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EXISTENCE AND NON-EXISTENCE OF POSITIVE

SOLUTIONS OF FOUR-POINT BVPs FOR SECOND

ORDER ORDINARY DIFFERENTIAL EQUATIONS
ON WHOLE LINE"

Yuji Liu? and Xiaohui Yang®

Abstract.  This paper is concerned with four-point boundary value
problems of second order singular differential equations on whole lines.
The Green’s function G(¢,s) for the problem
—(p(t)2' (1) = 0, Tim p(t)a'(t) — ka(€) = Tim p(t)a’(t) + La(n) = 0
t——o0 t—+oo
is obtained. We proved that G(t,s) > 0 under some assumptions which
actually generalizes a corresponding result in [Appl. Math. Comput.

217(2)(2010) 811-819]. Sufficient conditions to guarantee the existence
and non-existence of positive solutions are established.
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1. Introduction

The investigation of nonlocal boundary value problems for ordinary differen-
tial equations was initiated by II'in and Moiseev [I4]. Since then, more general
nonlocal boundary value problems (BVPs) were studied by several authors, see
the text books [i, [T, 3], the paper [21], and the survey papers [[6, 7] and the
references cited there. However, the study of existence of positive solutions of
nonlocal boundary value problems for differential equations on whole real lines
does not seem to be sufficiently developed [, B, @, B, B, 20] and the references
therein.

In recent years, the existence of solutions of boundary value problems of
the differential equations governed by nonlinear differential operators has been
studied by many authors, see [B, [, B, O, [0, 05, IR, [Y] and the references
therein.
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In [2], Deren and Hamal investigated the existence and multiplicity of
nonnegative solutions for the following integral boundary-value problem on the
whole line

(p)'(1))" + Aq()) f(t, 2(1),2(t)) = 0, ae,l€R,

1) 4o tmx(t) by lim p(t) (1) = [72° g1(s,2(s), 2/ (s)(s)ds.

as T a(t) + by Tim_p(t)a’(6) = [, ga(s,2(s), /() 0(5)ds,

where A > 0 is a parameter, f,g1,92 € C(R, x[0,00) x R,[0,0)), ¢,% €
C(R,(0,00)) and p € C(R, (0,00)) N C*(R). Here, the values of

ST gilssa(s), 2/ (5))ds, (1 = 1,2), [ 73 85 < oo

oo oo p(s)
and sup ¢ (s) are finite and a3 + az > 0, b; > 0 (i = 1,2) satisfying D =
seR
asby + a1by + ajas f oo p(s) > 0.
Motivated by the mentioned papers, we consider the following four-point
boundary value problem for second order singular differential equation on the
whole line

[p)z' ()] + f(t,2(t),2'()) = 0, a.e.,t € R,

(1.2) lim p(t)2'(t) — kz(£) = 0,

t——o0

dim p(t)2'(t) + lz(n) =0
where
(a) —oco <& <n< 400, k,l >0 are constants,
(b) f is a nonnegative Carathéodory function, see Definition 23,
(c) p€C°R,[0,00)) with p(t) > 0 for all ¢ # 0 satisfying

3 du
(1.3) L—k [* 0 >0,
(1.4) L [ A
_ +0o0  du
(1.5) =kl ki [T 0,

The purpose is to establish sufficient conditions for the existence and non-
existence of positive solutions of BVP(I2). Our results and methods are dif-
ferent from those in [2, B, @, B, @, B, 20].

The main features of our paper are as follows. Firstly, compared with
[I2], we establish the existence results of solutions of second order singular
differential equation on the whole line. Secondly, we investigate the existence
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of positive solutions by a different method and i 1mposmg growth conditions on
f- Thirdly, compared with [IH], we consider the case f L )ds < 400 in this

paper while f_ (8) ds = 400 was considered in [I4]. Fmally, the Green’s
function G(t,s) for the problem —(p(t)z’(t)) = 0 tl}m p(t)x'(t) — kx(§) =
—00

071‘—1321 p(t)z'(t) — lz(n) = 0 is obtained. We proved that G(t,s) > 0 under
some assumptions, which generalizes a corresponding result in ([22]Appl. Math.
Comput. 217(2)(2010) 811-819), see Remark 1.

The remainder of this paper is organized as follows: the preliminary results
are given in Section 2, the existence result of positive solutions of BVP(I2) is

proved in Section 3. Finally the non-existence results on positive solutions of
BVP(I2) are presented in Section 4.

2. Preliminary Results

In this section, we present some background definitions in Banach spaces
see [I] and state an important fixed point theorem see Theorem 2.2.11 in [I3].
The preliminary results are given too.

Definition 2.1. Let X be a real Banach space. The nonempty convex closed
subset P of X is called a cone in X if ax € P for all x € P and ¢ > 0 and
x € X and —x € X imply « = 0.

Definition 2.2. An operator 7' : X — X is completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

Definition 2.3. f is called a Carathédory function when

t— f(tx, y | is defined almost everywhere on R and is measurable
p(t)
on R for any z,y € R,

(ii) (z,y) — f (t x, p(t) ) is uniformly continuous on R? for almost every
t € R, i.e., for each € > 0 there exists § > 0 such that

‘f <t7$17 ﬁyl) - f (t,l’g, ﬁyQ)‘ <e
for almost every t € R, |z1 — z2| < 6, [y1 — y=2| < 9,

(iii) for each r > 0, there exists a nonnegative function ¢, € L*(R) such that
|u|, |[v| < 7 implies

’f <t7x, p(lt)y>' < ¢(t),a.et € R.

