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GENERALIZED SOLUTIONS TO STOCHASTIC
SYSTEMS WITH MULTIPLICATIVE NOISE

IN GELFAND–SHILOV SPACES

Irina V. Melnikova1 and Uliana Alekseeva2

Abstract. The Cauchy problem for systems of differential equa-
tions with multiplicative random perturbations in the form of infinite-
dimensional Ito integrals is studied. For the systems correct by Petro-
vskii, conditionally correct and incorrect we point out Gelfand–Shilov
spaces of generalized functions where a generalized solution coincides
with a mild solution.
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1. Introduction

One of the modern trends of recent research is the study of problems with
random perturbations. An important place among them is occupied by differ-
ential equations in infinite-dimensional spaces that contain white noise pertur-
bations, additive and multiplicative. For the stochastic problems with multi-
plicative noise the main object of the research is the first order Cauchy problem
in the Ito statement:

dX(t) = AX(t)dt+B(X(t))dW (t), t ∈ [0;T ], X(0) = f.

The problem was studied in the case when A is the generator of a semigroup of
class C0 in a Hilbert space H, andW is a Wiener process with values in another
Hilbert space H, and B(X) : H → H [3, 5, 8]. Nevertheless, important models
in physics, biology and financial mathematics (see, e.g., [1, 4, 13]) reduce to
the case of equations with operators that do not generate semigroups of class
C0 and corresponding homogeneous Cauchy problems that are ill-posed.

The present paper is devoted to the stochastic Cauchy problem with differ-
ential operators A = A

(
i ∂
∂x

)
:

(1.1)
dX(t, x) = A

(
i
∂

∂x

)
X(t, x)dt+B(X(t, x))dW (t, x), t ∈ [0;T ],

X(0, x) = f(x), x ∈ R.
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It turns out that such operators A generate R-semigroups and the problem
requires studying generalized (with respect to x) solutions. The presence of
operator B depending on the generalized solution in this case brings a lot of
questions even at the stage of the problem formulation.

2. Statement of the problem and preliminary results

The main object of the paper is the stochastic Cauchy problem (1.1) for
system of differential equations of order m with multiplicative random pertur-
bations. In the integral form the problem is written as follows:

(2.1) X(t, x)− f(x) =

∫ t

0

A

(
i
∂

∂x

)
X(s, x)ds+

∫ t

0

B(X(s, x))dW (s, x),

t ∈ [0;T ], x ∈ R,

and (1.1) is the short form of (2.1). Here

A
(
i
∂

∂x

)
: H = L2

m(R) := L2(R)× ...× L2(R) → H

is an m ×m operator-matrix whose elements are linear differential operators
of orders not exceeding p, initial data f(·) = f(·, ω), ω ∈ (Ω,B(Ω);P ), is an
H-valued random value, W (t) = W (t, ·) = W (t, ·, ω), t ≥ 0, is a Q-Wiener
process with values in H = L2

n(R) or a cylindrical (weak) Wiener process.
The H-valued Q-Wiener process {WQ(t) = W (t, ·), t ≥ 0} is defined as the

Fourier series convergent in H:

WQ(t) =
∑
j∈N

σjβj(t)ej ,

where βj are independent Brownian motions and {ej} is an orthogonal basis
in H consisting of eigenvectors of a trace class operator Q: Qej = σ2

j ej . The
H-valued cylindrical Wiener process {W (t), t ≥ 0} is defined as the series :
W (t) =

∑
j∈N βj(t)ej , weakly convergent in H (see, e.g., [3, 11, 2]).

The operator B = B(X), due to which we have not additive but mul-
tiplicative disturbances, is supposed to be under the condition ensuring the
convergence of the Ito integral

∫ t

0
B(X(s, ·))dW (s, ·) in (2.1):

(2.2) E

[∫ T

0

∥B(X)∥2HSdt

]
<∞ ,

where ∥B∥HS is the norm in the space of Hilbert–Schmidt operators acting from
HQ = {f = Q1/2v| v ∈ H, ∥f∥HQ := ∥v∥H} to H for the case of a Q-Wiener
process W and acting from H to H for the case of a weak Wiener process W .

