : π/2 < θ ≤ π, and θ < π/α

or θ ≥ π/α and θ < (2π/α)− (π/2)
}
,

Ω2
0,− :=

{
λ = reiθ ∈ C \ {0} : −π < θ < (−π)/2, and θ > (−π/α)

or θ ≤ (−π)/α and θ > (π/2)− (2π/α)
}
,

and Ω0,− := Ω1
0,− ∪ Ω2

0,−. By (2.4), we easily infer that∣∣ arg(−λαtα
)∣∣ < π − πα/2, λ ∈ Ω0,−,

and by the asymptotic formulae (1.2)-(1.3), we get that

(2.5) Eα

(
λαtα

)
→ 0, t → ∞, λ ∈ Ω0,−.

Keeping in mind [15, Theorem 4.1], (2.5) and the asymptotic formula (1.1), it
is quite easy to extend the assertion of [15, Corollary 5.7] to fractional resolvent
families; for more details, cf. the proofs of above-mentioned corollary and [31,
Theorem 2.3], as well as [31, Remark 1(iv)]. Notice only that we cannot expect
a certain distributionally chaotic behaviour of the operator C−1Rα(t0) if α ̸= 1
(t0 > 0), and that the notion of distributional chaos is meaningful for fractional
differential equation (2.1) of arbitrary order α ∈ (0, 2) \ {1}, in contrast with
the notion of chaos in the sense of Devaney ([31]):
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Theorem 2.3. Let α ∈ (0, 2) \ {1}, and let A be densely defined.

(i) Suppose that A subgenerates a global α-times C-regularized resolvent fa-
mily (Rα(t))t≥0 on a separable space X. Let the following conditions hold:

(a) There exists a dense subset X ′
0 of X such that limt→∞ Rα(t)x = 0,

x ∈ X ′
0.

(b) There exists x ∈ X such that limt→∞ ∥Rα(t)x∥ = ∞.

Then (Rα(t))t≥0 is distributionally chaotic. If, moreover, R(C) is dense
in X, then (Rα(t))t≥0 is densely distributionally chaotic.

(ii) Suppose that A subgenerates a global α-times C-regularized resolvent fa-
mily (Rα(t))t≥0 on a separable space X, and there exists an open con-
nected subset Ω of C which satisfies Ω ∩ (−∞, 0] = ∅, Ωα := {λα :
λ ∈ Ω} ⊆ σp(A) and Ω ⊆ Ω0,−. Let f : Ωα → E be an analytic map-

ping such that f(λα) ∈ Kern(A − λα) \ {0}, λ ∈ Ω, and let X̃ :=
span{f(λα) : λ ∈ Ω}. If there exists λ0 ∈ C+ such that (λ0)

α ∈ σp(A)

and X̃ = X, then the conclusions of part (i) continue to hold.

(iii) Suppose that A subgenerates a global α-times C-regularized resolvent fa-
mily (Rα(t))t≥0 on a separable space X, and there exists an open con-
nected subset Ω of C which satisfies Ω ∩ (−∞, 0] = ∅, Ωα := {λα : λ ∈
Ω} ⊆ σp(A) and Ω ⊆ Ω0,−. Let f : Ωα → E be an analytic mapping
such that f(λα) ∈ Kern(A − λα) \ {0}, λ ∈ Ω. If there exists λ0 ∈ C+

such that (λ0)
α ∈ σp(A) (denote by f((λ0)

α) the corresponding eigenfunc-

tion), C(X̃) ⊆ X̃ and f((λ0)
α) ∈ X̃, then the operator A|X̃ subgenerates

a global distributionally chaotic α-times C|X̃-regularized resolvent family

(Rα(t)|X̃)t≥0 on the space X̃. Furthermore, if R(C|X̃) is dense in X̃, then

(Rα(t)|X̃)t≥0 is densely distributionally chaotic in the space X̃.

