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stability of a bi-reciprocal functional equation in quasi-β-normed spaces.
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1. Introduction

The issue of stability of functional equations has been a very popular subject
of investigations for the last 3 decades. In almost all areas of mathematical
analysis, we can raise the following fundamental question: When is it true that
a mathematical object satisfying a certain property approximately must be
close to an object satisfying the property exactly? If we turn our attention to
the case of functional equations, we can particularly ask the question when the
solutions of an equation differing slightly from a given one must be close to the
solution of the given equation.

A stimulating and famous talk presented by S.M. Ulam [45] in 1940, mo-
tivated the study of stability problems for various functional equations. He
gave wide range of talk before a Mathematical Colloquium at the University
of Wisconsin in which he presented a list of unsolved problems. The stability
problem of functional equations originates from such a fundamental question.
In connection with the above question, S. M. Ulam raised a question concerning
the stability of homomorphisms as follows:

“Let G1 be a group and let G2 be a metric group with the metric d(·, ·).
Given ϵ > 0, does there exist a δ > 0 such that if a function f : G1 → G2

satisfies the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there is a
homomorphism a : G1 → G2 with d(f(x), a(x)) < ϵ for all x ∈ G1?”

If the answer is affirmative, we say that the functional equation for ho-
momorphism is stable. In 1941, D.H. Hyers [6] was the first mathematician to
present the result concerning the stability of functional equations. He brilliantly
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answered the question of Ulam for the cases where G1 and G2 are assumed to
be Banach spaces. He considered that if f : G1 → G2 satisfying the inequality
∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ, for all x, y ∈ G1, then the proved that the limit

a(x) = lim
n→∞

f(2nx)
2n exists for all x ∈ G1 and that a : G1 → G2 is the unique

additive mapping satisfying ∥f(x)− a(x)∥ ≤ ϵ.
Using Hyers’ result, the additive functional equation f(x + y) = f(x) +

f(y) is said to have Hyers-Ulam stability on (G1, G2). After Hyers gave an
affirmative answer to Ulam’s question, a large number of papers have been
published in connection with various generalizations of Ulam’s problem and
Hyers’ theorem.

In 1978, Th.M. Rassias [22] provided a generalized version of Hyers’ result by
allowing the Cauchy difference to be unbounded. The paper of Th.M. Rassias
has provided a lot of influence in the development of the stability of functional
equations, and this new concept is known as generalized Hyers-Ulam-Rassias
stability or Hyers-Ulam-Rassias stability. Since then, the stability problems
have been widely studied and extensively developed by many authors for a
number of functional equations. For the past 3 decades, the topic of the gener-
alized Hyers-Ulam stability of functional equations was taken up by a number
of mathematicians, and the study of this area has grown to be one of central
subjects in mathematical analysis.

During 1982-1989, J.M. Rassias ([17]-[19]) gave a further generalization of
the result of D.H. Hyers and proved a theorem using weaker conditions con-
trolled by a product of different powers of norms. This type of stability involv-
ing a product of powers of norms is called Ulam-Gavruta-Rassias Stability by
B. Bouikhalene, E. Elquorachi [1], P. Nakmahachalasint ([12], [13]), C. Park,
A. Najati [14], A. Pietrzyk [16] and A. Sibaha et.al. [44].

A generalized and modified form of the theorem evolved by Th.M. Rassias
was advocated by P. Gavruta [5] who replaced the unbounded Cauchy difference
by introducing into study a general control function within the viable approach
designed by Th.M. Rassias. This type of stability is called Generalized Hyers-
Ulam Stability.

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results
concerning this problem (see [2], [3], [4], [7], [9], [10], [20], [21], [46]).

In 2008, J.M. Rassias et al. [23] discussed the stability of quadratic func-
tional equation

f(mx+ y) + f(mx− y) = 2f(x+ y) + 2f(x− y) + 2
(
m2 − 2

)
f(x)− 2f(y)

for any arbitrary but fixed real constant m with m ̸= 0; m ̸= ±1; m ̸= ±
√
2

using mixed product-sum of powers of norms. This type of stability is called
J.M. Rassias stability involving mixed product-sum of powers of norms by
K. Ravi et al. ([23], [24], [29], [30]).