The results of studies of the homogeneous deterministic Cauchy problem

(2.3)
∂

∂t
u(t, x) = A

(
i
∂

∂x

)
u(t, x), t ∈ [0;T ], x ∈ R, u(0, x) = f(x),
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indicate that in the general case the differential operator A = A(i ∂
∂x ) does not

generate a class C0 semigroup in H and the problem is not well-posed in H.
The generalized Fourier transform techniques provide that a unique gene-

ralized solution for (2.3) exists in an appropriate space of Gelfand–Shilov gene-
ralized with respect to x functions Ψ′ [7, 9]. This solution can be represented
by the family of solution operators {U(t), t ∈ [0;T ]}:

(2.4) u(t, x) = (U(t)f) (x) := (G(t, ·) ∗ f(·))(x),

where the matrix-function G(t, x) defined as the inverse generalized Fourier
transform of etA(σ):

G(t, x) := F−1
[
etA(σ)

]
(x),

is the Green function to (2.3), and etA(σ) is defined as a formal series with
respect to powers of A(σ), which is the Fourier transform of A(i ∂

∂x ). The choice

of the space Ψ′ is determined by the behavior of matrix-function etA(σ) in the
Fourier transformed space Ψ̃′. Namely, we prove that if etA(σ) is a multiplier
from Φ̃ to Ψ̃, then G(·, t) is a convolutor from Φ′ to Ψ′ (Theorem 3.5). On
the basis of this theorem we specify spaces Φ′ and Ψ′ for every class of the
differential system (2.3), where the classification of the systems is given in [7]
by the growth of etA(s), s ∈ C.

To describe this classification, consider the problem dual to (2.3) with re-
spect to the Fourier transform:

(2.5)
∂

∂t
ũ(t, σ) = A (σ) ũ(t, σ), t ∈ [0;T ], σ ∈ R, ũ(0, σ) = f̃(σ).

As shown in [7], properties of the solution operators etA(s) of this problem are
determined by the function Λ(s) := maxj Reλj(s), s = σ+ iτ , where λj(s) are
eigenvalues of A(s), and this is a consequence of the estimate:

etΛ(s) ≤
∥∥∥etA(s)

∥∥∥
m

≤ C(1 + |s|)p(m−1)etΛ(s), t ∈ [0;T ].

On the basis of Λ(·) growth the following classes of the systems (2.3) are allo-
cated:

• Petrovskii correct systems: Λ(σ) ≤ C1. This implies the estimate

(2.6)
∥∥∥etA(σ)

∥∥∥
m

≤ C2(1 + |σ|)h, t ∈ [0;T ], σ ∈ R,

where C2 = CeTC1 , and h ≤ p(m − 1) is the least of l ∈ N that provide the
estimate ∥etA(σ)∥m ≤ C2(1 + |σ|)l.

• conditionally correct systems: Λ(σ) ≤ C|σ|h+C1, h ∈ (0; 1). In this case
for etA(σ) the following estimate is true

(2.7)
∥∥∥etA(σ)

∥∥∥
m

≤ C2e
a|σ|h , t ∈ [0;T ], σ ∈ R, where a > CT.

• incorrect systems: Λ(σ) ≤ C|σ|p0 + C1. In this case

(2.8)
∥∥∥etA(σ)

∥∥∥
m

≤ C2e
a|σ|p0 , t ∈ [0;T ], σ ∈ R, where p0 ≤ p, a > CT.
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Although A = A(i ∂
∂x ) does not generate a semigroup of class C0 in H in

the general case, it generates an R-semigroup {S(t), t ∈ [0; τ)}, τ ≤ ∞ [12]:

(2.9) S(t)f =
(
F−1

[
etA(σ)K̃(σ)

])
∗ f, t ∈ [0; τ), f ∈ H,

where the infinitely differentiable function K̃(·) is selected according to the
growth of etA(σ), and the regularizing operator R is defined as follows

(2.10) (Rf)(x) :=
(
F−1

[
K̃(σ)f̃(σ)

])
(x) =

(
F−1

[
K̃(σ)

]
∗ f

)
(x), f ∈ H.

In this case solution operators U(t) = R−1S(t) to the problem (2.3) are not
bounded in H, but, due to the generalized well-posedness of (2.3), they become
bounded in spaces of generalized functions Φ′, Ψ′. This leads us to generalized
solutions of (2.3), and we consider them in the following sense:

⟨ψ,U(t)f⟩ = ⟨ψ,R−1S(t)f⟩ = ⟨
(
R−1

)∗
ψ, S(t)f⟩, t ∈ [0;T ], T < τ,

ψ ∈ Ψ, f ∈ H ⊂ Φ′.