Remark 2.4. (i) It should be observed that Theorem 2.3(ii)-(iii), as well as
Theorem 2.6(ii)-(iii) below, can be slightly improved by assuming that
there exist n ∈ N, open connected subsets Ωi of C and analytic mappings
fi : Ω

α
i → X which satisfy, for every i = 1, . . . , n : Ωi ∩ (−∞, 0] = ∅,

Ωα
i ⊆ σp(A), Ωi ⊆ Ω0,− and fi(λ

α) ∈ Kern(A−λα)\{0}, λ ∈ Ωi (cf. [12]

and [31, Remark 1(iii)]). Set X̂ := span{fi(λα) : λ ∈ Ωi, 1 ≤ i ≤ n} and
assume that Ω

′

i is an open connected subset of Ωi which admits a cluster

point in Ωi for 1 ≤ i ≤ n. Then X̂ = span{fi(λα) : λ ∈ Ω
′
i, 1 ≤ i ≤ n}

and the conditions C(X̂) ⊆ X̂, f((λ0)
α) ∈ X̂, implies that the ope-

rator A|X̂ subgenerates a global distributionally chaotic α-times C|X̂ -

regularized resolvent family (Rα(t)|X̂)t≥0 on the space X̂. Furthermore,

if R(C|X̂) is dense in X̂, then (Rα(t)|X̂)t≥0 is densely distributionally

chaotic in the space X̂.

(ii) If α = 2, then (Rα(t))t≥0 is a C-regularized cosine function subgenerated
by A. Since E2(z

2) = cosh z, z ∈ C, we have limt→+∞ E2(λ
2t2) = ∞,
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λ ∈ C \ iR, so that Theorem 2.3(ii)-(iii) cannot be simply reformulated
for the abstract differential equations of second order. On the other
hand, it is well known that the operator A :=

(
0 I
A 0

)
is a subgenerator of

an (α + 1)-times integrated C-semigroup (Sα+1(t))t≥0 on X ×X, where
C :=

(
C 0
0 C

)
, provided that the operator A is a subgenerator of an α-

times integrated C-cosine function (Cα(t))t≥0 on X; cf. [27, Proposition
2.1.11] and [28, Subsection 2.1.2]. Keeping in mind our recent results
on distributionally chaotic fractionally integrated C-semigroups given in
[15, Section 5], it is not difficult to prove that (Sα+1(t))t≥0 is (densely)
distributionally chaotic provided that X is separable, as well as that
ρC(A) ̸= ∅ and there exists an open connected subset Ω of C such that
Ω ⊆ σp(A) and Ω ∩ (−∞, 0] ̸= ∅. The analysis of distributionally chaotic
fractionally integrated C-cosine functions is very non-trivial, so we will
not discuss this theme within the framework of this paper any longer
(for more details concerning hypercyclic and Devaney chaotic integrated
C-cosine functions, we refer the reader to [11], [26] and [28, Section 3.2]).

In the remaining part of paper, we analyze distributionally chaotic proper-
ties of solutions of the equation (2.3) with Aj = cjI, where cj ∈ C, j ∈ Nn−1.
Set mj := ⌈αj⌉, 1 ≤ j ≤ n, m := m0 := ⌈α⌉, A0 := A, α0 := α, and recall
([30], [28]) that a function u ∈ Cmn−1([0,∞) : E) is called a (strong) solution
of (2.3) iff ciD

αi
t u ∈ C([0,∞) : X) for 1 ≤ i ≤ n − 1, ADα

t u ∈ C([0,∞) : X),

gmn−αn∗(u−
∑mn−1

k=0 ukgk+1) ∈ Cmn([0,∞) : X) and (2.3) holds. By a mild so-
lution of (2.3) we mean any function u ∈ C([0,∞) : X) such that the following
holds:

u(·)−
mn−1∑
k=0

ukgk+1

(
·
)
+

n−1∑
j=1

cjgαn−αj ∗

[
u(·)−

mj−1∑
k=0

ukgk+1

(
·
)]

= A

(
gαn−α ∗

[
u(·)−

m−1∑
k=0

ukgk+1

(
·
)])

.

Given i ∈ N0
mn−1 in advance, set Di := {j ∈ Nn−1 : mj − 1 ≥ i} and Di :=

{j ∈ N0
n−1 : mj − 1 ≥ i}.

