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ON FOCAL CURVES IN EUCLIDEAN n-SPACE R"

Giinay Oztiirk®” and Kadri Arslan?

Abstract. In this paper we consider the focal curves of the curves in
the Euclidean n-space R™. First we give some basic results on Darboux
vector of these curves. Later, we prove some results on the order of con-
tact of these curves. Further, we give necessary and sufficient conditions
for a focal curve to become 2-planar. We also show that if the ratios of
the curvatures of a curve -y are constant then the ratios of the curvatures
of the focal curve C,, are also constant.
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1. Introduction

Let v = v(s) : I — R™ be a regular curve in R"™ (i.e. ||4'| is nowhere
zero), where I is interval in R. « is called a Frenet curve of osculating or-
der 7 (or generic curve [12]) (r € Ng) if v/(s), v"(s),...,y") (s) are linearly
independent and v ’(s), v ”(s),...,y"t1)(s) are no longer linearly independent
for all s in I [I3]. In this case, Im(y) lies in an r-dimensional Euclidean sub-
space of R™. To each Frenet curve of rank r there can be associated orthonor-
mal r-frame {t,ny,...,n,_1} along =, the Frenet r-frame, and r — 1 functions
K1, K2, ..., kr_1:] — R, the Frenet curvature, such that

’

t 0 K1 0 0 t
n/l —K1 0 Ko 0 ni
(1.1) ny |=v| 0 —ko 0 .. 0 ng
Rp—1
n;71 0 0 —Rpr—1 0 Ny—1

where v is the speed of the curve.

In fact, to obtain ¢,nq,...,n,—1 it is sufficient to apply the Gram-Schmidt
orthonormalization process to v ’(s), v "(s),...,y") (s). Moreover, the functions
K1, K2, ..., kr_1 are easily obtained as by-product during this calculation. More
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precisely, t,ny,...,n,._1 and K1, K2, ..., kr_1 are determined by the following for-
mulas [I1]:

L) g )
R TR
k-1 vi(s)
(1.2) vp(s) :fy(k')(s)—z<7(k)(s),vi(8)>Mi)ng,
L ws)l
1) = T e @
Nkg—1 -+ = vk(s)
S T @l

where k € {2,3,...,r}. It is natural and convenient to define Frenet curvatures
Ky = Kpg1 = ... = kp—1 = 0. It is clear that t,ny,...,n,.—; and K1, Ko, ..., Kr—1
can be defined for any regular curve (not necessarily a Frenet curve) in the
neighborhood of a point so for which v /(s0), 7 (50),...,Y") (s0) are linearly
independent.

This paper is organized as follows: Section 2 gives some basic concepts of the
Darboux vector of curves in R™. Section 3 explains some geometric properties
about the order of a contact of curves in R™. Section 4 tells about the focal
curves in R™. Further this section provides some basic concepts of these curves.
Some results are also presented in this section.

2. Darboux vector of curves in R"

Let v : R — R”™ be a unit speed curve. 7 is called generic if the derivatives
of yof order 1,...,(n—1), are linearly independent [I2]. When the unit speed
vector 7/(s) = t of a curve v in the Euclidean space R™, n > 2, is translated
to an arbitrary fixed point O, the end point of translated vector ¢, describes
a curve T on the unit sphere S"~! C R", called the tangent indicatrix of ~y
[I5]. A flattening of a curve 4 in R™ is a point where the derivatives of v of
order 1,...,(n—1) , are linearly independent and those of order (1,...,n) are
linearly dependent [I5]. A point of a curve v in R™, n > 2, is called twisting if
the tangent indicatrix of v has a flattening at the corresponding point [d].

Proposition 2.1. [17] The closed curve vy : St — R given by
v(s) = (cos(s),sin(s), cos(2s), sin(2s), . .., cos(ks),sin(ks)),
has no twisting.

Proposition 2.2. The number of twistings of a closed curve in R***1 is at
least equal to the number of its flattenings [14].

Definition 2.3. For a generic curve with osculating order of 2k, the curvatures
are positive, and only the last curvature can vanish at some isolated points (at
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the flattenings). Let v be a smoothly immersed curve in R?**1 k > 1 with
curvatures K1, kg, ..., Kok _1, Kor Where kop # 0. Denote by

apg = RKoK4...R2k
K
a1 = ?;ao
(2.1)
J— K2j—1 .
aj =, -1
ap = 2-ig = K1K3...K
k kaop Ck—1 173 -2k —1-

The Darboux vector in R?**1 is defined by

(2.2) d(s) = apt + a1ng + ... + agnag,

where {t = ’(s),n1,na,...,n2x } is the Frenet Frame of v [IH].

Lemma 2.4. [I7]. The derivative of d(s) is
(2.3) d'(s) = apt + a\ny + ... + aynap.

