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VALUE DISTRIBUTION AND UNIQUENESS OF
q-SHIFT DIFFERENCE POLYNOMIALS1
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Abstract

In this paper, we deal with the distribution of zeros of q-shift differ-
ence polynomials of transcendental entire functions of zero order. At the
same time we also investigate the uniqueness problems when two differ-
ence products of entire functions share one value with finite weight. The
results of the paper improve and generalize some recent results due to
Xu, Liu and Cao [Math. Commun. 20 (2015), 97-112].
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1 Introduction, Definitions and Results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations of the
Nevanlinna’s theory of meromorphic functions as explained in [7], [10] and
[21]. For a nonconstant meromorphic function f , we denote by T (r, f) the
Nevanlinna characteristic function of f and by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)} for all r outside a possible exceptional set of the finite
logarithmic measure, S(f) denotes the family of all meromorphic functions α
such that T (r, α) = S(r, f), where r → ∞ outside a possible exceptional set of
the finite logarithmic measure. For convenience, we assume that S(f) includes
all constant functions and Ŝ = S(f) ∪ {∞}.

Let f and g be two nonconstant meromorphic functions and a be a value
in the extended complex plane. If the zeros of f − a and g − a coincide in
locations and multiplicity, then we say that f and g share the value a CM
(counting multiplicities). On the other hand, if the zeros of f − a and g − a
coincide in their locations only, then we say that f and g share the value a
IM (ignoring multiplicities). For a positive integer p, Np(r, a; f) denotes the
counting function of the zeros of f−a, where an m-fold zero is counted m times
if m ≤ p and p times if m > p. The difference operators for a meromorphic
function f are defined as

△cf(z) = f(z + c)− f(z), (c ̸= 0),
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△qf(z) = f(qz)− f(z), (q ̸= 0, 1).

Many research works on entire and meromorphic functions whose differen-
tial polynomials share certain value or fixed point have been done by many
mathematicians worldwide (see [4], [12], [16], [17], [20]). Recently, there has
been an increasing interest in studying difference equations, the difference prod-
uct and the q-difference in the complex plane C, a number of papers (see [3],
[5], [6], [11], [13], [14]) have focused on the uniqueness of difference analogue
of Nevanlinna theory. The difference logarithmic derivative lemma, given by
R.G. Halburd and R.J. Korhonen [5] in 2006 plays an important role in con-
sidering the difference analogues of Nevanlinna theory. Afterwards, Barnett,
Halburd, Korhonen and Morgan [2] also established an analogue of the loga-
rithmic derivative lemma on q-difference operators.

In 2007, Laine and Yang [11] studied zero distributions of difference poly-
nomials of entire functions and obtained the following result.

Theorem A. Let f be a transcendental entire function of finite order and η
be a nonzero complex constant. Then for n ≥ 2, fn(z)f(z + η) assumes every
nonzero value a ∈ C infinitely often.

In 2010, Qi, Yang and Liu [15] proved the following uniqueness result cor-
responding to Theorem A.

Theorem B. Let f and g be two transcendental entire functions of finite order,
and η be a nonzero complex constant, and let n ≥ 6 be an integer. If fn(z)f(z+
η) and gn(z)g(z + η) share 1 CM, then either fg = t1 or f = t2g for some
constants t1 and t2 satisfying tn+1

1 = tn+1
2 = 1.

Let P (z) = anz
n+an−1z

n−1+ ...+a0 be a nonzero polynomial, where an(̸=
0), an−1, ... , a0 are complex constants. We denote Γ1, Γ2 by Γ1 = m1 +m2,
Γ2 = m1 + 2m2 respectively, where m1 is the number of simple zeros of P (z)
and m2 is the number of multiple zeros of P (z). Throughout the paper we
denote d = gcd(λ0, λ1, ..., λn), where λi = n+ 1 if ai = 0, λi = i+ 1 if ai ̸= 0.

In 2011, Xudan and Lin [19] considered the zeros of one certain type of
difference polynomial and obtained the following result.

