ON A TWO-VARIABLES FRACTIONAL PARTIAL DIFFERENTIAL INCLUSION VIA RIEMANN-LIOUVILLE DERIVATIVE

S. Etemad¹ and Sh. Rezapour²³

Abstract. We investigate the existence a solution to a two-variable fractional partial differential inclusion via Riemann-Liouville derivative. Also, we provide an example to illustrate our main result.

AMS Mathematics Subject Classification (2010): 26A33; 34A00; 34A08 Key words and phrases: boundary value problem; endpoint; fixed point; fractional partial derivative; two-variables fractional partial differential inclusion

1. Introduction

There are many published works about fractional partial differential equations by using the notions of delay or time-fractional (see for example, [1], [2], [9] and [10]). It is interesting to work on two variables fractional partial differential equations (see, for example, [3], [4], [6] and [11]).

Let $\theta = (0,0)$ and $\alpha = (\alpha_1, \alpha_2)$ where $0 < \alpha_1, \alpha_2 \le 1$. Also, put $J_a \times J_b = [0,a] \times [0,b]$ where a and b are positive constants. The Riemann-Liouville fractional partial integral of $u \in L^1(J_a \times J_b)$ is defined by

$$(I_{\theta}^{\alpha}u)(x,y) = \frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x \int_0^y (x-s)^{\alpha_1-1} (y-t)^{\alpha_2-1} u(s,t) dt ds$$

whenever the integral exists (see, for example, [14], [15] and [16]). The Riemann-Liouville partial derivative of fractional order α for a function $u \in L^1(J_a \times J_b)$ is defined by

$$(D_{\theta}^{\alpha}u)(x,y) = D_{xy}^{2}(I_{\theta}^{1-\alpha}u)(x,y) = \frac{\partial^{2}}{\partial x \partial y} \int_{0}^{x} \int_{0}^{y} \frac{(x-s)^{-\alpha_{1}}(y-t)^{-\alpha_{2}}}{\Gamma(1-\alpha_{1})\Gamma(1-\alpha_{2})} dt ds$$

(see for more details [14], [15] and [16]). Note that

$$(I_{\theta}^{\alpha}I_{\theta}^{\beta}u)(x,y) = (I_{\theta}^{\alpha+\beta}u)(x,y)$$

whenever $\beta = (\beta_1, \beta_2) > 0$ ([16]).

 $^{^1\}mathrm{Department}$ of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran e-mail: sina.etemad@gmail.com

 $^{^2{\}rm Department}$ of Mathematics, Azərbaijan Shahid Madani University, Tabriz, Iran e-mail: sh.rezapour@azəruniv.edu

³Corresponding author

Let (X,d) be a metric space, $\mathcal{P}(X)$ the class of all nonempty subsets of X, $\mathcal{P}_{cl}(X)$ the class of all closed subsets of X, $\mathcal{P}_{bd}(X)$ the class of all bounded subsets of X, $\mathcal{P}_{cp}(X)$ the class of all compact subsets of X and $\mathcal{P}_{cv}(X)$ the class of all convex subsets of X. A multi-valued map $F: J_a \times J_b \to \mathcal{P}_{cl}(\mathbb{R})$ is measurable whenever the function $(x,y) \mapsto d(w,F(x,y)) = \inf\{\|w-v\| : v \in F(x,y)\}$ is measurable for all $w \in \mathbb{R}$, where $J_a \times J_b = [0,a] \times [0,b]$ ([12]). Also, the Pompeiu-Hausdorff metric $H_d: \mathcal{P}(X) \times \mathcal{P}(X) \to [0,\infty)$ is defined by