Several mathematicians have remarked interesting applications of the Hyers-
Ulam-Rassias Stability theory to various mathematical problems. Stability the-
ory is applied in the fixed point theory to find the expression of the asymptotic
derivative of a nonlinear operator.
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S.M. Jung [8] investigated the Hyers-Ulam Stability for Jensen’s equation
on a restricted domain and he applied the result to the study of an interesting
asymptotic property of additive mappings.

The stability properties of different functional equations can have applica-
tions to unrelated fields. For instance, Zhou [47] used a stability property of
the functional equation f(x + y) + f(x − y) = 2f(x) to prove a conjecture
of Z. Ditzian about the relationship between the smoothness of a mapping
and the degree of its approximation by the associated Bernstein polynomials.
These stability results can be applied in stochastic analysis [11], financial and
actuarial mathematics, as well as in psychology and sociology.

W.G. Park and J.H. Bae [15] obtained the general solution and the stability
of the functional equation

f(x+ y + z, u+ v + w) + f(x+ y − z, u+ v + w)

+ 2f(x, u,−w) + 2f(y, v,−w)

= f(x+ y, u+ w) + f(x+ y, v + w) + f(x+ z, u+ w)

+ f(x− z, u+ v + w) + f(y + z, v + w) + f(y − z, u+ v − w).(1.1)

The function f(x, y) = x3+ax+b−y2 having level curves as elliptic curves
is a solution of the above functional equation (1.1). The mapping f(x, y) =
x3+ax+b−y2 is useful in studying cryptography and their applications. In the
same paper, they have presented an application of the stability of the equation
(1.1) by showing the canonical height function of an elliptic curve over Q is a
solution of the equation (1.1).

In the year 2010, K. Ravi and B.V. Senthil Kumar [25] investigated the
generalized Hyers-Ulam stability for the reciprocal functional equation

(1.2) g(x+ y) =
g(x)g(y)

g(x) + g(y)

where g : X → R is a mapping with X as the space of non-zero real numbers.
The reciprocal function g(x) = c

x is a solution of the functional equation (1.2).
The functional equation (1.2) holds good for the “Reciprocal formula” of any
electric circuit with two resistors connected in parallel.

Recently K. Ravi and B.V. Senthil Kumar [43] obtained the generalized
Hyers-Ulam stability of the system of bi-reciprocal functional equations

r(x+ u, y) =
r(x, y)r(u, y)

r(x, y) + r(u, y)
,

r(x, y + v) =
r(x, y)r(x, v)

r(x, y) + r(x, v)

in Fréchet spaces.

The results regarding stability results of various forms of reciprocal type
functional equations can be found in ([26]-[42]).
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In this paper, we investigate the generalized Hyers-Ulam stability of a bi-
reciprocal functional equation of the type

(1.3) r(x+ u, y + v) =
r(x, y)r(u, v)

r(x, y) + r(x, v) + r(u, y) + r(u, v)

in quasi-β-normed spaces.
Throughout this paper, let X be a quasi-β-normed space and let Y be a

quasi-β-Banach space with a quasi-β-norm ∥·∥Y . For a given mapping r : X →
Y , let us define the difference operator Dr : X ×X ×X ×X → Y by

Dr(x, u, y, v) = r(x+ u, y + v)− r(x, y)r(u, v)

r(x, y) + r(x, v) + r(u, y) + r(u, v)

for all x, u, y, v ∈ X.

2. Preliminaries

In this section, we present some preliminaries concerning quasi-β-normed
spaces. Let β be a fixed real number with 0 < β ≤ 1 and let K denote either
R or C.

Definition 2.1. Let X be a linear space over K. A quasi-β-norm ∥·∥ is a
real-valued function on X satisfying the following conditions:

(i) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0.