Theorem C. Let f be a transcendental entire function of finite order and η be
a fixed nonzero complex constant. Then for n > Γ1, P (f(z))f(z+η)−α(z) = 0
has infinitely many solutions, where α(z) ∈ S(f) \ {0}.

In that paper the authors also established the following uniqueness result
which corresponded to Theorem C.

Theorem D. Let f and g be two transcendental entire functions of finite order,
η be a nonzero complex constant, and n > 2Γ2+1 be an integer. If P (f)f(z+η)
and P (g)g(z + η) share 1 CM, then one of the following results holds:
(i) f = tg, where td = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) =
P (w1)w1(z + η)− P (w2)w2(z + η);
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(iii) f = eα, g = eβ, where α and β are two polynomials and α+ β = c, c is a
constant satisfying a2ne

(n+1)c = 1.

In 2010, Zhang and Korhonen [22] studied the value distribution of q-
difference polynomials of meromorphic functions and obtained the following
result.

Theorem E. Let f be a transcendental meromorphic (resp. entire) function
of zero order and q nonzero complex constant. Then for n ≥ 6 (resp. n ≥ 2),
fn(z)f(qz) assume every nonzero value a ∈ C infinitely often.

In the same paper the authors also proved the following uniqueness result
for the q- difference of entire functions corresponding to Theorem E.

Theorem F. Let f and g be two transcendental entire functions of zero order.
Suppose that q is a nonzero complex constant and n ≥ 6 is an integer. If
fn(z)(f(z)− 1)f(qz) and gn(z)(g(z)− 1)g(qz) share 1 CM, then f ≡ g.

Recently Xu, Liu and Cao [18] investigated value distributions for a q-shift
of meromorphic functions and obtained the following result.

Theorem G. Let f be a zero-order transcendental meromorphic (resp. entire)
function, q ∈ C \ {0}, η ∈ C. Then for n > Γ1 +4 (resp. n > Γ1), P (f)f(qz+
η) = α(z) has infinitely many solutions, where α(z) ∈ S(f) \ {0}.

In that paper the authors also investigated the uniqueness problems of q-
shift of entire functions and obtained the following result.

Theorem H. Let f and g be two transcendental entire functions of zero order,
and let q ∈ C \ {0}, η ∈ C. If P (f)f(qz + η) and P (g)g(qz + η) share 1 CM
and n > 2Γ2 + 1 be an integer, then one of the following results holds:
(i) f ≡ tg for a constant t such that td = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) =
P (w1)w1(qz + η)− P (w2)w2(qz + η);
(iii) fg ≡ µ, where µ is a complex constant satisfying a2nµ

n+1 ≡ 1.

To state the next result of Xu, Liu and Cao [18] we need the following
definition of weighted sharing.

Definition 1.1. ([8, 9]) Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and k+1 times if m > k. If
Ek(a; f) = Ek(a; g), then we say that f , g share the value a with weight k.

Theorem I. Let f and g be two transcendental entire functions of zero order,
and let q ∈ C \ {0}, η ∈ C. If El(1;P (f)f(qz + η)) = El(1;P (g)g(qz + η)) and
l, m, n are integers satisfying one of the following conditions :
(i) l ≥ 3, n > 2Γ2 + 1;
(ii) l = 2, n > Γ1 + 2Γ2 + 2− λ;
(iii) l = 1, n > 2Γ1 + 2Γ2 + 3− 2λ;
(iv) l = 0, n > 3Γ1 + 2Γ2 + 4− 3λ.
Then the conclusions of Theorem H hold, where λ = min{Θ(0, f),Θ(0, g)}.
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Regarding Theorems G, H and I, it is natural to ask the following questions
which are the motive of the present paper.

Question 1.2. What can we prove about the zeros of (P (f)f(qz+η))(k)−α(z),
where α(z) ∈ S(f) \ {0} and k is any positive integer?