$$H_d(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(A,b)\},\$$

where $d(A,b)=\inf_{a\in A}d(a,b)$ ([7]). Then $(\mathcal{P}_{cl,bd}(X),H_d)$ is a metric space and $(\mathcal{P}_{cl}(X),H_d)$ is a generalized metric space ([7]). Recall that a multifunction $F:X\to \mathcal{P}(X)$ is said to be a contraction if there exists $k\in (0,1)$ such that $H_d(F(u),F(v))\leq kd(u,v)$ for all $u,v\in X$ ([13]). An element $u\in X$ is called endpoint of the multifunction $F:X\to \mathcal{P}(X)$ whenever $Fu=\{u\}$ ([8]). We say that the multifunction F has an approximate endpoint property whenever $\inf_{u\in X}\sup_{w\in Fu}d(u,w)=0$ ([8]). A real-valued function f on \mathbb{R} is called upper semi-continuous whenever $\limsup_{n\to\infty}f(\lambda_n)\leq f(\lambda)$ for all sequence $\{\lambda_n\}_{n\geq 1}$ with $\lambda_n\to\lambda$. In this paper, using the main idea of [5], [6] and [17], we investigate the existence of solutions for the two-variables fractional partial differential inclusion

$$(1.1) (D_{\theta}^{\alpha}u)(x,y) \in F(x,y,u(x,y)),$$

with the partial integral boundary value conditions

(1.2)
$$(I_{\theta}^{1-\alpha}u)(x,0) = \lambda_1 \varphi(x), \ (I_{\theta}^{1-\alpha}u)(0,y) = \lambda_2 \gamma(y),$$

where D_{θ}^{α} denotes the Riemann-Liouville fractional partial derivative of order α , $(x,y) \in J_a \times J_b$, $0 < \alpha_i \le 1$, $\lambda_i \in \mathbb{R}^+$ (i=1,2) and $F: J_a \times J_b \times \mathbb{R} \to \mathcal{P}(\mathbb{R})$ is a compact valued multi-valued map. Here, the functions $\varphi: J_a \to \mathbb{R}$ and $\gamma: J_b \to \mathbb{R}$ are absolutely continuous with $\varphi(0) = \gamma(0) = 0$. We need the following endpoint result.

Theorem 1.1. ([8]) Suppose that (X,d) is a complete metric space, ψ : $[0,\infty) \to [0,\infty)$ is an upper semi-continuous function such that $\psi(t) < t$ and $\liminf_{t\to\infty} (t-\psi(t)) > 0$ for all t>0 and $T:X\to CB(X)$ is a multifunction such that $H_d(Tx,Ty) \leq \psi(d(x,y))$ for all $x,y\in X$. Then T has a unique endpoint if and only if T has approximate endpoint property.

2. Main results

Now we are ready to state and prove our main results. First, we give the following key result.

Lemma 2.1. Let $f \in L(J_a \times J_b)$ and $\alpha = (\alpha_1, \alpha_2) \in (0, 1] \times (0, 1]$. Then the continuous function $u_0 \in L(J_a \times J_b)$ is a solution for the fractional partial differential equation

(2.1)
$$D_{\theta}^{\alpha}u(x,y) = f(x,y)$$

with boundary conditions $(I_{\theta}^{1-\alpha}u)(x,0) = \lambda_1\varphi(x)$ and $(I_{\theta}^{1-\alpha}u)(0,y) = \lambda_2\gamma(y)$ if and only if u_0 is a solution for the fractional integral equation

$$(2.2) u(x,y) = \frac{\lambda_2 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{\lambda_1 y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) + (I_{\theta}^{\alpha} f)(x,y).$$

Proof. Let u_0 be a solution for the fractional partial differential equation (2.1). Then, we have $D_{xy}^2(I_\theta^{1-\alpha}u_0)(x,y)=f(x,y)$ and so

$$(I_{\theta}^{1-\alpha}u_0)(x,y)-(I_{\theta}^{1-\alpha}u_0)(x,0)-(I_{\theta}^{1-\alpha}u_0)(0,y)+(I_{\theta}^{1-\alpha}u_0)(0,0)=(I_{\theta}^1f)(x,y).$$

Using the boundary conditions we get

$$(I_{\theta}^{1-\alpha}u_0)(x,y) - \lambda_1\varphi(x) - \lambda_2\gamma(y) + \lambda_1\varphi(0) = (I_{\theta}^1f)(x,y)$$

and so $(I_{\theta}^{1-\alpha}u_0)(x,y) - (I_{\theta}^1f)(x,y) = \lambda_1\varphi(x) + \lambda_2\gamma(y)$. Since $(I_{\theta}^0u_0)(x,y) = u_0(x,y)$, we obtain $\left(I_{\theta}^{1-\alpha}(u_0(x,y)-(I_{\theta}^{\alpha}f)(x,y))\right)(x,y) = \lambda_1\varphi(x) + \lambda_2\gamma(y)$. On the other hand, we have