According to the theory of abstract stochastic problems with a multiplica-
tive noise, the solution of (2.1) with A being a generator of a C0-semigroup
{U(t), t ≥ 0} in H can be written in the following form

(2.11) X(t) = U(t)f +

∫ t

0

U(t− s)B(X(s))dW (s), t ∈ [0;T ], f ∈ domA.

We extend this result to the case of R-semigroups and show (Theorem 3.2) that
if A generates an R-semigroup {S(t), t ∈ [0; τ)}, then the family of generalized
functions {X(t, ·), t ∈ [0;T ]} for T < τ defined by the equation

(2.12) ⟨ψ,X(t)⟩ = ⟨
(
R−1

)∗
ψ, S(t)f⟩+⟨

(
R−1

)∗
ψ,

∫ t

0

S(t−s)B(X(s))dW (s)⟩,

ψ ∈ Ψ, f ∈ H ⊂ Φ′,

is a solution of the generalized stochastic Cauchy problem

⟨ψ,X(t)⟩ − ⟨ψ, f⟩ =
∫ t

0

⟨A∗ψ,X(s)⟩ds+ ⟨ψ,
∫ t

0

B(X(s)) dW (s)⟩,(2.13)

t ∈ [0;T ], ψ ∈ Ψ.

3. Main results: connection of mild solutions with gene-
ralized solutions; specification of spaces where a gene-
ralized solution can be found

Definition 3.1. Let A be a linear closed operator in a Hilbert space H and
R be a linear bounded operator in H. A strongly continuous with respect to
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t ∈ [0; τ), τ ≤ ∞, family of linear bounded operators {S(t), t ∈ [0; τ)} in H
satisfying the equations

A

∫ t

0

S(s)f ds = S(t)f −Rf, t ∈ [0; τ), f ∈ H,(3.1)

S(t)Af = AS(t)f, t ∈ [0; τ), f ∈ domA,(3.2)

is called an R-semigroup generated by A; the semigroup is local if τ <∞.

Some equivalent definitions and properties of R-semigroups are given in [10].
The property we will use further is that A and R−1 commute on domR−1A.

Theorem 3.2. Let A generate an R-semigroup {S(t), t ∈ [0; τ)} in H =
L2
m(R), operators R−1, R−1A act from Ψ′ to Ψ′ and T < τ . Then in the space

Ψ′ a solution of (2.12) is a solution to (2.13) with operator B = B(X) under
the condition (2.2).

Proof. Note, that action of operators R−1 and R−1A from Ψ′ to Ψ′ is under-
stood as follows:

⟨ψ,R−1Ag⟩ = ⟨A∗(R−1)∗ψ, g⟩, ψ ∈ Ψ, g ∈ Ψ′.

To prove that a solution of (2.12) is a solution to (2.13), first we prove this for
the case of B = 0. Since a generalized solution of (2.3) has the form (2.4), then
X(t) = R−1S(t)f is a generalized solution of (2.3) and hence it is a solution
of (2.12) with B = 0. Then by the strong continuity of bounded operators
S(t), t ∈ [0, T ], we obtain∫ t

0

⟨A∗ψ,X(s)⟩ ds =
∫ t

0

⟨A∗ψ,R−1S(s)f⟩ ds = ⟨
(
R−1

)∗
A∗ψ,

∫ t

0

S(s)f ds⟩,

ψ ∈ Ψ, Pa.s.

Since R−1 and A commute on domR−1A, the operators A∗ and
(
R−1

)∗
com-

mute on Ψ, which we suppose belong to domA ⊂ H. This and the equality
(3.1) imply

⟨
(
R−1

)∗
A∗ψ,

∫ t

0

S(s)f ds⟩ = ⟨
(
R−1

)∗
ψ,A

∫ t

0

S(s)f ds⟩

= ⟨
(
R−1

)∗
ψ, (S(t)f −Rf)⟩

= ⟨ψ,X(t)⟩ − ⟨ψ, f⟩, t ∈ [0;T ], ψ ∈ Ψ, Pa.s.

for any f ∈ H. Thus we get (2.13) with B = 0.
Now we show that the second term in the right-hand side of (2.12) satisfies

(2.13) with f = 0. Consider∫ t

0

⟨A∗ψ,X(s)⟩ ds =
∫ t

0

⟨
(
R−1

)∗
A∗ψ,

∫ s

0

S(s−r)B(X(r))dW (r)⟩ ds, ψ ∈ Ψ.
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Again, due to the strong continuity of the R-semigroup of bounded operators
S(t), t ∈ [0;T ], and the continuity on Ψ of the functional in the right hand side,
we have∫ t

0

⟨A∗ψ,X(s)⟩ ds = ⟨
(
R−1

)∗
A∗ψ,

∫ t

0

∫ s

0

S(s− r)B(X(r))dW (r) ds⟩.