Lemma 2.1 ([I0, ©3]). Let X be a real Banach space, P a cone of X, and
let Q1,99 be two nonempty bounded open sets of P with 0 € Q1 C Q1 C Q.
Suppose that T : Qo — P is a completely continuous operator, and
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(E1) Tx # Az for all A € [0,1) and x € 0, Tx # Az for all X € (1,+00) and
x € 00y;

or

(E2) Tx # Az for all A € (1,400) and x € 00, Tx # Az for all A € [0,1) and
r € 0Qs.

Then T has at least one fived point x € Qo \ Q.
Choose
0 / 0 :
x € C°(R), px’ € C°(R), tilgloox(t)
X=<Kz:R—R:
and t_l:;n p(t)z’(t) exist and are finite

For z € X, define
el = max{sup|x<t>|, supp(t)lx'(t)}~
teR teR

Lemma 2.2. X is a Banach space with || - || defined above.

Proof. Tt is easy to see that X is a normed linear space. Let {z,} be a Cauchy
sequence in X. Then ||z, — x,|| = 0, u,v = 400. It follows that

. . . p . p .
t_l}r_noo Xq (1), t_l}gloo Xqy (1), t_l)u_noo p(t)z, (1), t_li+moo p(t)z!,(t) exist,

sup |z, (t) — 2, ()| = 0, u, v — 400,
teR

sup p(t)|«],(t) — 24, ()| = 0,u,v = +o0.
teR

Thus there exist two functions xg,yo defined on R such that

lim (1) = a0(t). Hm_p(t)2, (1) = wo(t)

uU—r+00

It follows that
sup |z, (t) — xo(t)| = 0,u — +o0,
teR

sup [ (1), (£) = yo(t)] = 0,u — +oo.
teR

This means that the functions xg, yo : R — R are well defined.
Step 1. Prove that zg,y0 € C(R).
We have for t; € R that

|z0(t) — zo(to)| < |zo(t) — 2N ()] + 2N (t) — 2N (to)| + [2n (to) — To(to)]

< 2sup o (1) — a0(8)] + o (1) — wx(to)]
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Since sup |y (t) — zo(t)| = 0,u — 400 and x,,(¢) is continuous on R, then for
teR
any € > 0 we can choose N and § > 0 such that sup |zn (t) — xo(t)| < € and
te

|en () —zn(to)] < € for all |t —to] < §. Thus |x0( ) — x0(to)| < 3e foe all
[t —to] < d. So zp € C(R). Similarly we can prove that yo € C(R).
Step 2. Prove that the limits lim xo(t), Um xo(¢), lm yo(t),
t——o0 t——+oo t——o0

tllin yo(t) exist.

Suppose that lim x,(t) = A, is a finite real number. By sup |z, (t) —
t——o0 teR

z,(t)] = 0,u,v — 400, we know that A, is a Cauchy sequence. Then
lim A exists. By sup |z, (t) — zo(t)| = 0,4 — +00, we get that
teR

Uu—r—+00

Hence lim xo(t) exists. Similarly we can prove that lim xo(t), lim yo(t),
t——o0 t——+o0 t——o0
t~1>1£noo yo(t) exist.

Step 3. Prove that yo(t) = p(t)z((t).
We have

2o (t) — lim oz, (t) — [* y"(s)ds =

t——o0 oo p(s)

' o pols)
o x(s )dsffooy;( ds‘

2! (s) — Yo(s)

t
S, 4 o(5)

ds < [* Ldssup |p(t)al,(t) — yo()]
p(t) ‘eR

< [T L dssup |p(t)2,(£) — yo(t)] — 0 as u — +oo.
p(t) teR

. . t t s
ot (0(0) -t (0) = . B T ao)-co = [, B
Here ¢p := lim lim z,(¢t) = lim A;. It follows that wolh) xg(t). So

u—+oo t——o0 u——+o0 ( )
rog € X with z, — zg as u — +oo. It follows that X is a Banach space. O

Lemma 2.3. Let M be a subset of X. Then M is relatively compact if and
only if the following conditions are satisfied:

(1) both {x:xz € M} and {p(t)x’ : x € M} are uniformly bounded,

(i) both {x : x € M} and {p(t)z’ : © € M} are equicontinuous in any
subinterval [a,b] in R,

(iii) both {x : x € M} and {p(t)z’ : © € M} are equi-convergent as
t — foo0.

Proof. 7 <= 7. From Lemma B3, we know X is a Banach space. In order to
prove that the subset M is relatively compact in X, we only need to show M
is totally bounded in X, that is for all € > 0, M has a finite e-net.
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For any given ¢ > 0, by (i) and (iii), there exist constants A,,C,, T >
0,a > 0, we have

lz(t) — Ag| < 5, |p(t)a'(t) — Cpl < §,t < =T,z € M,
lz(t1) — 2(t2)] < 5, [p(t)2' (t1) — p(t2)a’(t2)] < 5,11, 12 2 T,z € M,

lz(t1) — a(t2)] < 5, [p(t1)2’ (t1) — p(t2)2’ (t2)| < §,t1,t2 < =T, 2 € M.

For T' > 0, define X|_7 7 = {2 :2,p(t)2" € C[-T,T]}. For x € X|_p 1,
define

follr = max{ s (o0, s p0l2')] |
Similarly to Lemma 272, we can prove that X|_r 7] is a Banach space.