(ii) ∥λx∥ = |λ|β · ∥x∥ for all λ ∈ K and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ∥x+ y∥ ≤ K (∥x∥+ ∥y∥) for all
x, y ∈ X.

The pair (X, ∥·∥) is called quasi-β-normed space if ∥·∥ is a quasi-β-norm on
X. The smallest possible K is called the modulus of concavity of ∥·∥.

Definition 2.2. A quasi-β-Banach space is a complete quasi-β-normed space.

Definition 2.3. A quasi-β-norm ∥·∥ is called a (β, p)-norm (0 < p < 1) if

∥x+ y∥p ≤ ∥x∥p + ∥y∥p

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach
space.

3. Generalized Hyers-Ulam stability of equation (1.3)

In this section, we investigate the generalized Hyers-Ulam stability of bi-
reciprocal functional equation (1.3) in quasi-β-normed spaces. We also present
the pertinent stability results of Hyers-Ulam stability, Hyers-Ulam-Rassias sta-
bility, Ulam-Gavruta-Rassias stability and J.M. Rassias stability controlled by
the mixed product-sum of powers of norms.
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Theorem 3.1. Let φ : X ×X ×X ×X → [0,∞) be a mapping satisfying

(3.1)

∞∑
i=0

Ki4iβφ
(
2ix, 2iu, 2iy, 2iv

)
< ∞

for all x, u, y, v ∈ X. Let r : X ×X → Y be a mapping such that

(3.2) ∥Dr(x, u, y, v)∥Y ≤ φ(x, u, y, v)

for all x, u, y, v ∈ X. Then there exists a unique bi-reciprocal mapping R :
X ×X → Y satisfying (1.3) and

(3.3) ∥R(x, y)− r(x, y)∥Y ≤ 4βK
∞∑
i=0

(
4βK

)i
φ
(
2ix, 2ix, 2iy, 2iy

)
for all x, y ∈ X. The mapping R(x, y) is defined by

(3.4) R(x, y) = lim
n→∞

4nr (2nx, 2ny)

for all x, y ∈ X.

Proof. Plugging (x, u, y, v) into (x, x, y, y) in (3.2) and multiplying by 4β , we
obtain

(3.5) ∥4r(2x, 2y)− r(x, y)∥Y ≤ 4βφ(x, x, y, y)

for all x, y ∈ X. Replacing (x, y) by (2x, 2y) in (3.5) and multiplying by 4β ,
we get

(3.6)
∥∥42r (22x, 22y)− 4r(2x, 2y)

∥∥
Y
≤ 42βφ(2x, 2x, 2y, 2y)

for all x, y ∈ X. Combining (3.5) with (3.6), and since K ≥ 1,∥∥42r (22x, 22y)− r(x, y)
∥∥
Y

=
∥∥42r (22x, 2y)− 4r(2x, 2y) + 4r(2x, 2y)− r(x, y)

∥∥
Y

≤ K
(∥∥42r (22x, 22y)− 4r(2x, 2y)

∥∥
Y
+ ∥4r(2x, 2y)− r(x, y)∥Y

)
≤ K

(
4βφ(x, x, y, y) + 42βφ(2x, 2x, 2y, 2y)

)
≤ K4βφ(x, x, y, y) +K242βφ(2x, 2x, 2y, 2y)

≤ K4β
1∑

i=0

(
K4β

)i
φ
(
2ix, 2ix, 2iy, 2iy

)
for all x, y ∈ X. Using induction arguments on a positive integer n, we conclude
that

(3.7) ∥4nr (2nx, 2ny)− r(x, y)∥Y ≤ 4βK
n−1∑
i=0

(
K4β

)i
φ
(
2ix, 2ix, 2iy, 2iy

)
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for all x, y ∈ X. From (3.6), we have∥∥4i+1r
(
2i+1x, 2i+1y