Definition 2.5. ([28]) Suppose C, C1, C2 ∈ L(X) with C, C2 being injec-
tive. A sequence ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) of strongly continuous ope-
rator families in L(X) is called a global

(i) C1-existence propagation family for (2.3) iff Ri(0) = gi(0)C1 and the
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following holds:

[
Ri(·)x−gi(·)C1x

]
+
∑
j∈Di

cj

[
gαn−αj ∗

(
Ri(·)x− gi(·)C1x

)]
+

∑
j∈Nn−1\Di

cj
(
gαn−αj ∗Ri

)
(·)x

=

{
A
(
gαn−α ∗Ri

)
(·)x, m− 1 < i, x ∈ E,

A
[
gαn−α ∗

(
Ri(·)x− gi(·)C1x

)]
(·), m− 1 ≥ i, x ∈ E,

for any i = 0, . . . ,mn − 1;

(ii) C2-uniqueness propagation family for (2.3) iff Ri(0) = gi(0)C2 and the
following holds:

[
Ri(·)x− gi(·)C2x

]
+
∑
j∈Di

cj

[
gαn−αj ∗

(
Ri(·)x− gi(·)C2x

)]
+

∑
j∈Nn−1\Di

cj
(
gαn−αj ∗Ri(·)x

)
(·)

=

{ (
gαn−α ∗Ri(·)Ax

)
(·), m− 1 < i,

gαn−α ∗
[
Ri(·)Ax− gi(·)C2Ax

]
(·), m− 1 ≥ i,

for any i = 0, . . . ,mn − 1 and x ∈ D(A);

(iii) C-resolvent propagation family for (2.3), in short C-propagation family
for (2.3), if ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a C-uniqueness propaga-
tion family for (2.3), and for every t ≥ 0 and i ∈ N0

mn−1, Ri(t)A ⊆ ARi(t),
Ri(t)C = CRi(t) and CA ⊆ AC.

The notion of analyticity of a global α-times C-regularized resolvent family
for (2.1) and a global C-resolvent propagation family for (2.3) will be under-
stood in the general sense of [29, Definition 3.1]. In the case that C = I, any
C-resolvent propagation family for (2.3) is also called a resolvent propagation
family for (2.3), or simply a resolvent propagation family, if there is no risk
for confusion. As mentioned earlier, we assume that any single operator family
(Ri(t))t≥0 of the tuple ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is non-degenerate, i.e.,
that the supposition Ri(t)x = 0, t ≥ 0 implies x = 0 (i ∈ N0

mn−1). Then we also
say that the operator A is a subgenerator of ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0).

Recall that the integral generator Â of ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is de-
fined as the set of those pairs (x, y) ∈ X × X such that, for every i =
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0, . . . ,mn − 1 and t ≥ 0, the following holds:[
Ri(·)x− gi(·)Cx

]
+

n−1∑
j=1

cjgαn−αj ∗
[
Ri(·)x−

(
k ∗ gi

)
(·)Cx

]
+

∑
j∈Nn−1\Di

cj
[
gαn−αj+i ∗ k

]
(·)Cx

=

{ [
gαn−α ∗Ri

]
(·)y, m− 1 < i,

gαn−α ∗
[
Ri(·)y −

(
k ∗ gi

)
(·)Cy

]
, m− 1 ≥ i.

From now on, we assume that C−1AC = A is densely defined and subgener-
ates a global C-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0).
Then A is, in fact, the integral generator of ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0).
Furthermore, we assume that, for every i ∈ N0

mn−1 with m − 1 ≥ i, one has
Nn−1 \Di ̸= ∅ and

∑
j∈Nn−1\Di

|cj |2 > 0. Then the problem (2.3) has at most

one mild (strong) solution.
For each i ∈ N0

mn−1 we denote by Zi(A) (with a little abuse of notation) the
set which consists of those vectors x ∈ E such that Ri(t)x ∈ R(C), t ≥ 0 and
the mapping t 7→ C−1Ri(t)x, t ≥ 0 is continuous. Then R(C) ⊆ Zi(A), and it
can be easily proved that x ∈ Zi(A) iff there exists a unique mild solution of
(2.3) with uk = δk,ix, k ∈ N0

mn−1; if this is the case, the unique mild solution
of (2.3) is given by u(t;x) := ui(t;x) := C−1Ri(t)x, t ≥ 0. We know [28] that
the suppositions λ ∈ C, x ∈ E and Ax = λx imply that x ∈ Zi(A); then the
unique strong solution of (2.3) is given by

ui(t;x) = L−1

(
z−i−1 +

∑
j∈Di

cjz
−αn−i−1+αj − χDi(0)λz

−αn−i−1+α

1 +
∑n−1

j=1 cjzαj−αn − λzα−αn

)
(t)x,

for any t ≥ 0 and i ∈ N0
mn−1. Set Pλ := λαn−α +

∑n−1
j=1 cjλ

αj−α, λ ∈ C \ {0}
and

Fi(λ, t) := L−1

(
z−i−1 +

∑
j∈Di

cjz
−αn−i−1+αj − χDi(0)Pλz

−αn−i−1+α

1 +
∑n−1

j=1 cjzαj−αn − Pλzα−αn

)
(t),

for any t ≥ 0, i ∈ N0
mn−1 and λ ∈ C \ {0}.