Let M|_rp) = {t = x(t),t € [-T,T] : x € M}. Then M|_pq) is a
subset of X|_r . By (i) and (ii), and Ascoli-Arzela theorem, we can know
that M|_p p is relatively compact. Thus, there exist 21,2, -+, 2, € M such
that, for any x € M, we have that there exists some ¢ = 1,2,--- |k such that

|x—xi||T:max{ sup |o(t) — zi(t)], sup p(t)|x’<t>—x;<t>|}<;.
te[—T,T] te[-T,T]

Therefore, for x € M, we have that

o — 2| x = max{ sup |z(t) —i(t)],  sup p(t)]z'(t) — zi(1)],
te[—T,T) te[—T,T)

sup |z(t) — @;i(t)], sup p(t)]a’(t) — x; ()],
t>T t>T

sup [2(t) — zi(t)], sup p(H]a () - x;<t>|}
t<—T t<—T

< max { sup o(8) = (7)) + [o(T) = a:(T)| + sup z:(T) = (1),

sup [p(1)'(t) = p(T)z (T)] + p(T)a'(T) = p(T)a;(T)|

+sup [p(T)xi(T) = p(t)a;(t)|

sup |2(t) — x(T)| + |2(T) — zi(T)| + sup |2i(T) — z4(t)],
t<—T t<-T

sup [p(t)a’(t) = p(T)z (T)] + [p(T)2"(T) = p(T)z(T)]

+ sup [p(T)(T) ~ po)al(0] p < e
t<—T
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So, for any € > 0, M has a finite e-net {Uy,, Uy,, -+, Uy, }, that is, M is totally
bounded in X. Hence M is relatively compact in X.

(=) Assume that M is relatively compact, then for any € > 0, there exists
a finite e-net of M. Let the finite e-net be {U,,,Us,, - , Uy, } with x; C M.
Then for any x € M, there exists U,, such that z € U,, and

#(0)] < Ja(t) — 2] + | )] < e+max{sup|zi<t>| =12, k}
teR

p(t)]z'(t)| < € + max {supp(t)|x§(t) i=1,2,--- ,k} .

teR

It follows that both M and {p(t)z’ : © € M} are uniformly bounded. Then (i)
holds. Furthermore, there exists T' > 0 such that |z;(t1) — z;(t2)| < € for all
t1,to > T and all ¢1,to < —T and i = 1,2,--- , k. Then we have for t1,t € R
that

[2(t1) — x(t2)] < |2(ts) — zi(t)] + [2i(t1) — zi(t2)] + [24i(t2) — 2 (t2)]
< 3eforall t1,to > T, t1,to < -T,x € M.

Similarly we have that
lp(t1)a! (t1) — p(t2)a’ (t2)] < 3e for all t1,te > T, t1,te < =T,z € M.

Thus (iii) is valid. Similarly we can prove that (ii) holds. Consequently,
Lemma 23 is proved. O

Denote

1+k‘ft du _|_k;f§ du —|—I€lf§ du n _du

ndp(u ndp(uftd upftsp(u ft d
Ty g 7 du tdu us g [l du

u tp(z) ” du p(u) p(u) u p(u) u p(u)
—kl [, 0y Je pz),sgmln{f,t}7

1 +kft p‘fz),s > max{n,t},

1+kft du +kf£ du +klf£ du_ f77 du

¢ plu) p(u) . u p(u) p(u)
+1 nd“)—&—kl n‘é“ du i< s<E<n,
1 u p(u) Je¢ p(u)’
G(t,S) = A

t du N du
Lk Je ey UL e
+kl 5 pdz) fg o u),mln{t & <s<y,

t du N du n t du t du
1+ ktfd p(u) +i i dﬂ(") ;L]Zl fu ﬂ(u) € plu) fu p(u)
—k [, a5~ klf w7 Je 20 € < s < max{t,n},

t du t du t du
Ltk Je say = U ey =k Ju sty

tdu n du
—kl [, e s E<n<s<t



86 Yuji Liu, Xiaohui Yang

Lemma 2.4. z € X is a solution of BVP(I) if and only if
(2.1) w(t) = [T G(t,5)f(s,2(s), 2/ (s))ds.

Proof. Since x € X, f is a Caratheodory function, then
ol = max {sup ()], sup p(0la' ()] | =1 < +oc
teR teR

and fj;; f(ryx(r), 2’ (r))dr converges. If z is a solution of BVP(IZ2), we get
from [p(t)z' (¢)] + f(t,z(t), 2’ (t)) = 0 that there exist constants A, B € R such
that

p(t)a’ (1) = A= [ f(s.2(s).a'(s))ds,
(2.2)
a(t) = B+ A [ = 1 (S5 Fls.a(s),a!(5))ds.