)
− 4ir

(
2ix, 2iy

)∥∥
Y
≤ 4iβ4βφ

(
2ix, 2ix, 2iy, 2iy

)
for all x, y ∈ X. For m > l,∥∥4mr (2mx, 2my)− 4lr

(
2lx, 2ly

)∥∥
Y

≤
m−1∑
i=l

∥∥4j+1r
(
2j+1x, 2j+1y

)
− 4jr

(
2jx, 2jy

)∥∥
Y

≤ 4βK
m−1∑
i=l

Ki4iβφ
(
2ix, 2ix, 2iy, 2iy

)
(3.8)

for all x, y ∈ X. The right-hand side of the above inequality (3.8) tends to 0
as m → ∞. Hence {4nr (2nx, 2ny)} is a Cauchy sequence in Y . Therefore, we
may define

R(x, y) = lim
n→∞

4nr (2nx, 2ny)

for all x, y ∈ X. Since K ≥ 1, replacing (x, y) by (2nx, 2ny) and multiplying
by 4β in (3.2), we have

(3.9) 4nβ ∥Dr (2
nx,n u, 2ny, 2nv)∥Y ≤ 4nβKnφ (2nx, 2nu, 2ny, 2nv)

for all x, y ∈ X. By taking n → ∞, the definition of R implies that R satisfies
(1.3) for all x, u, y, v ∈ X. Thus R is a bi-reciprocal mapping. Also, the
inequality (3.7) implies the inequality (3.3). Now, it remains to show the
uniqueness. Assume that there exists R′ : X × X → Y satisfying (1.3) and
(3.3). It is easy to show that for all x, y ∈ X, R′ (2nx, 2ny) = 1

4nR
′(x, y) and

R (2nx, 2ny) = 1
4nR(x, y). Then

∥R′(x, y)−R(x, y)∥Y = ∥4nR′ (2nx, 2ny)− 4nR (2nx, 2ny)∥Y
= 4nβ ∥R′ (2nx, 2ny)−R (2nx, 2ny)∥Y
≤ 4nβK

(
∥R′ (2nx, 2ny)− r (2nx, 2ny)∥Y

+ ∥r (2nx, 2ny)−R (2nx, 2ny)∥Y
)

≤ 2 · 4βK2
∞∑
i=0

(
4βK

)n+i
φ
(
2n+1x, 2n+1x, 2n+1y, 2n+1y

)
≤ 2 ·K24β

∞∑
i=0

(
4βK

)n+i
φ
(
2n+1x, 2n+1x, 2n+1y, 2n+1y

)
for all x, y ∈ X. By letting n → ∞, we immediately have the uniqueness of
R.

Corollary 3.2. Let ϵ > 0 be fixed. If r : X ×X ×X ×X → Y satisfies

∥Dr(x, u, y, v)∥Y ≤ ϵ



Ulam stability of a bi-reciprocal functional equation in ... 7

for all x, u, y, v ∈ X, then there exists a unique bi-reciprocal mapping R :
X ×X → Y such that

∥R(x, y)− r(x, y)∥Y ≤ 4K

1− 4βK
ϵ

for all x, y ∈ X.

Proof. Letting φ(x, u, y, v) = ϵ, for all x, u, y, v ∈ X in Theorem 3.1, we obtain

∥R(x, y)− r(x, y)∥Y ≤ 4βK
∞∑
i=0

(
4βK

)i
ϵ

≤ 4βKϵ
(
1− 4βK

)−1

≤ 4K

1− 4βK
ϵ

for all x, y ∈ X.

Corollary 3.3. Let c1 ≥ 0 be fixed and p < −2. If a mapping r : X × X ×
X ×X → Y satisfies the inequality

∥Dr(x, u, y, v)∥Y ≤ c1 (∥x∥p + ∥u∥p + ∥y∥p + ∥v∥p)

for all x, u, y, v ∈ X, then there exists a unique bi-reciprocal mapping R :
X ×X → Y satisfying (1.3) and

∥R(x, y)− r(x, y)∥Y ≤
(

2c1K4β

1− 2(2+p)βK

)
(∥x∥p + ∥y∥p)

for all x, y ∈ X.