Definition 2.5. (Darboux vertex): The point v(sg) is called a Darboux vertex

of ~ if the first derivative of the Darboux vector d(s) vanishes at that point
[r2].

Theorem 2.6. [T/ Let v be a smoothly immersed curve in R*+1 (b > 1),
with K1, Ka, ..., Kok for its curvatures. The curve v has a Darbouz vertex at the

point y(so) if and only if

(2.4) (

R2k |/

Y ING /AN
o N ):Oa

=0, =0,..,
/ﬂ) (53) (HQk—l

at the point y(so).

3. The order of contact of Curves

Definition 3.1. Let M be a d-dimensional submanifold of R™, considered as
a complete intersection:

M={zxeR":gi(z) =...=gn_q(x) =0}.

We say that k is the order of contact of a (regularly parametrized) smooth
curve 7y :— y(s) € R™ with the submanifold M, or that v and M have k-point
contact, at a point of intersection y(sg), if each function g; 07, ..., gn—q0y has
a zero of multiplicity at least k at s = s9, and at least one of them has a zero
of multiplicity k at s = s¢ [I4].

Definition 3.2. The osculating hyperplane of «y at s is the subspace generated
by {t(s),n1(s),n2(s),...,n,—1(s)} that passes through ~(s). The unit vector
ny(s) is called binormal vector of 4 at s. The normal hyperplane of v at s is
defined to be the one generated by {ni(s),na(s),...,nn_1(s),n,(s)} passing
through ~(s) [Mm].
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Remark 3.3. Let v be a curve in R™. The order of contact of a curve with its
osculating hyperplane at a flattening is at least n + 1, whereas at an ordinary
point it is n [IH].

Theorem 3.4. [6] Let v = ~(s) : I — R"™ be a unit speed curve given
the Frenet frame field {t(s),n1(s),...,n,(s$)}. If my,1 < i < n+1 are the
coordinates of centers of the osculating spheres then the following hold;

i) det(my,mj,...,m}, ) = 0 <= v is a curvature line (or generalized
heliz),
n
ii) det(mb,m3,...,my ) =0 <= me = constant.

i=1

Definition 3.5. Let M be a smooth m-dimensional submanifold in (m + d)-
dimensional Euclidean space R™*?. For p € M and a non-zero vector X in
T,M, we define the (d + 1)-dimensional affine subspace E(p, X) of R™*¢ by
E(p,X) = p + span(X, TPLM). In a neighborhood of p, the intersection M N
E(p,X) is a regular curve v : (—e,e) — M. We suppose the parameter
s € (—¢,¢€) is a multiple of the arc-length such that v(0) = p and v'(s) = X.
Each choice of X € T,(M) yields a different curve which is called the normal
section of M at p in the direction of X ([I], [4]).

For each normal section v if v /(s0), ¥ " (50);...,7? (s0) are linearly indepen-
dent and v ’(s0), v "(50),-..,7' ¥t (s0) are not linearly independent, then M is
said to have d-planar normal sections (d < m).

Definition 3.6. Let v = v(s) : I — R” be a regular unit speed curve in R”.
If ~ is of osculating order (n — 1) at the point p = ~y(sg) then p is called a
flattening point of ~ [IH)].

We prove the following result.

Proposition 3.7. Let M be a smooth m-dimensional submanifold in Euclidean
space R™+4. If M has pointwise d—planar normal sections at the point (0) =
p, then each point p is a flattening point of ~.

Proof. Let v be a normal section of the submanifold M C R™*+¢. Then the
normal section is also a curve in (d + 1)—dimensional affine subspace E(p, X)
of R™*4 | If M has pointwise d—planar normal sections at point (0) = p then
v has osculating order d. So by previous definition p is a flattening point of
order d. O

Definition 3.8. Let M be a Riemannian manifold and V a Riemannian
connection on M. For the curve a : | —e,6[ CR — M on M if V. (5a'(s) =0
then « is said to be a geodesic on M. For each tangent vector field X of x(M),
if a(0) = p and &/(0) = X, then « is a geodesic of M with respect to (p, X,)
Definition 3.9. The geodesic v, and the normal section 5, at (p,u) are said

to be in contact of order k if %(f) and Bq(f) denote the ith derivatives of v, and
B, with respect to their arclength functions. A submanifold M in a Euclidean
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space is said to be in contact of order % if, for each p € M and u € U, M, the
geodesic 7, and the normal section 3, at (p,u) are in contact of order k.

If the submanifold M is in contact of order k for every natural number k,
the contact number Cx(M) of M is defined to be co. That is;

7(0) = B,(0)

W0) = B(0).

Otherwise, the contact number Cx(M) is defined to be the largest natural
number k such that M is in contact of order k and but not of order k£ + 1 [2].