Let i ∈ N0
mn−1, and let X̃ be a closed linear subspace of X. Then the notion

of (dense) (X̃-)distributional chaos of (Ri(t))t≥0 will be undersood in the sense
of Definition 2.2, with (Rα(t))t≥0 replaced by (Ri(t))t≥0. It is clear that the

notion of (X̃-)distributionally irregular vector can be introduced for any opera-
tor family considered in this section so far; this is not of crucial importance for
our investigation and we shall skip all relevant details for the sake of brevity.

As explained in [30, Remark 1(5)], the following theorem is a slight extension
of Theorem 2.3. The proof is similar and therefore omitted.

Theorem 2.6. Let X be separable, let i ∈ N0
mn−1, let C

−1AC = A be densely
defined and generate the global C-resolvent propagation family ((R0(t))t≥0, . . . ,
(Rmn−1(t))t≥0).
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(i) Assume that the following conditions hold:

(a) There exists a dense subset X ′
0 of X such that limt→∞ Ri(t)x = 0,

x ∈ X ′
0.

(b) There exists x ∈ X such that limt→∞ ∥Ri(t)x∥ = ∞.

Then (Ri(t))t≥0 is distributionally chaotic. If, moreover, R(C) is dense
in X, then (Ri(t))t≥0 is densely distributionally chaotic.

(ii) Suppose that A is the integral generator of the global C-resolvent propa-
gation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0), i ∈ N0

mn−1, Ω is an open
connected subset of C, Ω ∩ (−∞, 0] = ∅ and PΩ := {Pλ : λ ∈ Ω} ⊆ σp(A).
Let f : PΩ → X be an analytic mapping such that f(Pλ) ∈ Kern(Pλ −
A) \ {0}, λ ∈ Ω and let X̃ := span{f(Pλ) : λ ∈ Ω}. Suppose λ0 ∈ C,
Pλ0 ∈ σp(A), X̃ = X,

lim
t→+∞

∣∣Fi

(
λ0, t

)∣∣ = +∞ and lim
t→+∞

Fi

(
λ, t
)
= 0, λ ∈ Ω.

Then (Ri(t))t≥0 is distributionally chaotic; if, moreover, R(C) is dense
in X, then (Ri(t))t≥0 is densely distributionally chaotic.

(iii) Let the assumptions of (ii) hold, and let X̃ ̸= X. Denote by f(Pλ0)
the eigenfunction corresponding to the eigenvalue Pλ0 . If C(X̃) ⊆ X̃
and f(Pλ0) ∈ X̃, then the operator A|X̃ is the densely defined inte-

gral generator of the C|X̃-resolvent propagation family ((R0(t)|X̃)t≥0, . . . ,

(Rmn−1(t)|X̃)t≥0) in the Banach space X̃, C−1

|X̃ A|X̃C|X̃ = A|X̃ and the

operator family ((Ri(t)|X̃)t≥0 is distributionally chaotic in the space X̃.

The additional assumption C(X̃) = X̃ implies that (Ri(t)|X̃)t≥0 is densely
distributionally chaotic.

Remark 2.7. The conditions f((λ0)
α) ∈ X̃ and f(Pλ0) ∈ X̃, cf. the formula-

tions of Theorem 2.3(iii) and Theorem 2.6(iii), have been considered in [15] for
the abstract differential equations of first order. The conclusions clarified in
[15] can be simply reformulated for the abstract fractional differential equations
of the form (2.1)-(2.3).

Plenty of various examples from [30]-[31] can be used for the illustration of
our abstract theoretical results. We shall quote just one such example.

