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ON A TWO-VARIABLES FRACTIONAL PARTTAL
DIFFERENTIAL INCLUSION VIA
RIEMANN-LIOUVILLE DERIVATIVE

S. Etemad® and Sh. Rezapour?®

Abstract. We investigate the existence a solution to a two-variable
fractional partial differential inclusion via Riemann-Liouville derivative.
Also, we provide an example to illustrate our main result.

AMS Mathematics Subject Classification (2010): 26A33; 34A00; 34A08
Key words and phrases: boundary value problem; endpoint; fixed point;
fractional partial derivative; two-variables fractional partial differential
inclusion

1. Introduction

There are many published works about fractional partial differential equa-
tions by using the notions of delay or time-fractional (see for example, [I],
[?], [@] and [M@]). It is interesting to work on two variables fractional partial
differential equations (see, for example, [3], [d], [6] and [I]).

Let = (0,0) and o = (1, 2) where 0 < a1, a9 < 1. Also, put J, x J, =
[0,a] x [0,b] where a and b are positive constants. The Riemann-Liouville
fractional partial integral of u € L'(J, x Jp) is defined by

Is s)1 7 (y — )2 Yy(s, t)dtd
50)(e0) = ey [, [ =907 = 0% s s

whenever the integral exists (see, for example, [[d], [I5] and [I6]). The Riemann-
Liouville partial derivative of fractional order « for a function u € Ll(Ja X Jp)
is defined by

« _ 11—« yft)
(DQU)(z,y)—Di (I “u)(z,y) 635(‘3;(]/ / 1—a1 T =) dtds

(see for more details [[4], [[5] and [I6]). Note that
(1§ 1jw)(,y) = (15" u) (2, )

whenever 8 = (f1, 82) > 0 ([18]).
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Let (X, d) be a metric space, P(X) the class of all nonempty subsets of X,
P.(X) the class of all closed subsets of X, Ppq(X) the class of all bounded
subsets of X, P.,(X) the class of all compact subsets of X and P.,(X) the
class of all convex subsets of X. A multi-valued map F : J, x J, = Py(R) is
measurable whenever the function (z,y) — d(w, F(z,y)) = inf{|jw —v| : v €
F(z,y)} is measurable for all w € R, where J, x J, = [0, a] x [0, 8] ([I2]). Also,
the Pompeiu-Hausdorff metric Hy : P(X) x P(X) — [0, 00) is defined by

H,(A, B) = max{supd(a, B),supd(A,b)},
a€A beB

where d(A,b) = inf,ec 4 d(a,b) ([[@]). Then (Pepa(X), Hq) is a metric space and
(Pa(X), Hyg) is a generalized metric space ([i]). Recall that a multifunction
F: X — P(X) is said to be a contraction if there exists k € (0,1) such that
Hy(F(u), F(v)) < kd(u,v) for all u,v € X ([3]). An element u € X is called
endpoint of the multifunction F' : X — P(X) whenever Fu = {u} ([§]). We
say that the multifunction F' has an approximate endpoint property whenever
inf,e x SUpepy, d(u, w) = 0 ([§]). A real-valued function f on R is called upper
semi-continuous whenever limsup,,_, . f(An) < f(A) for all sequence {\,, }n>1
with A\, — A. In this paper, using the main idea of [§], [G] and [I7], we
investigate the existence of solutions for the two-variables fractional partial
differential inclusion

(1.1) (Dgu)(z,y) € F(z,y,u(z,y)),
with the partial integral boundary value conditions
(1.2) (I~ u)(x,0) = Mp(), (I;~"u)(0,y) = Aoy (y),

where Dg denotes the Riemann-Liouville fractional partial derivative of order
a, (z,y) € Jo x Jp, 0 < a; <1, \; e RT (i=1,2) and F : J, x J, x R = P(R)
is a compact valued multi-valued map. Here, the functions ¢ : J, — R and
v : Jpy — R are absolutely continuous with ¢(0) = 7(0) = 0. We need the
following endpoint result.

Theorem 1.1. ([8]) Suppose that (X,d) is a complete metric space, ¥ :
[0,00) — [0,00) is an upper semi-continuous function such that Y(t) < t and
liminfy o (t —¢(t)) >0 for allt >0 and T : X — CB(X) is a multifunction
such that Hy(Tx,Ty) < ¥(d(x,y)) for all x,y € X. Then T has a unique
endpoint if and only if T has approximate endpoint property.

2. Main results

Now we are ready to state and prove our main results. First, we give the
following key result.