$$I_{\theta}^{\alpha} \Big[I_{\theta}^{1-\alpha} (u_0(x,y) - (I_{\theta}^{\alpha} f)(x,y))(x,y) \Big] (x,y) = I_{\theta}^{\alpha} \Big(\lambda_1 \varphi(x) + \lambda_2 \gamma(y) \Big)$$

and so

$$I_{\theta}^{1}\left(u_{0}(x,y)-(I_{\theta}^{\alpha}f)(x,y)\right)(x,y)=I_{\theta}^{\alpha}\left(\lambda_{1}\varphi(x)+\lambda_{2}\gamma(y)\right)=(I_{\theta}^{\alpha}p)(x,y). \quad (2.3)$$

But we have

$$(I_{\theta}^{\alpha}p)(x,y) = \frac{\lambda_{1}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1} (y-t)^{\alpha_{2}-1} \varphi(s) dt ds + \frac{\lambda_{2}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1} (y-t)^{\alpha_{2}-1} \gamma(t) dt ds.$$

Since
$$\varphi(x) = \int_0^x \dot{\varphi}(s)ds$$
 and $\gamma(y) = \int_0^y \dot{\gamma}(t)dt$, we obtain

$$(I_{\theta}^{\alpha}p)(x,y) = \frac{\lambda_{1}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1} (y-t)^{\alpha_{2}-1} \Big(\int_{0}^{s} \dot{\varphi}(\tau) d\tau \Big) dt ds$$

$$+ \frac{\lambda_{2}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1} (y-t)^{\alpha_{2}-1} \Big(\int_{0}^{t} \dot{\gamma}(\tau) d\tau \Big) dt ds$$

$$= \frac{\lambda_{1}y^{\alpha_{2}}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2}+1)} \int_{0}^{x} (x-s)^{\alpha_{1}-1} \Big(\int_{0}^{s} \dot{\varphi}(\tau) d\tau \Big) ds$$

$$+ \frac{\lambda_{2}x^{\alpha_{1}}}{\Gamma(\alpha_{1}+1)\Gamma(\alpha_{2})} \int_{0}^{y} (y-t)^{\alpha_{2}-1} \Big(\int_{0}^{t} \dot{\gamma}(\tau) d\tau \Big) dt$$

$$= \frac{\lambda_{1}y^{\alpha_{2}}}{\Gamma(\alpha_{2}+1)} \int_{0}^{x} \Big(\frac{1}{\Gamma(\alpha_{1})} \int_{0}^{s} (s-\tau)^{\alpha_{1}-1} \dot{\varphi}(\tau) d\tau \Big) ds$$

$$+ \frac{\lambda_{2}x^{\alpha_{1}}}{\Gamma(\alpha_{1}+1)} \int_{0}^{y} \Big(\frac{1}{\Gamma(\alpha_{2})} \int_{0}^{t} (t-\tau)^{\alpha_{2}-1} \dot{\gamma}(\tau) d\tau \Big) dt$$

$$= \frac{\lambda_{1}y^{\alpha_{2}}}{\Gamma(\alpha_{2}+1)} \int_{0}^{x} (I_{\theta}^{\alpha_{1}} \dot{\varphi})(s) ds + \frac{\lambda_{2}x^{\alpha_{1}}}{\Gamma(\alpha_{1}+1)} \int_{0}^{y} (I_{\theta}^{\alpha_{2}} \dot{\gamma})(t) dt.$$

Since $(I_{\theta}^{\alpha_1}\dot{\varphi})(x) \in L(J_a)$ and $(I_{\theta}^{\alpha_2}\dot{\gamma})(y) \in L(J_b)$, the functions $\int_0^x (I_{\theta}^{\alpha_1}\dot{\varphi})(s)ds$ and $\int_0^y (I_{\theta}^{\alpha_2}\dot{\gamma})(t)dt$ are absolutely continuous and so there exists $D_{xy}^2(I_{\theta}^{\alpha}p)(x,y)$ for almost all $(x,y) \in J_a \times J_b$. By applying the operator D_{xy}^2 on both sides of (2.3), we get $D_{xy}^2 \left[I_{\theta}^1\left(u_0(x,y)-(I_{\theta}^{\alpha}f)(x,y)\right)(x,y)\right] = D_{xy}^2 \left[(I_{\theta}^{\alpha}p)(x,y)\right]$. Thus,