Example 2.8. ([24], [30]) It is worth noting that Theorem 2.3 and Theorem 2.6
can be successfully applied in the analysis of a large class of abstract multi-term
fractional differential equations on the symmetric spaces of non-compact type,
Damek-Ricci or Heckman-Opdam root spaces ([3], [24], [35]). Consider, for
example, the situation in which the assumptions of [24, Theorem 3.1(a)] hold:
X is a symmetric space of non-compact type and rank one, p > 2, the parabolic
domain Pp and the positive real number cp possess the same meaning as in [24].

Let ∆♮
X,p denote the corresponding Laplace-Beltrami operator, and let P (z) =
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j=0 ajz

j , z ∈ C be a non-constant complex polynomial with an > 0. We start

with the analysis of following case: ζ ∈ (1, 2), π−n arctan |p−2|
2
√
p−1

− ζ π
2 > 0 and

θ ∈

(
n arctan

|p− 2|
2
√
p− 1

+ ζ
π

2
− π, π − n arctan

|p− 2|
2
√
p− 1

− ζ
π

2

)
.

Then the operator −eiθP (∆♮
X,p) is the integral generator of an exponentially

bounded, analytic ζ-times regularized resolvent family (Rζ,θ,P (t))t≥0 of angle
1
ζ (π − n arctan |p−2|

2
√
p−1

− ζ π
2 − |θ|). Keeping in mind that int(Pp) ⊆ σp(∆

♮
X,p),

the condition
−eiθP

(
int
(
Pp

))
∩
{
te±iζ π

2 : t ≥ 0
}

̸= ∅
implies by Theorem 2.3(ii) that (Rζ,θ,P (t))t≥0 is densely distributionally chaotic;
we already know that (Rζ,θ,P (t))t≥0 is topologically mixing. Suppose now
n = 2, 0 < a < 2, α2 = 2a, α1 = 0, α = a, c1 > 0, i = 0 and |θ| <

min(π2 −n arctan |p−2|
2
√
p−1

, π
2 −n arctan |p−2|

2
√
p−1

− π
2 a). Then −eiθP (∆♮

X,p) genera-

tes an exponentially bounded, analytic resolvent propagation family

((Rθ,P,0(t))t≥0, . . . , (Rθ,P,⌈2a⌉−1(t))t≥0) of angle min(
π−n arctan

|p−2|
2
√

p−1
−|θ|

a −π
2 ,

π
2 ).

Moreover,

F0(λ, t) =
λat−a

λ2a − c1

(
Ea,2−a

(
λata

)
− Ea,2−a

(
c1λ

−ata
))

+
λa

λ2a − c1

[
λaEa

(
λata

)
+ (a− 1)λaEa,2

(
λata

)
− c1λ

−aEa

(
c1λ

−ata
)
− (a− 1)c1λ

−aEa,2

(
c1λ

−ata
)]

+
(
λa + c1λ

−a
) λa

λ2a − c1

(
Ea

(
λata

)
− Ea

(
c1λ

−ata
))

, t > 0;(2.6)

cf. [28, p. 418]. Using the asymptotic expansion formulae (1.1)-(1.3) and (2.6),
it can be simply verified that the condition

−eiθP
(
int
(
Pp

))
∩
{(

it
)a

+ c1
(
it
)−a

: t ∈ R \ {0}
}

̸= ∅

implies that (Rθ,P,0(t))t≥0 is both densely distributionally chaotic and topo-
logically mixing. Observe, finally, that we can consider the case ζ ∈ (0, 1)
here.

Concerning the invariance of hypercyclic and topologically mixing prop-
erties under the action of subordination principles ([9], [27]-[29], [34]), it has
been recently observed in [28, Remark 3.3.16] that the unilateral backward
shifts have some advantages over other operators used in the theory of hy-
percyclicity. With the exception of a relatively small class of abstract PDEs
involving unilateral backward shifts, distributionally chaotic properties cannot
be simply inherited after application of subordination principles.

We close the paper with the observation that it would be very tempting to
say something relevant and noteworthy about distributionally chaotic proper-
ties of abstract degenerate differential equations (cf. [21]-[22] and [32]-[33]).
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Acknowledgement

The author is partially supported by grant 174024 of Ministry of Science
and Technological Development, Republic of Serbia.

References

[1] Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A., Distributional chaos
for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12
(2013), 2069-2082.

[2] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, M., Vector-valued Laplace
Transforms and Cauchy Problems. Basel: Birkhäuser/Springer Basel AG 2001.
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