Taking into account boundedness of R-semigroup operators and applying the
stochastic Fubini theorem [5], we change the order of integration:

⟨
(
R−1

)∗
A∗ψ,

∫ t

0

∫ s

0

S(s− r)B(X(r))dW (r) ds⟩

= ⟨A∗ (R−1
)∗
ψ,

∫ t

0

∫ t

r

S(s− r) dsB(X(r))dW (r)⟩.

At last, we move the closed operator A under the integral sign and by (3.1)
obtain

⟨A∗ (R−1
)∗
ψ,

∫ t

0

∫ t

r

S(s− r) dsB(X(r))dW (r)⟩

= ⟨
(
R−1

)∗
ψ,

∫ t

0

A

∫ t−r

0

S(h) dhB(X(r))dW (r)⟩

= ⟨
(
R−1

)∗
ψ,

∫ t

0

S(t− r)B(X(r))dW (r)⟩ − ⟨(R−1)∗ψ,

∫ t

0

RB(X(r))dW (r)⟩

= ⟨ψ,X(t)⟩ − ⟨ψ,
∫ t

0

B(X(r))dW (r)⟩, t ∈ [0;T ], ψ ∈ Ψ, Pa.s. .

Thus, generalized Ψ′-valued process {X(t), t ∈ [0;T ]} defined by (2.12) is a
solution of (2.13).

A solution of (2.12) is called a mild solution, thus we have proved that a
mild solution is a generalized one for the problem (2.1).

Now we extend the notions of multiplier and convolutor from [6, 7] to a
couple of spaces.

Definition 3.3. Let multiplication by a real-valued function g be a linear
continuous operator from Ψ to Φ, i.e. gψ ∈ Φ for any ψ ∈ Ψ and φn = gψn → 0
in Φ if ψn → 0 in Ψ. Then g is called a multiplier from Ψ to Φ. If g is a
multiplier from Ψ to Φ, then product gf for each f ∈ Φ′ is defined as follows:

⟨ψ, gf⟩ := ⟨gψ, f⟩, ψ ∈ Ψ,

and g is called a multiplier from Φ′ to Ψ′.

Definition 3.4. A generalized function G ∈ Ψ′ is called a convolutor from Ψ
to Φ if

(G ∗ψ)(x) := ⟨ψ(x+ ξ), G(ξ)⟩ = φ(x) ∈ Φ 3

3Note, that when we write an argument to a generalized function (here G(ξ)), we mean
that the generalized function acts on test functions depending on this argument.
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for any ψ ∈ Ψ and the map G∗ : Ψ → Φ is continuous, i.e. φn = G ∗ψn → 0
in Φ if ψn → 0 in Ψ. If G is a convolutor from Ψ to Φ, then convolution of
G ∈ Ψ′ with f ∈ Φ′ is defined as follows:

⟨ψ,G ∗ f⟩ := ⟨G ∗ψ, f⟩, ψ ∈ Ψ,

and G is called a convolutor from Φ′ to Ψ′.

Remark. If follows from the last definition and the definition of convergence
in spaces Φ′, Ψ′ that a convolutor maps Φ′ to Ψ′ continuously, i.e. G ∗ fn → 0
in Ψ′ for any sequence fn → 0 in Φ′:

⟨ψ,G ∗ fn⟩ := ⟨G ∗ψ, fn⟩ = ⟨φ, fn⟩ → 0, ψ ∈ Ψ.

Remark. In the framework of this paper all mentioned spaces are related as
follows:

Ψ ⊆ Φ ⊂ L2
m(R) ⊂ Φ′ ⊆ Ψ′.