$$u_0(x,y) - (I_\theta^\alpha f)(x,y)$$

$$\begin{split} &= D_{xy}^2 \Big[\frac{\lambda_1 y^{\alpha_2}}{\Gamma(\alpha_2+1)} \int_0^x (I_{\theta}^{\alpha_1} \dot{\varphi})(s) ds + \frac{\lambda_2 x^{\alpha_1}}{\Gamma(\alpha_1+1)} \int_0^y (I_{\theta}^{\alpha_2} \dot{\gamma})(t) dt \Big] \\ &= D_x \Big[\frac{\lambda_1 \alpha_2 y^{\alpha_2-1}}{\Gamma(\alpha_2+1)} \int_0^x (I_{\theta}^{\alpha_1} \dot{\varphi})(s) ds + \frac{\lambda_2 x^{\alpha_1}}{\Gamma(\alpha_1+1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) \Big] \\ &= \frac{\lambda_1 y^{\alpha_2-1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) + \frac{\lambda_2 x^{\alpha_1-1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y). \end{split}$$

Hence, $u_0(x,y) = \frac{\lambda_1 y^{\alpha_2-1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) + \frac{\lambda_2 x^{\alpha_1-1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + (I_{\theta}^{\alpha} f)(x,y)$. This shows that u_0 is a solution of the fractional integral equation (2.2). Now, let u_0 be a solution for the fractional integral equation (2.2). Then, $(I_{\theta}^{1-\alpha} u_0)(x,y) = I_{\theta}^{1-\alpha} \left[\frac{\lambda_1 y^{\alpha_2-1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) + \frac{\lambda_2 x^{\alpha_1-1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\psi})(y)\right](x,y) + (I_{\theta}^1 f)(x,y)$. On the other hand by using $\mathcal{B}(z,w) = \int_0^1 (1-x)^{w-1} x^{z-1} dx = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}$, we get

$$I_{\theta}^{1-\alpha} \left[\frac{\lambda_2 x^{\alpha_1-1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) \right] (x,y)$$

$$\begin{split} &=\lambda_2\int_0^x\int_0^y\frac{(x-s)^{-\alpha_1}(y-t)^{-\alpha_2}}{\Gamma(1-\alpha_1)\Gamma(1-\alpha_2)}\Big(\frac{s^{\alpha_1-1}}{\Gamma(\alpha_1)}(I_{\theta}^{\alpha_2}\dot{\gamma})(t)\Big)dtds\\ &=\frac{\lambda_2}{\Gamma(\alpha_1)\Gamma(1-\alpha_1)\Gamma(1-\alpha_2)}\int_0^x\int_0^y(x-s)^{-\alpha_1}s^{\alpha_1-1}(y-t)^{-\alpha_2}(I_{\theta}^{\alpha_2}\dot{\gamma})(t)dtds\\ &=\frac{\lambda_2}{\Gamma(\alpha_1)\Gamma(1-\alpha_1)}\int_0^x(x-s)^{-\alpha_1}s^{\alpha_1-1}ds\Big(\frac{1}{\Gamma(1-\alpha_2)}\int_0^y(y-t)^{-\alpha_2}(I_{\theta}^{\alpha_2}\dot{\gamma})(t)dt\Big)\\ &=\frac{\lambda_2\mathcal{B}(\alpha_1,1-\alpha_1)}{\Gamma(\alpha_1)\Gamma(1-\alpha_1)}\Big(I_{\theta}^{1-\alpha_2}(I_{\theta}^{\alpha_2}\dot{\gamma})(t)\Big)(y)\\ &=\frac{\lambda_2}{\Gamma(1)}(I_{\theta}^{1}\dot{\gamma})(y)=\lambda_2(\gamma(y)-\gamma(0))=\lambda_2\gamma(y) \end{split}$$

and similarly $I_{\theta}^{1-\alpha} \left[\frac{\lambda_1 y^{\alpha_2-1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) \right](x,y) = \lambda_1 \varphi(x)$. Thus,