Question 1.3. What would happen if one replaced the difference polynomials
P (f)f(qz + η) by (P (f)f(qz + η))(k) in Theorems H and I, where k is any
positive integer?

In this paper, our aim is to find out the possible answer of the above ques-
tions. We prove the following results: the first one extends Theorem G and
another one improves Theorems H and I. The following are the main results of
the paper.

Theorem 1.4. Let f be a transcendental entire function of zero order and
α(z) ∈ S(f) \ {0}. Suppose that η is a nonzero complex constant, n and k are
positive integers. Then for n > Γ1 + km2, (P (f)f(qz + η))(k) − α(z) = 0 has
infinitely many solutions.

The following example shows that the zero order growth restriction in The-
orem 1.4 can not be extended to finite order.

Example 1.5. Let P (z) = zn, f(z) = ez, q = −n and α(z) = −aeη where
a is a nonzero constant. Then for any integer k, (P (f(z))f(qz + η))(k) − α(z)
has no zeros.

Theorem 1.6. Let f and g be two transcendental entire functions of zero order,
and let q ∈ C \ {0}, η ∈ C. If El(1; (P (f)f(qz + η))(k)) = El(1; (P (g)g(qz +
η))(k)) and l, m, n are integers satisfying one of the following conditions :
(i) l ≥ 2, n > 2Γ2 + 2km2 + 1;
(ii) l = 1, n > 1

2 (Γ1 + 4Γ2 + 5km2 + 3);
(iii) l = 0, n > 3Γ1 + 2Γ2 + 5km2 + 4.
Then one of the following results holds:
(i) f ≡ tg for a constant t such that td = 1;
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) =
P (w1)w1(qz + η)− P (w2)w2(qz + η);
(iii) fg ≡ µ, where µ is a complex constant satisfying a2nµ

n+1 ≡ 1.

The following example exhibits that Theorem 1.6 improves Theorems H
and I respectively by relaxing the nature of sharing and by reducing the lower
bound of n.

Example 1.7. Let P (z) = (z − 1)4(z + 1)4z7, f(z) = sin z, g(z) =
cos z, q = 1, k = 0, and η = 2π. It immediately follows that n > 2Γ2 + 1
and P (f)f(qz+η) = P (g)g(qz+η). Therefore P (f)f(qz+η) and P (g)g(qz+η)
share 1 CM and hence they share (1, 2).

Here f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) =
P (w1)w1(qz + η)− P (w2)w2(qz + η).
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2 Lemmas

In this section, we state some lemmas which will be needed in the sequel. We
denote by H the following function:

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are nonconstant meromorphic functions defined in the complex
plane C.

Lemma 2.1. ([21]) Let f be a nonconstant meromorphic function and P (f) =
anf

n+an−1f
n−1+ ...+a0, where an( ̸= 0), an−1, ... , a0 are complex constants.

Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2. ([23]) Let f be a nonconstant meromorphic function, and p, k
be two positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f),(2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(2.2)

Lemma 2.3. ([9]) Let f and g be two nonconstant meromorphic functions. If
E2(1; f) = E2(1; g) then one of the following cases holds:
(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f = g,
(iii) fg = 1,
where T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.4. ([1]) Let F and G be two nonconstant meromorphic functions.
If E1(1;F ) = E1(1;G) and H ̸≡ 0 then
T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+ 1

2N(r, 0;F )+
1
2N(r,∞;F ) + S(r, F ) + S(r,G);
the same inequality holds for T (r,G).

Lemma 2.5. ([1]) Let F and G be two nonconstant meromorphic functions
sharing 1 IM and H ̸≡ 0. Then
T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+ 2N(r, 0;F )+
N(r, 0;G) + 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G);
the same inequality holds for T (r,G).

Lemma 2.6. ([18]) Let f be a transcendental meromorphic function of zero
order and q, η two nonzero complex constants. Then

T (r, f(qz + η)) = T (r, f(z)) + S(r, f),
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N(r,∞; f(qz + η)) ≤ N(r,∞; f(z)) + S(r, f),

N(r, 0; f(qz + η)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(qz + η)) ≤ N(r,∞; f(z)) + S(r, f),

N(r, 0; f(qz + η)) ≤ N(r, 0; f(z)) + S(r, f).