Proof. Considering φ(x, u, y, v) = c1 (∥x∥p + ∥u∥p + ∥y∥p + ∥v∥p), for all
x, u, y, v ∈ X in Theorem 3.1, we get

∥R(x, y)− r(x, y)∥Y ≤ 4βK
∞∑
i=0

(
4βK

)i
2c12

βpi (∥x∥p + ∥y∥p)

≤ 2c1K4β
∞∑
i=0

Ki2(2+p)βi (∥x∥p + ∥y∥p)

≤ 2c1K4β
∞∑
i=0

(
2(2+p)βK

)i

(∥x∥p + ∥y∥p)

≤ 2c1K4β
(
1−K2(2+p)β

)−1

(∥x∥p + ∥y∥p)

≤
(

2c1K4β

1− 2(2+p)βK

)
(∥x∥p + ∥y∥p)

for all x, y ∈ X.



8 B.V. Senthil Kumar, J.M. Rassias, K. Ravi

Corollary 3.4. Let c2 ≥ 0 be fixed and p < −1
2 . If a mapping r : X × X ×

X ×X → Y satisfies the inequality

∥Dr(x, u, y, v)∥Y ≤ c2 ∥x∥p ∥u∥p ∥y∥p ∥v∥p

for all x, u, y, v ∈ X, then there exists a unique bi-reciprocal mapping R :
X ×X → Y satisfying (1.3) and

∥R(x, y)− r(x, y)∥Y ≤
(

c24
βK

1− 2(2+4p)βK

)(
∥x∥2p + ∥y∥2p

)
for all x, y ∈ X.

Proof. Choosing φ(x, u, y, v) = c2 ∥x∥p ∥u∥p ∥y∥p ∥v∥p, for all x, u, y, v ∈ X in
Theorem 3.1, we obtain

∥R(x, y)− r(x, y)∥Y ≤ 4βK

∞∑
i=0

(
4βK

)i
c22

4pβi ∥x∥2p ∥y∥2p

≤ c24
βK

∞∑
i=0

2(2β+4pβ)iKi ∥x∥2p ∥y∥2p

≤ c24
βK

∞∑
i=0

(
2(2+4p)β

)i

∥x∥2p ∥y∥2p

≤
(

c24
βK

1− 2(2+4p)βK

)(
∥x∥2p + ∥y∥2p

)
for all x, y ∈ X.

Corollary 3.5. Let c3 ≥ 0 be fixed and p < −1
2 . If a mapping r : X × X ×

X ×X → Y satisfies the inequality

∥Dr(x, u, y, v)∥Y≤c3
(
∥x∥p ∥u∥p ∥y∥p ∥v∥p+

(
∥x∥4p + ∥u∥4p + ∥y∥4p + ∥v∥4p

))
for all x, u, y, v ∈ X, then there exists a unique bi-reciprocal mapping R :
X ×X → Y satisfying (1.3) and

∥R(x, y)− r(x, y)∥Y ≤
(

c34
βK

1− 2(2+4p)βK

)(
∥x∥2p ∥y∥2p + 2

(
∥x∥4p + ∥y∥4p

))
for all x, y ∈ X.

Proof. Taking

φ(x, u, y, v) = c3

(
∥x∥p ∥u∥p ∥y∥p ∥v∥p +

(
∥x∥4p + ∥u∥4p + ∥y∥4p + ∥v∥4p

))
,
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for all x, u, y, v ∈ X in Theorem 3.1, we attain

∥R(x, y)− r(x, y)∥Y

≤ 4βK
∞∑
i=0

(
4βK

)i
c32

4pβi
(
∥x∥2p ∥y∥2p + 2

(
∥x∥4p + ∥y∥4p

))
≤ c34

βK
∞∑
i=0

(
2(2+4p)βK

)i (
∥x∥2p ∥y∥2p + 2

(
∥x∥4p + ∥y∥4p

))
≤

(
c34

βK

1− 2(2+4p)βK

)(
∥x∥2p ∥y∥2p + 2

(
∥x∥4p + ∥y∥4p

))
for all x, y ∈ X.
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