In particular, in the stochastic equations we suppose f to be from the Hilbert
space H = L2

m(R), not from a wider space Φ′, becauseW in (2.13) takes values
in another Hilbert space H = L2

n(R) and is mapped into L2
m(R) by B(·); hence

the Ito integral in (2.12) takes place in L2
m(R).

Theorem 3.5. Let Φ,Ψ be spaces of test functions with continuous shift and
Φ̃, Ψ̃ be dual spaces of Φ,Ψ with respect to the Fourier transform. If g is a
multiplier from Φ̃′ to Ψ̃′, then G = F−1[g] is a convolutor from Φ′ to Ψ′ and

F [G ∗ f ] = F [G] · F [f ], f ∈ Φ′.

Proof. Note first that

F [ψ(x+ ξ)](σ) =

∫
R
ei(ξ,σ)ψ(x+ ξ) dξ

=

∫
R
ei(y,σ)e−i(x,σ)ψ(y) dy = e−i(x,σ)ψ̃(σ), σ ∈ R,

for any ψ from Ψ or Φ. It follows that e−i(x,σ) is a multiplier in Ψ̃ and in Φ̃.
Now, by the definition of convolution and that of generalized Fourier trans-

form, we have

(G ∗ψ)(x) = ⟨ψ(x+ ξ), G(ξ)⟩ = 1

2π
⟨e−i(x,σ)ψ̃(σ), g(σ)⟩.

The definition of a multiplier implies

1

2π
⟨e−i(x,σ)ψ̃(σ), g(σ)⟩ = 1

2π
⟨g(σ)e−i(x,σ)ψ̃(σ), 1⟩ = 1

2π
⟨e−i(x,σ)φ̃(σ), 1⟩,

where φ̃ := gψ̃ ∈ Φ̃. It follows that

(G ∗ψ)(x) = 1

2π
⟨e−i(x,σ)φ̃(σ), 1⟩ = ⟨φ(x+ ξ), δ(ξ)⟩ = φ(x) ∈ Φ,
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thus G ∗ maps Ψ to Φ. The continuity of the Fourier transform and of the
multiplication imply:

ψn → 0 in Ψ ⇒ ψ̃n → 0 in Ψ̃ ⇒ gψ̃n → 0 in Φ̃

⇒ F−1[gψ̃n] = G ∗ψn → 0 in Φ ,

hence, G ∗ is continuous from Ψ to Φ, that is G is a convolutor from Φ to Ψ
and, consequently, from Φ′ to Ψ′.

Finally, consider F [G ∗ f ]. For any ψ ∈ Ψ and f ∈ Φ′ we have

⟨ψ̃,F [G ∗ f ]⟩ = 2π⟨ψ,G ∗ f⟩ = 2π⟨G∗ψ, f⟩
= ⟨F [G∗ψ],F [f ]⟩ = ⟨gψ̃,F [f ]⟩ = ⟨ψ̃, gF [f ]⟩.

This implies F [G ∗ f ] = F [G] · F [f ].

Now following [6] we define some spaces of test functions, which we need
below.

1. Denote by Sα,A (α > 0, A > 0) the space of all infinitely differentiable
functions satisfying for any ε > 0 the condition

|xkφ(q)(x)| ≤ Cq,ε(A+ ε)kkkα, k, q ∈ N0, x ∈ R,

with some constant Cq,ε = Cq,ε(φ). This space is a perfect countably normed
space with the system of norms

(3.3) ∥φ∥q,p = sup
k∈N0

sup
x∈R

|xkφ(q)(x)|(
A+ 1

p

)k

kkα
, p ∈ N, q ∈ N0.

A set G is bounded in Sα,A with system of norms (3.3) if for any p ∈ N, q ∈
N0 there exists a constant Cq,p independent on elements of G and such that
∥φ∥q,p ≤ Cq,p for all φ ∈ G.

Convergence to zero of a sequence φn ∈ Sα,A means that it is bounded in

the space and for any q ∈ N0 functions φ
(q)
n (·) converge to zero uniformly on

any segment |x| ≤ x0 <∞.
The space Sα,A can be equivalently defined as the set of all infinitely diffe-

rentiable functions satisfying the condition

|φ(q)(x)| ≤ C ′
q,ρe

−(a−ρ)|x|1/α , q ∈ N0, x ∈ R,

for any ρ > 0, with C ′
q,ρ = C ′

q,ρ(φ), a = α
e A1/α

.
It follows from the definition of spaces Sα,A that Sα,A1 ⊂ Sα,A2 if A1 < A2.