Lemma 2.7. ([18]) Let f be a transcendental meromorphic function of zero
order, and q(̸= 0), η complex constants. Then

(n− 1)T (r, f) + S(r, f) ≤ T (r, P (f)f(qz + η)) ≤ (n+ 1)T (r, f) + S(r, f).

In addition, if f is a transcendental entire function of zero order, then

T (r, P (f)f(qz + η)) = T (r, P (f)f(z)) + S(r, f) = (n+ 1)T (r, f) + S(r, f).

Lemma 2.8. Let f and g be two entire functions, n, k be two positive integers,
q(̸= 0), η complex constants and let

F = (P (f)f(qz + η))(k), G = (P (g)g(qz + η))(k).

If there exists two nonzero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G)
and N(r, c2;G) = N(r, 0;F ), then n ≤ 2Γ1 + 2km2 + 1.

Proof. We put F1 = P (f)f(qz + η) and G1 = P (g)g(qz + η). By the second
main theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ).(2.3)

Using (2.1), (2.2), (2.3), Lemmas 2.1, 2.6 and 2.7 we get

(n+ 1)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ Nk+1(r, 0;P (f)) +Nk+1(r, 0;P (g)) +N(r, 0; f(qz + η))

+N(r, 0; g(qz + η)) + S(r, f) + S(r, g)

≤ (m1 +m2 + km2 + 1)(T (r, f) + T (r, g))

+S(r, f) + S(r, g).(2.4)

Similarly,

(n+ 1)T (r, g) ≤ (m1 +m2 + km2 + 1)(T (r, f) + T (r, g))

+S(r, f) + S(r, g).(2.5)

In view of (2.4) and (2.5) we have

(n− 2m1 − 2m2 − 2km2 − 1)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which gives n ≤ 2Γ1 + 2km2 + 1. This proves the lemma.
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3 Proof of Theorems

Proof of Theorem 1.4. Let F1 = P (f)f(qz + η). Then F1 is a transcendental

entire function. In contrary, we may assume that F
(k)
1 − α(z) has only finitely

many zeros. Then

N(r, α;F
(k)
1 ) = O{log r} = S(r, f).(3.1)

Using (2.1), (3.1) and Nevanlinna’s theorem for three small functions we deduce

T (r, F
(k)
1 ) ≤ N(r, 0;F

(k)
1 ) +N(r, α;F

(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1(r, 0;F1) + S(r, f).(3.2)

By Lemma 2.7 we obtain from (3.2)

(n+ 1)T (r, f) ≤ Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;P (f)) +N(r, 0; f(qz + η)) + S(r, f)

≤ (m1 +m2 + km2 + 1)T (r, f) + S(r, f).

This gives

(n−m1 −m2 − km2)T (r, f) ≤ S(r, f),

a contradiction to the assumption that n > Γ1+km2. This proves the theorem.

Proof of Theorem 1.6. Let F1 = P (f)f(qz+η), G1 = P (g)g(qz+η), F = F
(k)
1

and G = G
(k)
1 . Then F and G are transcendental entire functions satisfying

El(1;F ) = El(1;G). Using (2.1) and Lemma 2.7 we get

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(k)) + S(r, f)

≤ T (r, (F1)
(k))− T (r, F1) +Nk+2(r, 0;F1) + S(r, f)

= T (r, F )− (n+ 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

From this we get

(n+ 1)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f).(3.3)

Again from (2.2) we have

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(k)) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f).(3.4)

We now discuss the following three cases separately.
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Case 1. Let l ≥ 2. Suppose, if possible, that (i) of Lemma 2.3 holds. Then
using (3.4) we obtain from (3.3)

(n+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (m1 + 2m2 + km2 + 1){T (r, f) + T (r, g)}
+S(r, f) + S(r, g).(3.5)