(2.3)
$$(I_{\theta}^{1-\alpha}u_0)(x,y) = \lambda_2 \gamma(y) + \lambda_1 \varphi(x) + (I_{\theta}^1 f)(x,y).$$

By applying the operator D_{xy}^2 on both sides of (2.3), we obtain

$$D_{xy}^{2} \left[(I_{\theta}^{1-\alpha} u_0)(x,y) \right] = D_{xy}^{2} \left[\lambda_2 \gamma(y) + \lambda_1 \varphi(x) + (I_{\theta}^{1} f)(x,y) \right]$$

and so $(D_{\theta}^{\alpha}u_0)(x,y)=f(x,y)$. By using (2.3), we get

$$(I_{\theta}^{1-\alpha}u_0)(x,0) = \lambda_2\gamma(0) + \lambda_1\varphi(x) + (I_{\theta}^1f)(x,0) = \lambda_1\varphi(x)$$

and $(I_{\theta}^{1-\alpha}u_0)(0,y) = \lambda_2\gamma(y) + \lambda_1\varphi(0) + (I_{\theta}^1f)(0,y) = \lambda_2\gamma(y)$. This completes the proof.

Consider the Banach space $X = C(J_a \times J_b, \mathbb{R})$ endowed with the norm $||u|| = \sup_{(x,y) \in J_a \times J_b} |u(t)|$. For $u \in X$, define the set of selections of F by

$$S_{F,u} := \{ v \in L^1(J_a \times J_b, \mathbb{R}) : v(x,y) \in F(x,y,u(x,y)) \text{ for almost all } (x,y) \in J_a \times J_b \}.$$

It has been proved that $S_{F,u} \neq \emptyset$ for all $u \in C(J_a \times J_b, X)$ ([11]). We say that $u \in X$ is a solution for the boundary value problem (1.1)-(1.2) whenever it satisfies the boundary value conditions (1.2) and also there is a function $v \in L^1(J_a \times J_b, \mathbb{R})$ such that $v(x, y) \in F(x, y, u(x, y))$ for all $(x, y) \in J_a \times J_b$ and

$$u(x,y) = \frac{\lambda_2 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{\lambda_1 y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x)$$
$$+ \frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x \int_0^y (x - s)^{\alpha_1 - 1} (y - t)^{\alpha_2 - 1} v(s, t) dt ds$$

for almost all $(x,y) \in J_a \times J_b$. Define the multifunction $\mathcal{N}: X \to \mathcal{P}(X)$ by

$$\mathcal{N}(u) = \{ h \in X : h(x,y) \frac{\lambda_2 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{\lambda_1 y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) \}$$

$$+\frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\int_0^x\int_0^y(x-s)^{\alpha_1-1}(y-t)^{\alpha_2-1}v(s,t)dtds\} \text{ for all } (x,y)\in J_a\times J_b\}.$$

Here, we provide our main result.

Theorem 2.2. Suppose that $\psi: [0, \infty) \to [0, \infty)$ is a nondecreasing upper semi-continuous map such that $\liminf_{t\to\infty}(t-\psi(t))>0$ and $\psi(t)< t$ for all t>0, $F: J_a\times J_b\times \mathbb{R}\to \mathcal{P}_{cp}(\mathbb{R})$ is an integrable bounded multifunction such that $F(\cdot,\cdot,u): J_a\times J_b\to \mathcal{P}_{cp}(\mathbb{R})$ is measurable for all $u\in \mathbb{R}$. Assume that there exits $m\in C(J_a\times J_b,[0,\infty))$ such that

$$H_d(F(x, y, u) - F(x, y, u')) \le \frac{1}{\Lambda_1} m(x, y) \psi(|u - u'|)$$

for all $(x,y) \in J_a \times J_b$ and $u, u' \in \mathbb{R}$, where $\Lambda_1 = ||m|| \left\{ \frac{a^{\alpha_1} b^{\alpha_2}}{\Gamma(\alpha_1 + 1) \Gamma(\alpha_2 + 1)} \right\}$. If the multifunction \mathcal{N} has the approximate endpoint property, then the fractional partial differential inclusion problem (1.1)-(1.2) has a solution.