Besides, any sequence convergent in Sα,A1 converges in Sα,A2 as well. Moreover,
Sα,A1 is a subspace of Sα,A2 .

2. Denote by Sβ,B (β > 0, B > 0) the space of all infinitely differentiable
functions satisfying for any δ > 0 the condition

(3.4) |xkφ(q)(x)| ≤ Ck,δ(B+ δ)qqqβ , k, q ∈ N0, x ∈ R,
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with some constant Ck,δ = Ck,δ(φ). This space is a perfect countably normed
space with the system of norms

(3.5) ∥φ∥k,m = sup
q∈N0

sup
x∈R

|xkφ(q)(x)|(
B+ 1

m

)q
qqβ

, k ∈ N0, m ∈ N.

A set G is bounded in Sβ,B if for any k ∈ N0, m ∈ N there exists a constant
Ck,m independent on elements of G and such that ∥φ∥k,m ≤ Ck,m for all φ ∈ G.

Convergence to zero of a sequence φn ∈ Sβ,B means that it is bounded in

the space and for any q ∈ N0 the sequences of functions φ
(q)
n (·) converge to zero

uniformly on any segment |x| ≤ x0 <∞.
It follows from the definition of space Sβ,B that for B1 < B2 the inclusion

Sβ,B1 ⊂ Sβ,B2 takes place, in addition, any convergent in Sβ,B1 sequence con-
verges in Sβ,B2 and Sβ,B1 is a subspace of Sβ,B2 .

3. The space S consists of all infinitely differentiable functions satisfying
the condition

(3.6) |xkφ(q)(x)| ≤ Ck,q, k, q ∈ N0, x ∈ R,

with some constant Ck,q = Ck,q(φ). Thus, the space S is the space of infinitely
differentiable functions decreasing faster than any degree of 1

|x| does as |x| → ∞.

This space is a perfect countably normed space with the system of norms

∥φ∥p = sup
k,q≤p

sup
x∈R

|xkφ(q)(x)|, p ∈ N.

A set G is bounded in S if for any p ∈ N0 there exists a constant Cp independent
on the elements of G and such that ∥φ∥p ≤ Cp for all φ ∈ G.

Convergence to zero of a sequence φn ∈ S means that it is bounded in S
and for any q ∈ N0 the sequence of functions φ

(q)
n (·) converges to zero uniformly

on any segment |x| ≤ x0 <∞.
The space S is the widest among all spaces considered above: the existence

of constants Ck,q(φ) defining the behavior of functions from S is sufficient here
and it does not matter what type they are.

If we denote by Φ̃ the space consisting of classical Fourier transforms of
functions from Φ, then for any parameters α, A, β, B

S̃α,A = Sα,A, S̃β,B = Sβ,B, S̃ = S.

Using these relations we obtain the following result.

Theorem 3.6. Let A(i ∂
∂x ) define a differential system (2.3) of a class satis-

fying (2.6), (2.7) or (2.8). Then X defined by (2.12) is a solution to (2.13) in
the case of

1) Petrovskii correct systems, in the space Ψ′ = S ′;
2) conditionally correct systems, in Ψ′ = (Sα, A)

′
, where α = 1

h , A =
1

(h e (a0−a+b))1/h
for arbitrary a0 > a and b > a;
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3) incorrect systems, in Ψ′ = (Sα, A)
′
, where α = 1

p0
and A = 1

(p0e(a0−a+b))1/p0

for arbitrary a0 > a and b > a.

Proof. Let us explain the main idea of the proof. We consider etA(σ), σ ∈ R,
and on the base of the estimates (2.6), (2.7) or (2.8) point out spaces Ψ̃1 and

Φ̃1, where the exponent defines a multiplier from Ψ̃1 to Φ̃1. Then A generates
an R-semigroup {S(t), t ∈ [0;T ]} in H defined by (2.9) with Rf = K ∗ f ,
where the choice of K̃(σ), σ ∈ R, provides that the matrix-function etA(σ)K̃(σ)

is bounded. We show that for each class of the system (2.3), K̃(σ) can be taken

so that it defines a multiplier from Φ̃1 to a space Ψ̃2. Then by Theorem 3.5,
K is a convolutor from Ψ′

2 to Φ′
1, hence the operator R is bounded in these

spaces. Consider the inverse operator R−1. Since

z(x) = (Rf)(x) = (K ∗ f)(x) = F−1[K̃(σ)f̃(σ)] = F−1[z̃(σ)],

we get

(R−1z)(x) = f(x) = F−1[f̃(σ)] = F−1

[
z̃(σ)

K̃(σ)

]
and

(AR−1z)(x) = Af(x) = F−1[A(σ)f̃(σ)] = F−1

[
A(σ)

z̃(σ)

K̃(σ)

]
.