Example 3.10. Let ¢; : M — R™, (j = 1,...,7) be an isometric immersion
with geodesic normal sections. For any real numbers c1, ca, ..., ¢, with ¢} +
c3 + ...+ c2 = 1, the diagonal immersion,

(11, ... cptpy) s M — R™ 7 Fme ey s (191 (p), . .., erthr (D))
satisfies C'y (M) = oo [B1].
The following theorems are proved.

Theorem 3.11. [2] All submanifolds M in R™ with geodesic normal sections
satisfy Cy (M) = .

Theorem 3.12. [2] For each M C R™"** | the contact number of M is at least
2.

We have the following result.

Proposition 3.13. Let M be a smooth m-dimensional submanifold in R™+¢
and v be the normal section of M. If the contact number Cy(M) of M at point
p is 0o then v has a Darbouz vertex at that point.

Proof. If Cx(M) = oo then by Theorem 3.11, M has geodesic normal sections.
Further, in [8] M is helical submanifold and « is a helical normal section. So
the Frenet curvatures of v are constant. Thus by Theorem 2.6, v (0) = p is a
Darboux vertex of ~. O

4. The Focal Curve of A Curve

The focal set or caustic of a submanifold of positive codimension in Eu-
clidean space R™™! (for instance, of a curve in R?) is defined as the envelope
of the family of normal lines to the submanifold.

The hyperplane normal to v at a point is the union of all lines normal to
at that point. The envelope of all hyperplanes normal to =y is thus a component
of the focal set that we call the main component (the other component is the
curve + itself, but we will not consider it) [T3].
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Definition 4.1. Given a generic curve v : R — R"™! let I : R""! xR - R
be the (n + 1)-parameter family of real functions given by

F(a.6) = 3 la— ).
The caustic of the family F is given by the set
{qeR"™!:30eR: F)(0) =0and F,(§) =0}.
3.
Proposition 4.2. [13] The caustic of the family F(q,0) = 5 |lq — ~(0)|? coin-
cides with the focal set of the curve vy : R — R**1,

Definition 4.3. The center of the osculating hypersphere of v at a point lies
in the hyperplane normal to the v at that point. So we can write

Cy =~ +cing +cang + -+ + cpng,

which is called focal curve of vy, where ¢, ¢, ..., ¢, are smooth functions of the
parameter of the curve . We call the function ¢; the i* focal curvature of ~.
1

Moreover, the function ¢; never vanishes and ¢; = = [13].

Proposition 4.4. [14] The focal curvatures of v, parametrized by arc length
s, satisfy the following ”scalar Frenet equations” for ¢, # 0 :

1 0 K1 0 e 0 0 0 0
C' —K1 0 K2 e 0 0 0
,1 . ‘i
0/2 0 —K2 0 . C2
c-
; _| 0 0 -k “
C/n— : : : B
P2 0 kg O Cn-2
ch_1 c
n— 0 _ 0 n—1
c — R;) Kn—1 c
TN 0 0 o0 —kn O n

Remark 4.5. If the curve is spherical then the last component of the left hand
side vector is just ¢, [1H].

Proposition 4.6. [8] The spherical curve in R* is parametrized by

R K R ([ &\ ke
=m— = R = L =
as)=m p ny(s) + o na(s) + . </¢ng> o ns(s)

where m is the center and R is the radius of the sphere.
We prove the following result.

Theorem 4.7. Let v be a normal section of M and C is the generalized evolute
of v. Then the velocity vector of C is proportional with the last Frenet vector
of 7.
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Theorem 4.8. Let v be a normal section of M and C, is the generalized
evolute of v. If C; =0 then R, is constant and the curve 7y is spherical.

Proof. Let C, be the generalized evolute of the normal section curve . If
C!(s) = 0 then from the previous theorem (c,_1k, + ¢;,) = 0. So, from the
Remark 4.5, the normal section ~y is spherical. O

Remark 4.9. Let C,, be the generalized evolute of v. We say that s¢ is a vertex
of v if ||C; (s0)|| = 0. A vertex of a curve in R"™! is a point at which the curve
has at least (n + 3)—point contact with its hypersurface.

We prove the following result.
Theorem 4.10. C, is 2-planar if and only if
i) Kp—1 =0, or
it) kn =0, or
ii1) Cg = 0 that is vy is a spherical curve and point p is vertex of .

Proof. Let us denote A = ¢,_1ky + ¢},. Differentiating C., we get

C, = An,
C;/ = A,nn—Aﬁnnn_l

= (AN — Ani)nn + (—2Alf<an — Aﬁ;l)nn,l + AKpKn—1Mn—2.
N—— SN—— ——

B C D

If C is 2-planar then C’;, C;/ and C, are linearly dependent. So we get

A 0 0
A —Ak, 0 |=D(-A%,) =A%k, 1 =0,
B C D
which completes the proof. O

Proposition 4.11. [4] Let M be pointwise planar normal sections and each
normal section at p has one of its vertices then M has parallel second funda-
mental form.