Lemma 2.1. Let f € L(J, x Jp) and a = (a1,a2) € (0,1] x (0,1]. Then
the continuous function ug € L(J, X Jp) is a solution for the fractional partial
differential equation

(2'1) Dg‘u(x,y):f(x7y)
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with boundary conditions (I;~*u)(x,0) = Ap(x) and (I;"u)(0,y) = Aay(y)
if and only if ug is a solution for the fractional integral equation

)\23’;&171 Alya271

(2.2) u(z,y) = o) (L )(y) + () Iy @) (@) + (15 f)(, y)-

Proof. Let ug be a solution for the fractional partial differential equation ().
Then, we have Diy(lg_auo)(x,y) = f(z,y) and so

(I~ %uo) (@, y) — (I~ %uo)(x,0) — (Ig~*u0) (0, ) + (I~ *u0)(0,0) = (I3 f)(z,y).
Using the boundary conditions we get
(I~ "uo)(w,y) = Mip(x) = Ay (y) + Mp(0) = (I; ) (@, y)

and so (I~ %uo)(x,y) — (1§ )(2,y) = Mp(x) + Aoy(y). Since (Ifuo)(z,y) =
oz, ), we obtain (I3~ (uo(z,y) — (1§ £) () ) (2 9) = M p(x) + X27(y). On
the other hand, we have

17 | 13 (o) = (I D)) .9)] 2,9) = 13 (Map(@) + 2a1())
and so
13 (uol,y) = (15 £)(@,9) ) (2,9) = I (Meol@) + X (y)) = D)@, ). (23)

But we have

Uoe) = i [ @m0 =0 s

A
+ 2 // Yoy — )22 Ly (t)dtds.
a1 ag

Since ¢(x) = /Ox p(s)ds and v(y) = / 4(t)dt, we obtain

(Igp)(z,y) = alAl o // )L t)a21</08<p(r)dr>dtds

’ %AQ (a2) / / (=9 My =0 /0 tw)dT)dtds

- %/ (@ =)™~ 1(/08 o(r)dr)ds
(al/\‘i]i )T () /( — )" 1(/Ot"Y(T)dT)dt

- a2+1 /Ox / s = 1) Lp(r)dr ) ds

" Aazlxﬂ /Oy / t— 7)oy (r)dr ) dt

AQ%al

Yy
— Ial _ e IOLQ- .
QQH / o) ds+r(a1+1)/0<e 5)()dt
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Since (15 ¢)(z) € L(J,) and (I5?5)(y) € L(Jp), the functions / (L") (s)ds
0

y
and / (Ig24)(t)dt are absolutely continuous and so there exists D2, (I§'p)(x,y)

0
for almost all (z,y) € J, X Jp. By applying the operator Dgy on both sides of
(2.3), we get D2, {I(} (uo(x,y) - (Ig‘,“f)(ac,y)> (x,y)} = D3, [(Igp)(x, y)] Thus,

U’O(x7y) - (Igf)(xvy)

=02, [ [ o+ 22 [apea)

04271 [e 5]

=D, [T [ e + 52 0 w)

LT (a2 +1) Jo +1)

a1 s Agzr—1
(15 9)o) + 22

Alyag—l

Ny

(1529 (y)-

Alyaz_l o1 - )‘Qxal_l g - « :
Hence, uo(x,y) = T(a2) (g o)) + W(Ie *)(y) + (Ig f)(z,y). This

shows that ug is a solution of the fractional integral equation (222). Now, let ug
be a solution for the fractional integral equation (22). Then, (I, *ug)(z,y) =

I‘}_a [/\;?:22) (I ¢)(x)+ /\;m(:) (1327?)@)} (z,y)+(I5 f)(x,y). On the other

hand by using B(z,w) = /0 (1 —z) e tde = Im, we get
xal—l
I [Ai(al) 155 @)

_ ez gan—l s
7>\2/ / 1—a1 1_t)a2) (F(al)(fe ’Y)(t))dtds
:F(al)F(l—al I'(1— as) / / = 5) MM T (y — )72 (Ig74) (t)dtds

_m/o (@ —s) "1~ 1ds(r(1iaz)/0y(y—t) o2 (Ig*4) ()t

— PR = () (0) 0
= P W) = Xa(0) =(0) = 99
and similarly 7, )\11_‘:(?2; (I ¢) (x)} (x,y) = Mp(x). Thus,

(2.3) (Iy~"uo)(z,y) = A7 (y) + Ma(@) + (15 ) (x,y)-
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By applying the operator D?Ey on both sides of (23), we obtain

D2, [(1y~ o) (@, )| = D2, [Aary) + Mipler) + (13 ) ()|
and so (Dguo)(x,y) = f(z,y). By using (23), we get
(I~ %uo)(w,0) = A27(0) + Mig(w) + (Ig f)(2,0) = Mp(x)

and (I, “u0)(0,y) = Aay(y) + A1¢(0) + (12 £)(0,y) = A2y(y). This completes
the proof. O

Consider the Banach space X = C(J, x Jp,R) endowed with the norm
[ull = supy yyeg, g, [u(t)]- For u € X, define the set of selections of F' by

Spy = {v € L' (JuxJp,R) : v(z,y) € F(x,y,u(x,y)) for almost all (x,y) € Jo X Jp}.