We specify the space Φ2 providing that K̃−1(σ) and A(σ)K̃−1(σ) are multipli-

ers from Ψ̃2 to Φ̃2. Then by Theorem 3.5, operators R−1 and AR−1 become
bounded from Φ′

2 to Ψ′
2. Thus, the space Ψ′ = Ψ′

2 is the required one and
Theorem 3.2 completes the proof in this space.

Now we realize this idea for each class of the systems.
• For Petrovskii correct systems estimate (2.6) implies that etA(σ) is a mul-

tiplier from Ψ = S to S. Then we can choose K̃(·) smooth and under the
condition

K̃(σ) = O
(

1

(1 + |σ|)h1

)
as |σ| → ∞, where h1 > h+ 1/2 + p0.

This K̃(·) is a multiplier in S and operators R, R−1, AR−1 are bounded in S ′;
the boundedness of R−1 and AR−1 is a consequence of the closedness of the
space S under multiplication by any power of x.

• For conditionally correct systems the estimate (2.7) implies that for any
a0 > a the matrix-function etA(σ) is a multiplier in the spaces [7]

Ψ̃1 = Sα, A0 → Φ̃1 = Sα, A1 ,

where

α =
1

h
, A0 =

1

(hea0)1/h
, A1 =

1

(he(a0 − a))1/h
, A0 < A1 [7].
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We choose K̃(·) smooth and under the condition

K̃(σ) = O
(
e−b|σ|h

)
as |σ| → ∞, where b > a,

that provides existence of R-semigroup in H. This K̃(·) is a multiplier in the
spaces

Φ̃1 → Ψ̃2 = Sα, A2 , where α =
1

h
, A2 =

1

(he(a0 − a+ b))1/h
, A2 < A0.

Since K̃−1(σ) = O
(
eb|σ|

h
)
and A(σ)K̃−1(σ) = o

(
eb1|σ|

h
)
as σ → ∞ for

arbitrary b1 ∈ (b; a0 − a+ b), they are multipliers in spaces

Ψ̃2 = Sα, A2 → Φ̃2 = Sα, A3 ,

where

α =
1

h
, A3 =

1

(he(a0 − a+ b− b1))1/h
> A1.

Since A2 < A0 < A1 < A3 all the mentioned spaces are connected as follows:

Ψ̃2 ⊂ Ψ̃1 ⊂ Φ̃1 ⊂ Φ̃2.

By Theorem 3.5, operators R−1 and AR−1 are bounded in spaces

Φ′
2 =

(
Sα, A3

)′ → Ψ′
2 =

(
Sα, A2

)′
,

thus the required space is Ψ′ = Ψ′
2 = (Sα, A2)

′
.

• For incorrect systems the estimate (2.8) implies the analogous results, so,
the required space is Ψ′ = (Sα, A)

′
, where

α =
1

p0
, A =

1

(p0e(a0 − a+ b))1/p0
,

for arbitrary a0 > a and b > a.

In conclusion, we give two examples of operators B(X) satisfying the con-
ditions of Theorem 1, that is B(X) : HQ → H under the condition (2.2), where
X is a generalized solution to (2.13). To explain the main ideas of constructing
the examples, we present them in one-dimensional spaces.

Let Q be a trace class operator in a separable Hilbert space H and {ei} be
a basis of its eigenvectors in H: Qei = σiei, where

∑∞
i=1 σ

2
i <∞. For example,

in the case of H := L2(R), as {ei} may be taken Hermite functions; they are

eigenfunctions of the trace class operator Q = D̂−1, D̂ := − d2

dx2 + x2 + 1, in
L2(R) corresponding to eigenvalues σi = 1

2i . Let {gi = σiei} and {fj} be
orthogonal bases in spaces HQ and H, respectively.