Proof. First, we prove that the multifunction \mathcal{N} has at least one endpoint. Let $u \in X$. Since the multivalued map $(x,y) \mapsto F(x,y,u(x,y))$ is measurable and is closed-value, it has measurable selection and so $S_{F,u}$ is nonempty. Let $\{p_n\}_{n\geq 1}$ be a sequence in $\mathcal{N}(u)$ with $p_n \to p$. For each n, choose $v_n \in S_{F,u_n}$ such that

$$p_n(x,y) = \frac{\lambda_2 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{\lambda_1 y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x)$$
$$+ \frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x \int_0^y (x - s)^{\alpha_1 - 1} (y - t)^{\alpha_2 - 1} v_n(s, t) dt ds$$

for all $(x, y) \in J_a \times J_b$. Since the operator F is compact, the sequence $\{v_n\}_{n\geq 1}$ has a subsequence converging to some $v \in L^1(J_a \times J_b)$. We denote this subsequence again by $\{v_n\}_{n\geq 1}$. It is easy to see that $v \in S_{F,u}$ and

$$p(x,y) = \frac{\lambda_2 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{\lambda_1 y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x)$$
$$+ \frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x \int_0^y (x - s)^{\alpha_1 - 1} (y - t)^{\alpha_2 - 1} v(s, t) dt ds$$

for all $(x,y) \in J_a \times J_b$. This shows that $p \in \mathcal{N}(u)$ and so $\mathcal{N}(u)$ is closed. Note that, $\mathcal{N}(u)$ is bounded because F has a compact values. Now, we show that $H_d(\mathcal{N}(u), \mathcal{N}(w)) \leq \psi(\|u-w\|)$ for all $u, w \in X$. Let $u, w \in X$ and $h_1 \in \mathcal{N}(w)$. Choose $v_1 \in S_{F,w}$ such that

$$h_1(x,y) = \frac{\lambda_2 x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{\lambda_1 y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x)$$
$$+ \frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x \int_0^y (x - s)^{\alpha_1 - 1} (y - t)^{\alpha_2 - 1} v_1(s, t) dt ds$$

for almost all $(x,y) \in J_a \times J_b$. By using the hypothesis, we have

$$H_d(F(x, y, u(x, y)) - F(x, y, w(x, y))) \le \frac{1}{\Lambda_1} m(x, y) \psi(|u(x, y) - w(x, y)|)$$

and so we can choose $z \in F(x, y, u(x, y))$ such that

$$|v_1(x,y)-z| \le \frac{1}{\Lambda_1} m(x,y) \psi(|u(x,y)-w(x,y)|).$$

Define the multivalued map $U: J_a \times J_b \to \mathcal{P}(\mathbb{R})$ by

$$U(x,y) = \{ z \in \mathbb{R} : |v_1(x,y) - z| \le \frac{1}{\Lambda_1} m(x,y) \psi(|u(x,y) - w(x,y)|).$$

Since v_1 and $\eta = \frac{1}{\Lambda_1} m \psi (|u - w|)$ are measurable, the multifunction $U(\cdot, \cdot) \cap F(\cdot, \cdot, u(\cdot, \cdot))$ is measurable. Hence, there exists $v_2(x, y) \in F(x, y, u(x, y))$ such

that $|v_1(x,y)-v_2(x,y)| \leq \frac{1}{\Lambda_1}m(x,y)\psi(|u(x,y)-w(x,y)|)$. Now, consider the element $h_2 \in \mathcal{N}(u)$ defined by

$$h_{2}(x,y) = \frac{\lambda_{2}x^{\alpha_{1}-1}}{\Gamma(\alpha_{1})} (I_{\theta}^{\alpha_{2}}\dot{\gamma})(y) + \frac{\lambda_{1}y^{\alpha_{2}-1}}{\Gamma(\alpha_{2})} (I_{\theta}^{\alpha_{1}}\dot{\varphi})(x) + \frac{1}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1} (y-t)^{\alpha_{2}-1} v_{2}(s,t) dt ds$$

for all $(x,y) \in J_a \times J_b$. Put $\sup_{(x,y) \in J_a \times J_b} |m(x,y)| = ||m||$. Then, we have