Similarly,

(n+ 1)T (r, g) ≤ (m1 + 2m2 + km2 + 1){T (r, f) + T (r, g)}
+S(r, f) + S(r, g).(3.6)

Combining (3.5) and (3.6) we obtain

(n− 2m1 − 4m2 − 2km2 − 1){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting the fact that n > 2Γ2 + 2km2 + 1. Therefore, by Lemma 2.3, we
have either FG = 1 or F = G. Let FG = 1. Then

(P (f)f(qz + η))(k)(P (g)g(qz + η))(k) = 1.(3.7)

If possible, we assume that P (z) = 0 has m roots u1, u2, ..., um with multi-
plicities s1, s2, ..., sm. Then we have s1 + s2 + ...+ sm = n. Then

[an(f − u1)
s1(f − u2)

s2 ...(f − um)smf(qz + η)](k)[an(g − u1)
s1

(g − u2)
s2 ...(g − um)smg(qz + η)](k) = 1.(3.8)

Since f and g are entire functions, from (3.8), we see that u1 = u2 = ... = um =
0. In fact, from (3.8), we can get that u1, u2, ... , um are Picard exceptional
values. If m ≥ 2 and ui ̸= 0 (i = 1, 2, ...,m), by Picard’s theorem of the entire
function, we can get that Picard’s exceptional values of f are at least three,
a contradiction. Next we assume that P (z) = 0 has only one root. Then
P (f) = an(f − a)n and P (g) = an(g − a)n, where a is any complex constant.
Then from (3.7) we get

[an(f − a)nf(qz + η)](k)[an(g − a)ng(qz + η)](k) = 1.(3.9)

Since f and g are transcendental entire functions, by Picard’s theorem, we can
get that f − a = 0 and g − a = 0 do not have zeros. Then, we obtain that
f(z) = eα(z)+a and g(z) = eβ(z)+a, α(z), β(z) being nonconstant polynomials.
From (3.9), we also see that f(qz + η) ̸= 0 and g(qz + η) ̸= 0 and therefore
a = 0. Thus f(z) = eα(z), g(z) = eβ(z), P (z) = anz

n and

[ane
nα(z)+α(qz+η)](k)[ane

nβ(z)+β(qz+η)](k) = 1.(3.10)

If k = 0, then from (3.10) we have

a2ne
n(α(z)+β(z))+α(qz+η)+β(qz+η) = 1.
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Then we must have α + β ≡ c, where c is a constant. From this, we can
easily see that f(z) = eα(z), g(z) = µe−α(z) where µ is a constant satisfying
a2nµ

n+1 = 1. If k ≥ 1 then we deduce

[ane
nα(z)+α(qz+η)](k) = ane

nα(z)+α(qz+η)P (α′, α′
η, ..., α

(k), α(k)
η ),

where αη = α(qz + η). Obviously, P (α′, α′
η, ..., α

(k), α
(k)
η ) has infinitely many

zeros, a contradiction with (3.10). Next we assume that F = G. Then

(P (f)f(qz + η))(k) = (P (g)g(qz + η))(k).

Integrating once we obtain

(P (f)f(qz + η))(k−1) = (P (g)g(qz + η))(k−1) + ck−1,

where ck−1 is a constant. If ck−1 ̸= 0, from Lemma 2.8, it follows that n ≤
2Γ1+2(k−1)m2+1, contrary to the fact that n > 2Γ2+2km2+1 and Γ2 ≥ Γ1.
Hence we must have ck−1 = 0. Repeating the process k-times, we deduce that

P (f)f(qz + η) = P (g)g(qz + η).

Then by a similar argument as in Case 2 in the proof of Theorem 11 [18] we
obtain either f = tg for a constant t such that td = 1, d = gcd(λ0, λ1, ..., λn),
or f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) =
P (w1)w1(qz + η)− P (w2)w2(qz + η).