Proposition 4.12. [74] The curvatures of a generic curve v : I C R — R
parametrized by arc length, may be obtained in terms of the focal curvatures of
v by the formula:

c1¢) 4+ cach + -+ 1y

Ki = , fori>2.
Ci—1C;

Remark 4.13. For a generic curve, the functions ¢; or ¢;_; can vanish at isolated
points. At these points the function ¢1¢f + cach + - -+ + ¢;-1¢;_; also vanishes,
and the corresponding value of the function x; may be obtained by I'Hospital
rule. Denote by R; the radius of the osculating l-sphere. Obviously R? =
i+ +...+ ¢ In particular, R? = ||C,, — fyHQ (5]
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Theorem 4.14. [Id] The radius R, of the osculating l-sphere of a generic
curve, parametrized by arc length, in the Euclidean space R"T', n > 1, is
critical if and only if

a) co =0, forl=1;

b) either ¢, =0 or ¢i11 =0, for 1 <l <mn;

c) either ¢, =0 or ¢, + cp—_16, =0, for I =n.

Corollary 4.15. [2d] If the I'" focal curvature ¢; vanishes at a point, then R,
and R;_1 are critical at that point.

Definition 4.16. We define a generalized helix as a curve v : R — R” such
that its tangent vector forms a constant angle with a given direction v at R

).

Proposition 4.17. [@] A curve v : R — R™ is a generalized heliz if and only
if the function det(y (s),y (s),...,7 "tV (s)) is identically zero, where v%)
represents the ith derivative of v with respect to its arc length.

Definition 4.18. The point sg is a flattening of - if the contact of v with the
osculating hyperplane at s is of order at least n [d].

Proposition 4.19. 0] A point sy is a flattening of v if and only if

det(v (50,7 (50)s - -, 7™ (50)) = 0,

where v represents the ith derivative of v with respect to its arc length.

Definition 4.20. A conformal flattening or vertex of « is a point at which
has contact of order at least n + 1 with its osculating hypersphere [d].

Definition 4.21. A twisting of v : R — R" is a flattening of its tangent
indicatrix vy : R — S”~1. It follows that if  is parametrized by its arc length
s, then sq is a twisting of y if and only if det(y" (so),7  (50),...,7™ T (s0)) =0
[@].

We shall see now that the twistings of v can also be characterized as points
at which it has higher order of contact with some generalized helix [9].

Proposition 4.22. [@] Given a curve v(s) parametrized by arc length in R™,
there exists for each point y(so) = p of this curve some generalized heliz ~y,(s)
whose contact with v at p is of order at least n. Moreover, if so is a flattening
point of yr then we have that vy, has order of contact at least n+1 with y at p.

Theorem 4.23. [13] Let v : s — v(s) € R"*! be a good curve without its flat-
tenings. Write ki, Ka, ..., kn for its Euclidean curvatures and {t,ni,na,...,nn}
for its Frenet Frame. For each non-vertex v(s) of «y, write (s) for the sign of
(ch + cn_1kn)(s) and 8x(s) for the sign of (—1)ke(s)kn(s), kK = 1,...,n. For
any non-vertex of v the following holds:

a) The Frenet frame {T, N1, Na, ..., Np} of C, at C,(s) is well-defined and
its vectors are given by T = en,, Np = Sgnp_k, for k = 1,....n — 1, and
N, = £t. The sign in %t is chosen in order to obtain a positive basis.
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b) The Euclidean curvatures K1, Ks, ..., K,, of the parametrized focal curve
of v. C, : s = C,(s), are related to those of v by:

B K el L

[ - K1 lep +ep—tkinl’

the sign of K, is equal to 6, times the sign chosen in =+t.
That is the Frenet matriz of C., at C(s) is

0 || 0 - 0 0 0

- |Hn| 0 Rp—1 e 0 0 0

0 —Knp—1 0
1 0 0 —Hn_s
], + Cn1kn]

0 K9 0
—K9 0 :Fénm

0 0 0 +6, K1 0

We have the following result.

Theorem 4.24. Letvy : s — y(s) € R be a good curve without its flattenings
and C be its focal curve. If the ratios of the curvatures of v are constant then
the ratios of the curvatures of C., are also constant.

Proof. Let k1, ka,...,kn, and K1, K, ..., K,, be Euclidean curvatures of v and
its focal curve C,, respectively. Then from Theorem 4.23, we get

Ko dsal 1
Ky Kn—1 |+ Crne16n]
Ky ma
Ky Kn—2
Kn—l o @
‘Kn| K1
Further, if ﬁ = const. , then ng;l = const. for 1 <k < §, our theorem is
thus proved. O

For more details on curves of R™ with constant curvature ratios (ccr-curves)
see also [[7].
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