For a generalized solution X defined via a (generalized) Fourier series

(3.7) ⟨ψ,X⟩ = ⟨ψ,
∑
j

Xjfj⟩, ψ ∈ Ψ,
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we define the operator B(X) : HQ → H (generally, depending on X nonlinear-
ly) via a Fourier series too:

B(X)gi =
∑
j

bij(X)fj , fj ∈ H.

Since X is a generalized solution, the series (3.7) may be divergent in H,
that is

∑
j X

2
j = ∞, and is convergent in Ψ′. Suppose that X is such that∑

j X
2
j

1
j2p < ∞ for some p ∈ N, and let the elements of the matrix bij , which

define the operator B(X), be as follows:

bij(X) := σi
sinXj

jp
.

It is not difficult to show that the condition
∑

i σ
2
i < ∞ is sufficient for B(X)

to be a Hilbert–Schmidt operator from HQ to H:

∥B(X)∥2HS =
∑
i

∥B(X)gi∥2H =
∑
i

∑
j

b2ij(X)

=
∑
ij

σ2
i

sin2Xj

j2p
≤ C

∑
i

σ2
i

∑
j

X2
j

j2p
<∞.

It follows that in this case Ψ can be taken in such a way that the series (3.7)
for X is convergent, that is ψ =

∑
i ψiei ∈ Ψ are taken under the condition∑

j ψ
2
j j

2p <∞.

Now we give an example constructed using the same idea and related to
the Fourier transform techniques used in the paper. Let H = H = L2(R) and
X̃(t, ·), t ∈ [0;T ], be the generalized Fourier transform of X. Suppose that for

any t ∈ [0;T ], X̃(t, ·) is a regular generalized function. Define B(X) as the
multiplication by the function

bX(x) =

∫ ∞

−∞
e−iσxv(σ)s(X̃(t, σ)) dσ.

Here, in order to be B(X) a Hilbert–Schmidt operator from HQ to H, it is
sufficient for B(X) to be bounded from H to H. Indeed,

∥B(X)∥2HS =
∑
i

∥B(X)gi∥2H ≤
∑
i

C∥gi∥2H = C
∑
i

∥σiei∥2H = C
∑
i

σ2
i <∞.

The introduced B(X) is bounded if the function bX(·) is bounded; that in its

turn is provided by the condition v(·)s(X̃(t, ·)) ∈ L1(R).
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[4] Filipović, D., Term-Structure Models. A Graduate Course, Springer 2009.

[5] Gawarecki, L., Mandrekar, V., Stochastic Differential Equations in Infinite Di-
mensions with Applications to Stochastic Partial Differential Equations. Berlin-
Heidelberg: Springer-Verlag 2011.

[6] Gel’fand, I.M., Shilov, G.E., Spaces of test and generalized functions. Gen-
eralezed functions 2, New York: Academic Press 1968.

[7] Gel’fand, I.M., Shilov, G.E., Some questions of the theory of differential equa-
tions. Generalezed functions 3, New York: Academic Press 1967.

[8] Melnikova, I.V., Alshanskiy, M.A., The generalized well-posedness of the Cauchy
problem for an abstract stochastic equation with multiplicative noise. Proc. of
the Steklov Institute of Mathematics 280(1) (2013), 134–150.

[9] Melnikova, I.V., Anufrieva, U.A., Pecularities and regularization of illposed
Cauchy problems with differential operators. Journal of Mathematical Sciences
148(4) (2008), 481–632.

[10] Melnikova, I.V., Filinkov, A., The Cauchy problem: three approaches. Mono-
graphs and Surveys in Pure and Applied Mathematics 120, London-New York:
Chapman&Hall 2001.

[11] Melnikova, I.V., Filinkov, A.I., Anufrieva, U.A., Abstract stochastic equations
I. Classical and Generalized Solutions. Journal of Mathematical Sciences 111(2)
(2002), 3430–3475.

[12] Melnikova, I.V., Alekseeva, U.A., Weak regularized solutions to stochastic
Cauchy problems. Chaotic modeling and simulations 1 (2002), 49–56.

[13] Parfenenkova, V.S., Investigation of stochastic problems of mathematical
physics. Proc. of the Steklov Institute of Mathematics 18(2) (2012), 212–221.

Received by the editors November 3, 2015


	Introduction
	Statement of the problem and preliminary results
	Main results: connection of mild solutions with generalized solutions; specification of spaces where a generalized solution can be found