From lim p(t)2'(t) — kz(§) = 0 and , ligrn p(t)z'(t) + lz(n) = 0, we have
—r+00

t——o0

(1 — k[ %) A—kB=—k [ (fj ,;fg)) L 2(s), 2/ (s))ds,

(1407 25 ) A+1B = [T f(s,2(5), 2'(5))ds
L (7 55) £, w(s), 2 () ds.
It follows that
A= & [6 7 fls,a(s).a' () ds + kL [ ([ 85 Fls,a(s),2'(5))ds
kLS (U5 5885) Fsals). ' ()ds]
B =% [(1 -kl ) JIZ £l (o) (5))ds
k(107 ) oo (S5 ) £, a(s),a'(5))ds

+1 (1 - kfgoo pdz)> [ ( v ﬁ) f(s,x(s),x'(s))ds] .
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Substituting A, B into (232), we get that
2(t) = = [' o (S 4%5) Fs.2(5),2'()ds
5 (1R ) S S a(s), () ds
S CE T N A

) F(s,x(s).a(s))ds
+1 (1 - kffoo %) fn (fn ‘f—) f(s,x(s),:c’(s))ds]

& RIS Fia(e), 2/ (s)ds + k[T (7 ) £ls,a(s),2'(s))ds
R (S8 ) s, (s), 0/ () ds] [, 22

= &[S (et k7 ) (2585 ) Fsals), ' (s)ds
T (1 kS ) (s als). () ds

[ (5 s+ k[ [ ) (s, (). ())ds

7 (LS s b s [ ) F(sa(s), ' () ds]

= [T G(t,9)f(s,2(s),2'(5))ds.

This is just (270). On the other hand, if z € X satisfies (271), it is easy to show
that z is a solution of BVP(IA). The proof is completed. O

Fix ¢ > 0 such that f:;% < 1. For ease expression, denote pu =
e (o ) L

—oo p(u) —oo p(u)

pP— {x cx. x(t)>0foralltcR, min z(t) > psupx() }
’ te[—c,c] teR ’

Define the operator T on P by (Tx)(t f+°° G(t,s)f(s,x(s),x'(s))ds for
rzeX.

Lemma 2.5. Suppose that (a)-(c) hold. Then
(i) T:Pw— X is well defined,
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(ii) 4t holds that
[p(t)(Tx)' )] + f(t,2(t), 2 () = 0,a.e.,t €R,

(2.3) lim (T)(t) — k(T)(€) = O,

t——o0

lim (Tz)(t) —U(Tx)(n) =0,

t——+o0

(ili) T : P~ P is completely continuous;
(iv) x € X is a positive solution of BVP(I2) if and only if x is a fized
point of T in P.

Proof. (i) Since z € X, f is a Carathéodory function, we know that

+oo
/ f(s,2(5), 2 (5))ds

—0o0

is convergent. By the definition of T, we have
=" (I 3) Fls.a(s),2/(s)ds
& (1R ) 173 fls () () ds
k(L ) g (S5 ) Fsoals). o (s)ds
(L= [ ) 7 (S t5) Fs(s). ' (5))ds]

+1 [k JF2° F(s,2(s), 2/ (s))ds + ki fjoo( K ﬁ) F(s,2(s),2/(s))ds

RS (S ) Fsoas),a/(s))ds| [, s
We know

p(t)(Tx)'(t) = — [* _ f(s,2(s),2'(s))ds
—l—i [kj f:f f(s,x(s),2'(s))ds + ki ffoo ( : %) f(s,z(s),2'(s))ds

—kl [ ( IN pfgg)) (s),x’(s))ds] .

Thus Tx : t — (Tx)(t) and p(Tx) : t — p(t)(Tz)'(t) are continuous on R.
Furthermore, , ligl (Tx)(t) and . liim p(t)(Tx)'(t) exist and are finite. Thus
—+oo —4o0

T:P+— X is well defined.
(ii) By (i) and direct computation we get (223).
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(iii) First, we prove that T': P +— P is well defined.

Step 1. Prove that (Tz)(t) > 0 for all t € R. By the definition of T, it

suffices to prove that G(t,s) > 0. For reader’s convenience, denote fb % =

a
b
fa'

Case 1. For s > max{n,t}, we see from (IZ3) that

O)§<t7

AG(t,s)=1+k [} >
1—k[* >0, &>t

Case 2. For s < min{&, ¢}, we have from (I4) that

AG(t ) = 1k [{ ke [Tkl [ [ [ k[ 1 [ = [y =KL, f¢

RS kSR [ S

0,t<n,
=1+1["> o
1—1]‘,7 >0, t>n.

Case 3. Fort < s <& <, note u < &, we have from (I33) and (IA) that

AG(t,s) =1 +k [} +k [+l [£ [+ [7+kL [ [
:1+kf£+klffft"+lf:’+klfgfgZ1+kf£+lf5+klf5fg

:(1+kfg) (1+1[7

0,6 <t,u<m,

(1—kffoo) (L+1[7) >0,6>tu<n,

v

(1+kf€t) (1_lf7,+oo) L <t,n<u,

(1—kffoo) (1—1]77*"") >0,6> 1,1 < u.
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Case 4. For min{¢,£} < s <n, we have from (I[33) and (IA) that
AG(t,s) =14k [+ [ +kL [ [
t n
= (1+kf£) (1+1f7)
0,§ <t,u<n,

(1—kffoo) (1411 >0,6>t,u<n,

v

(1+kfg) (1—lfn+oo),§§t,n<u,

(1—ka00) (1—zf7j°°) >0,6> 1,1 < u.