$$\begin{split} |h_{1}(x,y)-h_{2}(x,y)| &\leq \Big|\frac{\lambda_{2}x^{\alpha_{1}-1}}{\Gamma(\alpha_{1})}(I_{\theta}^{\alpha_{2}}\dot{\gamma})(y) + \frac{\lambda_{1}y^{\alpha_{2}-1}}{\Gamma(\alpha_{2})}(I_{\theta}^{\alpha_{1}}\dot{\varphi})(x) \\ &+ \frac{1}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1}(y-t)^{\alpha_{2}-1}v_{1}(s,t)dtds \\ &- \frac{\lambda_{2}x^{\alpha_{1}-1}}{\Gamma(\alpha_{1})}(I_{\theta}^{\alpha_{2}}\dot{\gamma})(y) - \frac{\lambda_{1}y^{\alpha_{2}-1}}{\Gamma(\alpha_{2})}(I_{\theta}^{\alpha_{1}}\dot{\varphi})(x) \\ &- \frac{1}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1}(y-t)^{\alpha_{2}-1}v_{2}(s,t)dtds \Big| \\ &\leq \frac{1}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})} \int_{0}^{x} \int_{0}^{y} (x-s)^{\alpha_{1}-1}(y-t)^{\alpha_{2}-1}|v_{1}(s,t)-v_{2}(s,t)|dtds \\ &\leq \frac{1}{\Lambda_{1}} \|m\|\psi(\|u-w\|) \Big\{ \frac{x^{\alpha_{1}}y^{\alpha_{2}}}{\Gamma(\alpha_{1}+1)\Gamma(\alpha_{2}+1)} \Big\} \\ &= \frac{\Lambda_{1}}{\Lambda_{1}} \psi(\|u-w\|) = \psi(\|u-w\|) \end{split}$$

and so $||h_1 - h_2|| = \sup_{(x,y) \in J_a \times J_b} |h_1(x,y) - h_2(x,y)| = \psi(||u-w||)$. Hence, $H_d(\mathcal{N}(u), \mathcal{N}(w)) \leq \psi(||u-w||)$ for all $u, w \in X$. Since the multifunction \mathcal{N} has approximate endpoint property according to Theorem 1.1, there exists $u^* \in X$ such that $\mathcal{N}(u^*) = \{u^*\}$. It is easy to check that u^* is a solution for the fractional partial differential inclusion problem (1.1)-(1.2).

For illustration of our main result, we give the following example.

Example 2.3. Consider the fractional partial differential inclusion

$$D_{\theta}^{\alpha}u(x,y) \in \left[0, \frac{0.03xy|\sin u(x,y)|}{1+|\sin u(x,y)|}\right]$$

with boundary value conditions $(I_{\theta}^{1-\alpha}u)(x,0)=0.1(e^x-1)$ and $(I_{\theta}^{1-\alpha}u)(0,y)=0.01y^2$, where $(x,y)\in[0,1]\times[0,1]$. Let $\alpha=(\alpha_1,\alpha_2)$ with $\alpha_1,\alpha_2\in(0,1]$, $\lambda_1=0.1$ and $\lambda_2=0.01$. Define the multifunction $F:[0,1]\times[0,1]\times\mathbb{R}\to\mathcal{P}(\mathbb{R})$ by $F(x,y,z)=\begin{bmatrix}0,\frac{0.03xy|\sin z(t)|}{1+|\sin z(t)|}\end{bmatrix}$. If $m:[0,1]\times[0,1]\to[0,\infty)$ is defined by

 $m(x,y) = \frac{3}{100}xy$, then $||m|| = \frac{3}{100}$. Consider the map $\psi(t) = \frac{t}{2}$. It is clear that ψ is nondecreasing, upper semi-continuous on (0,1], $\lim\inf_{t\to\infty}(t-\psi(t))>0$ and $\psi(t)< t$ for all t>0. Since $\Gamma(\alpha_i+1)<\frac{1}{2}$, we get

$$\Lambda_1 = \|m\| \left\{ \frac{a^{\alpha_1}b^{\alpha_2}}{\Gamma(\alpha_1+1)\Gamma(\alpha_2+1)} \right\} = \frac{3}{100} \left(\frac{1}{\Gamma(\alpha_1+1)\Gamma(\alpha_2+1)} \right) < 0.12.$$