Case 2. Let l = 1 and H ̸≡ 0. Using Lemma 2.4 and (3.4) we obtain from (3.3)

(n+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) +
1

2
Nk+1(r, 0;F1)

+S(r, f) + S(r, g)

≤ 1

2
[3m1 + (3k + 5)m2 + 3]T (r, f) + [m1 + (k + 2)m2 + 1]

T (r, g) + S(r, f) + S(r, g)

≤ 1

2
[5m1 + (5k + 9)m2 + 5]T (r) + S(r),

where T (r) and S(r) are same as in Lemma 2.3. Similarly, we obtain

(n+ 1)T (r, g) ≤ 1

2
[5m1 + (5k + 9)m2 + 5]T (r) + S(r).

From the above two inequalities, we have(
n− 5m1 + (5k + 9)m2 + 3

2

)
T (r) ≤ S(r),
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contradicting the fact that n > 1
2 (Γ1 + 4Γ2 + 5km2 + 3). We now assume that

H = 0. Then (
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B,(3.11)

where A( ̸= 0) and B are constants. From (3.11) it is obvious that F , G share
the value 1 CM and so they share (1, 2). Hence we have n > 2Γ2 + 2km2 + 1.
Now we discuss the following three subcases.

Subcase 1. Let B ̸= 0 and A = B. Then from (3.11) we get

1

F − 1
=

BG

G− 1
.(3.12)

If B = −1, then from (3.12) we obtain FG = 1, from which we get f(z) = eα(z),
g(z) = µe−α(z) where µ is a constant satisfying a2nµ

n+1 = 1, as in Case 1. If
B ̸= −1, from (3.12), we have 1

F = BG
(1+B)G−1 and so N(r, 1

1+B ;G) = N(r, 0;F ).

Now from the second main theorem of Nevanlinna, we get using (2.1) and (2.2)
that

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)

−(n+ 1)T (r, g) + S(r, g).

This gives

(n+ 1)T (r, g) ≤ (m1 + (k + 1)m2 + 1){T (r, f) + T (r, g)}+ S(r, g).

Thus we obtain

(n− 2m1 − 2(k + 1)m2 − 1){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > 2Γ2 + 2km2 + 1.

Subcase 2. Let B ̸= 0 and A ̸= B. Then from (3.11) we obtain

F = (B+1)G−(B−A+1)
BG+(A−B) and therefore N(r, B−A+1

B+1 ;G) = N(r, 0;F ). Proceed-

ing similarly as in Subcase 1, we can get a contradiction.

Subcase 3. Let B = 0 and A ̸= 0. Then from (3.11) we get F = G+A−1
A and

G = AF − (A− 1). If A ̸= 1, we have N(r, A−1
A ;F ) = N(r, 0;G) and N(r, 1−

A;G) = N(r, 0;F ). Then by Lemma 2.8, it follows that n ≤ 2Γ1 +2km2 +1, a
contradiction. Thus A = 1 and then F = G. Now the result follows from the
proof of Case 1.



Value distribution and uniqueness of q-shift difference polynomials 43

Case 3. Let l = 0 and H ̸≡ 0. Using Lemma 2.5 and (3.4) we obtain from (3.3)

(n+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) +Nk+2(r, 0;F1) + 2N(r,∞;F )

+N(r,∞;G) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ [3m1 + (3k + 4)m2 + 3]T (r, f) + [2m1 + (2k + 3)m2 + 2]

T (r, g) + S(r, f) + S(r, g)

≤ [5m1 + (5k + 7)m2 + 5]T (r) + S(r).

Similarly it follows that

(n+ 1)T (r, g) ≤ [5m1 + (5k + 7)m2 + 5]T (r) + S(r).

From the above two inequalities we obtain

(n− 5m1 − (5k + 7)m2 − 4)T (r) ≤ S(r),

contradicting the assumption that n > 3Γ1+2Γ2+5km2+4. Therefore H = 0
and then proceeding in a manner similar to Case 2, the result follows.

This completes the proof of theorem 1.6.
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