Case 5. For £ < s < max{t,n}, note £ < u < min{t,n}, we consider two
cases:

Subcase 5.1. u > t. From (I=3) and (IA), we have
AG(ts) = L4k [E 1[4k f =1 =k [y =k [ f
= Lk [ R LT LR [
> 14k [ [0k [ = (1+kfg) (1417

0, <t,u<m,

(1—kffoo) (1+1[7) >0,6>tu<n,

%

(1+kf€t> (1_lfn+oo) & <t,m<u,

(1 . kffoo) (1 - lfn“") >0,6> 1,1 < u
Subcase 5.2. u < t. Let
F(t) =14k [+ [kl [} [ kL[, [

Using (I=3), we have

Fit) = — ot (L4 [T =k 1) = =5 (14 S ) <o
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On the other hand, we have

F(t00) = 1k [ —1 [k [ [ —kt [ [
o (e g S g )
k(L )

=k (JE =L )

=k f (1-1)7) >0

Since F' is decreasing and F(+o0) > 0, we get F(t) > F(4+00) > 0 for all
t < +o0.
Case 6. For £ <n < s <t, note u>n, we have from ([3) and (IA) that

AG(t,s) =14k [{ L[, —k [} =kl [, [
21+kﬁ“4ﬁ—mﬁﬂ?:(1+hg)@_lﬁ)

0,6 <wu,u>t,

@—kﬁw)@—zﬁ)zqg>%uza

v

(1+r ) (1=1h™) 206 <wu<t,

(
(L=rfs) (1=107) 206> wu <t
(=3

From cases 1-6, together with ), this step is proved.
Step 2. Prove that min }(Tx)( ) > usup(Tx)(t).

te[—c,c

Firstly, we prove that (Tx)(t) is concave with respect to 7 = 7(t) =
ftoo SGy- It is easy to see that 7 € C( (0 ftf p(éz )) and 97 = ﬁ > 0.
Thus
(2.4) dTz) d(Tz)dr d(Tz) 1

' dt  dr dt  dr p(t)
It follows that p(t )d(Tz) = d(gz Since M —flt,z(t),2'(t)) <0
and ‘fﬁ > 0, we get that M < 0 on (0 f+ooj p%—ﬁ). Then d(gf) is

)
decreasing with respect to 7 € (O f+oo du ) Hence (Tx)(t) is concave with

oo p(u)
+00 du )

respect to T € (O I o0
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Since 9= > 0 for all t € R, there exists the inverse function of 7 = 7(t).
Denote the inverse function of 7 = 7(¢t) by t = t(7).

Case 1. there exists 79 € R such that sup(Tx)(t) = (Tx)(7). One sees
teR

min (Tz)(t) = min {(Tz)(—c), (Tx)(c)}.

te[—c,c]

Denote 7(+00) = [ +O°§ /f(% If

min{(Tz)(—c), (Tz)(c)} = (Tx)(c) = (Tx)(t(7(c))),
noting 7(—c) < 1 (by definition of ¢), one has for ¢ € [—c, ¢] that
(Tx)(t) > (Tx)(t(7(c)))

_ 7(+00)—71(c)+7(10) 7(c)T(400) 7(c)
- (T.’L‘) (t ( 7(+00)+7(10)  T(+00)—7(c)+7(70) + ‘r(+oo)+‘r(7'o) ( ))) ’

Noting that 7(4+00) > 7(¢) and (T'z)(t) is concave with respect to 7, then, for
te[—cCd,

r(4o0) ~7(c) br(ro) r(e)r(+o0)
(T)(t) > T dm) (o) (¢ (22w )

+ = oy (1) (t(7(70)))

> f S p(ls deJr“T(Tx)(TO)

1
= f [eS) p(s 2fj';>§ ﬁds (T.T,‘)(To)

= psup(T'z)(t).
teR

Similarly, if min{(Tz)(—c), (Tz)(c)} = (Tx)(—c) = (Tx)(t(7(—c))), noting
7(—c) < 1 (by definition of ¢), one has for ¢t € [—c, ¢] that

(Tz)(t) = (Tz)(t(7(—c)))
_ 7(+00)+7(10)=7(=¢) T(+00)7(~C) 7(=c)
= (Tw) (t(f<+oo>+f(73>—f<—c> Choo)Fr(r0) T TCree ) T (T ))>

(oo (r0)—7(=c) (—e)r(40)
2 st (L) (t(r(+m)+T(TO),T(,C)))

i (T2) (8 (7(70)

> |75 ads 5= g (To)(m0) > usup(Tz)(2).
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Case 2. sup(Tz)(t) = lim (Tx)(t) or lim (Tz)(t)). Choose 79 € R. By
teR t——o0 t——+oo

the same methods used in Case 1, we get

min (Tz)(t) > p(Tz) (7).

te[—c,c]
Let 79 — —oo0. We get

I[nin ](Tx)(t) > p, lim (T'z)(t) = psup(Tz)(t) or ligl (Tx)(t))-
te|—c,c ——00 teR t—+00

So r[nin ](Tac)(t) > psup(Tz)(t) is proved. We see from Step 1 and Step 2
te|l—c,c teR

that Tx € P. Hence T : P — P is well defined.

Step 3. We prove that T is continuous on P. Since f is a Carathéodory
function, then the result follows.

Step 4. We show that 7" maps bounded subsets into bounded sets.

Given a bounded set D C X. Then, there exists M > 0 such that D C {z €
X :||lz|| € M}. Then there exists ¢ps € L'(R) such that |f(¢,z(t),2'(t))] <
oum(t) for all t € R. By the definition of G(t, s), the expressions of (T'x)(¢) and
p(t)(Tz)'(t), we get that

1+3k f:rg: /J%Z) +2 f:r;: p(é:j) +3kl( j;: ﬂ(é:j))2

G(t,s) <

Then

1+3k f;l—;): ﬂﬁ) +21 f;l—oo; du +3kl( +oo _du
A

(T2)(0)] < stis OR(ZE ) o0 ) ().