One can easily check that

$$H_d(F(x, y, u_1) - F(x, y, u_2)) \le \frac{1}{\Lambda_1} m(x, y) \psi(|u_1 - u_2|).$$

Put
$$X = C_{\mathbb{R}}([0,1] \times [0,1])$$
. Define $\mathcal{N}: X \to \mathcal{P}(X)$ by

$$\mathcal{N}(u) = \{ h \in X : \text{ there exists } v \in S_{F,u} \text{ such that } \}$$

$$h(x,y) = w(x,y)$$
 for all $(x,y) \in [0,1] \times [0,1]$,

where

$$w(x,y) = \frac{0.01x^{\alpha_1 - 1}}{\Gamma(\alpha_1)} (I_{\theta}^{\alpha_2} \dot{\gamma})(y) + \frac{0.1y^{\alpha_2 - 1}}{\Gamma(\alpha_2)} (I_{\theta}^{\alpha_1} \dot{\varphi})(x) + \frac{1}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x \int_0^y (x - s)^{\alpha_1 - 1} (y - t)^{\alpha_2 - 1} v(s, t) dt ds.$$

Since $\sup_{u \in \mathcal{N}(0)} ||u|| = 0$, $\inf_{u \in X} \sup_{s \in \mathcal{N}(u)} ||u - s|| = 0$ and so \mathcal{N} has the approximate endpoint property. Now by using Theorem 2.2, we conclude that the above fractional partial differential inclusion problem has a solution.

Acknowledgement

Research of the authors was supported by Azarbaijan Shahid Madani University.

References

- [1] Abbas, S., Baleanu, D., Benchohra, M., Global attractivity for fractional order delay partial integro-differential equations, Adv. Diff. Equ. (2012), 2012:62.
- [2] Abbas, S., Benchohra, M., Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604.
- [3] Abbas, S., Benchohra, M., Fractional order partial hyperbolic differential equations involving Caputo derivative. Stud. Univ. Babes-Bolyai Math. 57 No. 4 (2012), 469–479.
- [4] Abbas, S., Benchohra, M., Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative. Commun. Math. Anal. 7 (2) (2009), 62–72.

- [5] Agarwal, R.P., Baleanu, D., Hedayati, V., Rezapour, Sh., Two fractional derivative inclusion problems via integral boundary condition. Appl. Math. Comput. 257 (2015), 205–212.
- [6] Ahmad, B., Ntouyas, S. K., Tariboon, J., A study of mixed Hadamard and RiemannLiouville fractional integro-differential inclusions via endpoint theory. Appl. Math. Lett. 52 (2016), 9–14.
- [7] Aleomraninejad, S. M. A., Rezapour, Sh., Shahzad, N., On generalizations of the Suzuki's method. Appl. Math. Lett. 24 (2011), 1037–1040.
- [8] Amini-Harandi, A., Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 72 (2010), 132–134.
- [9] Baleanu, D., Rezapour, Sh., Etemad, S., Alsaedi, A., On a time-fractional integro-differential equation via three-point boundary value conditions. Math. Problems Engin. (2015), Article ID 785738, 12 pages.
- [10] Benchohra, M., Hellal, M., Perturbed partial functional fractional order differential equations with infinite delay. J. Adv. Res. Dyn. Control Syst. 5 (2) (2013), 1–15.
- [11] Benchohra, M., Henderson, J., Mostefai, F. Z., Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces. Computer Math. with Appl. 64 (2012), 3101–3107.
- [12] Deimling, K., Multi-valued differential equations. Berlin: Walter de Gruyter, 1992.
- [13] Covitz, H., Nadler, S., Multivalued contraction mappings in generalized metric spaces. Israel, J. Math. 8 (1970), 5–11.
- [14] Miller, S., Ross, B., An introduction to the fractional calculus and fractional differential equations. John Wiley, 1993.
- [15] Podlubny, I., Fractional differential equations. Academic Press, 1999.
- [16] Samko, G., Kilbas, A., Marichev, O., Fractional integrals and derivatives: Theory and applications. Gordon and Breach 1993.
- [17] Vityuk, A.N., Golushkov, A.V., Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7 (3) (2004), 318–325.

Received by the editors December 14, 2015 First published online July 13, 2016