On the other hand, we have

k+2kl +oo _du

p(O|(T2) (1)] < [1 LM <} [ g (s)ds.

Then

|(T2)]| = max {§3§|<Tx>(t>|,§g§p<t><Tx>’<t>|} < oo,
So, {T'D} is bounded.

Step 5. we prove that both {Tz : x € D} and {t — p(t)(Tx)'(t) : € D}
are equi-continuous on each finite subinterval on R.

The proof is standard and is omitted. One may see [22].

Step 6. we show that both {T'z : € D} and {t — p(t)(Tz)'(t) : « € D}
are equi-convergent at both +0o and —oo respectively.
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We have that

(@) = & [(1= ko 5825) J15 F(s2(5), () ds

e (L0 s ) o (S ) £sa(s).'(5))ds

FL(L =k S ) S (S ) F(sals). o/ ()]

< St (S 225 ) 15 (s 0s), 2/ (5)) s

ok [RSET sents)a )ds + k(S 785 ) 1 (ssa(s), () lds
R (S ) 1 (s a(s), o () s [, 2

<A [Ad bR [T g [ ] [ @ (s)ds [,

co p(u) oo p(u) oo p(u)
— 0 uniformly as t — —oo.

Furthermore, we have that
pOT2) () = & [k J73 f(s.0(5), 2/ (5))ds
k7 (78 s, a(s), 0! (9)ds — k[ (S 2) F(s,a(s), 0/ (s)ds|
[ (ssa(s), o/ (5))lds

< f ép(s)ds — 0 uniformly as ¢ — —oo.

Hence {t — p(t)(Tx)'(t) : x € D} and {Tz : * € D} are equiconvergent at
—00.

Similarly we can prove that both {Tz : x € D} and {t — p(t)(Tz)'(t) : xz €
D} are equiconvergent at +o0o. The details are omitted.

From Steps 3-6, we see that T maps bounded sets into relatively compact
sets.

Therefore, the operator T': P — P is completely continuous. The proof of
(iii) is complete.

(iv) It is easy to see that x € P is a positive solution of BVP(I2) if and
only if z is a fixed point of T' in P. The proof of (iv) is complete. Thus the
proof of Lemma P73 is ended. U

Remark 2.1. From Cases 1-6 in Step 1 in the proof of Lemma P8, we know
G(t,s) > 0 for all s,¢ € R. This result generalizes a corresponding one in [22].
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3. Existence of positive solutions

In this section we establish existence result on positive solutions of BVP (I32).
—1
Fix ¢ such that [~ 4% < 1. Let p = [ - (f+oo d“) . Ads

p(u) oo p(u) \J—oo p(u)
defined by (ICH). To simplify notation, for nonnegative function ¢ € L'(R) and

nonnegative constants Lq, Lo and a, b, denote

My = max e - e
0 JO o(rydr [Z2 20 [ g(rydr [T 25 (0

i Ly Ly
Wo = min { I odr JF= ¢(r>dr} ’

FEy = max { Ab

[ak [ Ho s po fhoe dusgapi( [ 4u )] 1722 (s)ds”

—oco p(u) oo pu p(

AL2
[A+k+2kL [122 ﬁ] S p(s)ds [

Theorem 3.1. Suppose that (a)-(c) hold and there exists nonnegative function
¢ € LY(R) and nonnegative constants L1, Lo and a,b such that L1 < Ly and
a <band

7 (b ) = Moo(t), ¢ € [~c,c],u € [ua,al,v € [~ Ly, L]
f (t,u, m) > Woo(t), t € Ryu € [0,a],v € [~Ly, L],

£ (b ) < Boo(t), t € Ryw e [0,6),v € [~ Lz, La].

If Ey > max{My, Wy}, then BVP(IA) has at least one positive solution x
satisfying

(3.1) a <supx(t) <b, 0 <supp(t)|z'(t)] < L
teR teR
or
(3.2) 0 <supz(t) <b, Ly <supp(t)|z'(t)| < Lo.
teR teR

Proof. Let X, P and the operator T" be defined in section 2. By the definition

of T, Lemma P8, we know that T : P — P is completely continuous, z is a

positive solution of BVP(I2) if and only if = is a fixed point the T in P.
Define

€() = supal(t), v € P, Ti(x) = sup p(t)|a’ ()], = € P,
teR teR

D ={zreP:{s)<a, (z)<Li}, Q={xecP:{x)<b n(z)<Ls}.
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It is easy to see that £ and 7 are continuous functionals and ; and Q, are

bounded nonempty open subsets of P and &(x),7(z) < ||z|| = max{&(z),7(x)}.
To apply (E1) in Lemma B0, we do the following two steps:
Step 1. We prove that

(3.3) Ta # Az for all A € [0,1) and = € 99,
Let

Ci={z€P:¢{(x)=a, () < L1}, Di={z€P:&(z)<a, 7(z)= L},

Co={reP:&(x)=b,7(z) < Lo}, Dy={xeP:&(x)<b, 7(z) = La}.

Sub-step 1.1. For x € Oy, we prove that £(Tz) > a
In fact, x € C; implies that

ra S £L'(t) < a, le [76, C]v 7L1 § P(t)x/(t) < L1~

Then we get

F(ta(t),2'(1) = f (t,x@), W) > Mod(t), t € [—c,l.

We consider three cases:
Case 1. p(t)(Tz)'(t) > 0 for all ¢t € R. In this case, we see that Tz is

increasing on R and (T'z)(¢t) > 0 for all t € R. Then

&Ta) > (To)(~0) = [ 5 245 ( [ f(,«,x(r),xf(r))dr) ds

= 27 fra(r) ! (r)dr [Z5 Ss  [T0 [T S f (v (), 2! (r))dr

e p(u)

> [T a(r), 2 (r)dr |5 4
> [, fra(r), ! (r))dr [Z7

Z M()f drf_oo p(u =

Case 2. p(t)(Tz)'(t) < 0 for all ¢t € R. In this case, we see that Tz is
decreasing on R and (T'z)(t) > 0 for all t € R. Then

&(Tz) > (Tx)(c) > f:roo 1 fjoo fryz(r),2'(r))drds

p(s)

= [C o Flrw(r), 2 (r))ds [7°° s 4 [T [T A (e a(r), 2/ (1)) dr

> [, flrw(r), 2! (r)ds [ o

> My [, é(r)dr [7° A > a.
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Case 3. there exists 79 € R such that p(7)(Tz) (19) = 0. From (Tz)(t) >
0, we have

— [ (@), 2! (r))dr, t > 7o,
p(t)(Tx) (1) =

70 f(r,m(r), 2 (r))dr, t < 7.

r), @ (r))drds, t > 7,
(To)(t)> ¢
[ oo 55 J2° FOrw(r), 2! (r))drds, ¢ < o

t +o0  du
fq—o f(ﬁl’( ( ))dT pw)’ t > 7o,

>
[ f(ra(e)a (r)dr [© s ¢ < .
If 79 > 0, then
= 0 —c —c w
g(TCE) > ffc f(r,a:(r),x’(r))de oo p(u) 2 MO f ¢ f [e'S) pc(lu) 2 a.
If 79 <0, then

E(Tw) > ¢ flre(r).a(n)dr [T B> My [7 g(r)dr [F du > g,

Sub-step 1.2. For x € Dy, we prove that 7(Tx) > L.
In fact, x € D; implies that

0<a(t) <a, =L < p(t)z'(t) < Ly, t € R.
Then we get

p(t)x'(t)
p(t)

F(ta(t),2 (1) = f (t,wm, ) > Wob(t).t € R.

We consider three cases:
Case 1. p(t)(Tz)'(t) > 0 for all ¢ € R. Then

p(t)(Tz)'(t) = lim p(t)(Tz) (t) + j;+°° f(ryz(r), ' (r))dr.

t—-+o00
So

M(Ta) = sup p(t)|(Ta)'(t)| = sup [[* f(r,a(r), 2’ (r))dr
teR teR

= [12 O a(r), 2 (r)dr > [T 6(r)Wodr > L.

Case 2. p(t)(Tz)'(t) <0 for all ¢ € R. Then

p(O(TaY (1) = T B(p(t)(T) (1) — [* . F(r,x(r), 2/ (r))dr.
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So

n(Tz) = sup p()(Tz)'(t)]

= supep | lim_p(t)(Tx)' (1) = [*, f(r,a(r),a(r))dr

> [13 Fra(r),a! (r)dr

> [T ¢(r)Wodr > L.
Case 3. there exists 79 € R such that p(79)(Tz)'(79) = 0. Then

— [L flra(r), 2 (r))dr, t > 7o,
p(t) (T (t) =
ST f (), 2 (r)dr, t < .

If 79 > 0, then

7(Tx) = sup p(t)|(Tx) ()| > sup [ f(r,x(r), 2’ (r))dr
teR teR

> [ flra(r), o' (r)dr > [0 ¢(r)Wodr > L,
If 79 <0, then

7N(Tx) = sup p(t)|(Tz)' ()| = sup ff(?“,x(r)vx’(r))df

teR teR |,
+oo +o0
> [ f(r,z(r),2'(r))dr > [ ¢(r)Wodr > Ly,
0 0

Now we prove (B33). It is easy to see that
0 CC1UDq, 009 C CyU Ds.

If Tx = Ax for some A € [0,1) and x € 99, then either z € Cy or x € D;.

If x € C1, we get from Sub-step 1.1 that £(Tx) > a. On the other hand, we
have £(Tz) = X(x) < &(z) = a, a contradiction.

If € Dy, from Sub-step 1.2, we have n(T'z) > L. On the other hand, we
have n(Tz) = An(z) < n(x) = L1, a contradiction too.

From above discussion, (83) holds.

Step 2. We prove that

(3.4) Tz # Az for all X € (1,+00) and x € 09s.

For x € Cy, one has 0 < z(t) < b, —Ls < p(t)a’(t) < Lo, t € R. Then we
get

p(t)z' (t)

ft,x(t),2'(t) = f <t’x(t)’ p(t)

) < Eog(t).t € R.
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Then, we have

&(Tz) = fggff;o G(t,5)f(s,x(s),2'(s))ds

oo _du oo U oo LU 2
< TS i S gt S ). e () ds <,

For = € D5, we have

7(Tz) = sugp(t)|(Tx)’(t)| < LA+ k2K 72 %} [ Bog(s)ds < Lo.
te

In fact, if Tz = Az for some A € (1,400) and z € 09, then either z € Cs
or x € Ds.

If x € Cy, we get from above discussion that £(T'z) < b. On the other hand,
we have £(T'z) = X(x) > &(z) = b, a contradiction.

If x € D, from above discussion, we have n(T'z) < Ls. On the other hand,
we have n(Tx) = A(x) > n(x) = Lq, a contradiction too.

From above discussion, (84) holds.

It follows from (B3), (B4) and (E1) in Lemma P71 that T has at least one
fixed point x € Q5 \ ;. So BVP(I2) has at least one positive solution 2 such
that x € Qg \ Q1 and that z satisfies (83) or (82). The proof of Theorem B
is complete. O

To simplify notation, for nonnegative function ¢ € L*(R) and nonnegative
constants L1, Ly and a, b, denote

M, = aa
+ + + +
[143k [F20 dusqor 420 dus g [+ Au)?] 4 g(s)ds”
_ AL;
Wy = [Atktkl [T dus] [T Bog(s)ds’
FE{ = min Ly — - Lo = Lo —
! T b(rdr [=2 2 [ g(rydr [F< 250 [0 "g(rydr g ¢(r>dr

Theorem 3.2. Suppose that (a)-(c) hold and there exists a nonnegative func-
tion ¢ € LY(R) and Ly > Ly >0 and a > b > 0 such that

(vt ) < Mi6(0), t € el [uaal,v € Ly, Li
f (tugt5) < Wao(0). t € R D)o € [~Ln. Ll

F (b ) = B1g(t), t € Ryue [0,6)v € [~ Lz, La].

If By > max{My, W1}, then BVP(IZ2) has at least one positive solution x
satisfying

(3.5) b<supxz(t) <a, 0<supp(t)z'(t)| < Ly
teR teR
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or

(3.6) 0 <supz(t) <a, Ly <supp(t)|2’(t)| < L.
teR teR

Proof. Let X, P and the nonlinear operator T be defined in Section 2. The
proof is similar to the proof of Theorem B by using (E2) in Lemma 270 and
is omitted. O

4. Non-existence of positive solutions

Now we establish non-existence results on positive solutions of BVP ().

Theorem 4.1. Let Q = R x [0,+00) x R. Suppose that (a)-(c) hold and there
exists a function ¢ € L*(R) such that

(b 5t
4.1 sup  —_ar =t < 1.
( ) (t,u,v)EN #(t)
If
(4.2) [A +hkl [T pfgg)] T p(s)ds < 1,

then BVP(I2) does not admit positive solutions.
Proof. Let X, P and T be defined in Section 2. From (E), we have
f (b 45) < 60l (tu,0) € Rx [0, +50) x R.
Assume that z is a positive fixed point of 7. We have
It 2(),2'(1) < o(t)p(t)a’(t) < ¢(t) sup p(t)]2" ()], ¢ € R.
€
It follows from (E=2) that

sup p(D)]a’ (1)] < & [A+k+ kit [13 2] [ g(s)ds sup p(t)]a’ (1)
teR teR

< sup p(t)[2"()]
teR

which is a contradiction. The proof is complete. O

Theorem 4.2. Let Q@ = R x [0, +00) x R. Suppose that (a)-(c) hold and there
exists a function ¢ € L'(R) and a constant ¢ > 0 such that

. F(tw 5t )
(43) W PO TI
If
. 0 —c +too du
(4.4) 44 min {f_c o(r)dr | g u) fo f p%;)} >1,

then BVP(ICA) does not admit positive solutions.
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Proof. Let X, P and T be defined in Section 2. From (B=3), we have
f (t, u, m) > 6(tyu, (t,u,v) € R x [0,+00) x R.

Suppose that z is a positive solution of BVP(I2). Then z(t) = (Tx)(t) for all
t € R. We have

J (ta(t),2/(1) > (D)(t) > pd(t) sup 2(1)], ¢ € R.

teR

We consider three cases:
Case 1. p(¢)a'(t) > 0 for all t € R. So

sup |z(t)| > z(—c) = __o"o p(ls) (fs+oo f(r,x(r),x/(r))dr> ds

teR
= [ )@ (r)dr [T s [T [T s (), & (r))dr
> [ f (), (r)dr [ S
> [ flra(r), o' (r)dr [Z2 50

> psup |a(t W o 7 > sup (1))

which is a contradiction.
Case 2. p(t)2'(t) <0 for all t € R. Then

sup a(1)| = (Tz)(e) = [ o5 [° f(roa(r),a'(r))drds
teR

= [ Fra(r), @ (r))ds [T s [T [T b f(r a(r), @/ (r))dr
> [° Fra(r), 2 (r)ds [

> usupla(t)] JZ, #(r) dr [ A > sup [z(t)],

which is a contradiction.

Case 3. there exists 79 € R such that p(79)(Tz)' (79) = 0. From (T'z)(t) >
0, we have

— [ fra(r), /(1) dr, t >,
p(t)a!(t) =
[T flry2(r), 2/ (r))dr, t < 7.
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t p( ) f f T £ZZ ( ))d?”dS, t> 70,
x(t) >

fioo p(ls) fsTO f(r7:L‘(’r)ax/(""))d'f"dS7 t S 70

Jiy flra(e), 2/ (r)dr [[7%° st >

>
T F (), (r)dr [ s <

If 79 > 0, then

f;lgIﬂc 0> 2, f(ra(r mdr 23 5
0
> psup |z(t)| [Z o(r)dr [~ p(u > SUP|$< ),
teR

which is a contradiction.

If 79 <0, then

supla(t)] > [y f(r,a(r), 2/ (r)dr [ L
teR

f+°° du

P(w) > bup|$( )‘

> psup |z(t)] [ ¢(r)dr
teR

which is a contradiction.

From above discussion, we know that BVP(IZ2) has no positive solution.

The proof is completed. O
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