It has been proved that Sp, # 0 for all u € C(J, x Jp, X) ([IT]). We say
that u € X is a solution for the boundary value problem (IT)-(I2) whenever
it satisfies the boundary value conditions (I2) and also there is a function
v € LY(J, x Jp, R) such that v(z,y) € F(z,y,u(z,y)) for all (z,y) € J, x Jp
and )\ a1 —1 /\ as—1

2Z™! R, 1Y

F(al) (IG V)(y) + F(ag)

1 v
4+ z— )y — )2 Lu(s, t)dtds
T fy Jy 9" =0 e
for almost all (z,y) € J, X Jp. Define the multifunction N : X — P(X) by

u(z,y) = (I @) (x)

alfl 1

Nw) = {h € X+ i) S (54)0) + (17 £)(0)

; Ty s ar—=1¢, a2—1v s <V for all (x
+F(041)F(oz2) /0 /0 ( ) (y—t) (s,t)dtds} for all (x,y) € Jo x Jp}.

Here, we provide our main result.

Theorem 2.2. Suppose that ¢ : [0,00) — [0,00) is a nondecreasing upper
semi-continuous map such that liminf; (¢t — ¥ (t)) > 0 and ¥(t) < t for all
t>0, F:J, xJp xR = P(R) is an integrable bounded multifunction such
that F(-,-,u) : Jo X Jp = Pep(R) is measurable for all u € R. Assume that
there exits m € C(Jg X Jp, [0,00)) such that

L o ) — o))

Hd(F(xvyau) 7F(‘T7yau/)) < A
1

, B a“1b*?
forall (z,y) € JoxJp andu, v’ € R, where Ay = ||m||{F(a1 T D) } If

the multifunction N has the approzimate endpoint property, then the fractional
partial differential inclusion problem (I)-(T2) has a solution.
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Proof. First, we prove that the multifunction N has at least one endpoint.
Let u € X. Since the multivalued map (z,y) — F(z,y,u(z,y)) is measurable
and is closed-value, it has measurable selection and so Sf, is nonempty. Let
{pn}n>1 be a sequence in N'(u) with p, — p. For each n, choose v,, € Sp.,

such that ) )

Ao ™ Ary*2”
n s = —_— I 2 _—
pu(,y) (o) (g )(y) +

1 Ty w1y ety (0 )
+m/o /0(93—8) (y = )% on(s, t)dtd

for all (z,y) € Jo x Jp. Since the operator F' is compact, the sequence {vy, }n>1
has a subsequence converging to some v € L'(J, x J;). We denote this subse-
quence again by {vy,}n>1. It is easy to see that v € Sg,, and

)\gsval_l
['(an)

1 T ry () ety S
+m/@ /0(95—5) (y—1) (s,t)dtd

for all (z,y) € J, x Jp. This shows that p € M(u) and so N (u) is closed. Note
that, A (u) is bounded because F' has a compact values. Now, we show that
Ha(N(u), N(w)) <Y(||lu—w]|) for all u,w € X. Let u,w € X and hy € N (w).
Choose vy € Sk, such that

play) = (I 3) ) +

/\2330”_1 ) /\lyag—l

hi(z,y) = W(I(?Q’Y)(y) + W(Ig‘%p)(m)

; x yxisalfl _pyee—ly (s .
+F(omr(ag)/o /0 (= )y =)o (s, t)dtd

for almost all (x,y) € J, x Jp. By using the hypothesis, we have
1
Ha(F(2,y,u(z,y)) = F(z,y,w(z,y))) < =mlz, y)p(lu@,y) = wlz,y)])
and so we can choose z € F(z,y,u(z,y)) such that
1
|’U1(£L’,y) - Z| < rlm(fay)¢(|u($ay) - ’LU(CL’,y)D

Define the multivalued map U : J, x J, = P(R) by

Ule,y) = {2 €R: [r(9) - 2| < -mop)i(luCey) - wiz,y).

1
Since v; and n = —mw(|u - w|) are measurable, the multifunction U(-,-) N

Ay
F(-,-,u(-,-)) is measurable. Hence, there exists va(z,y) € F(x,y, u(z,y)) such
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1
that |vy(z,y) — va(x,y)| < A—m(x,y)wﬂu(x,y) —w(z,y)|). Now, consider the
1

element hy € N (u) defined by

A2xa1—1 s AlyQQ_l o
m(fe ) (y) + WU@ ¢)(z)

; T yx_salfl _ azflv s s
+F(a1)I‘(a2)_/0 /0( )y — 1) 5(s, t)dtd

for all (x,y) € Jo x Jo. Put sup(, yyes, xg, [m(z,y)| = [m]|. Then, we have

h2CUJﬂ =

r 1 1 as—1 o
() = haa.y)]| < ]A?)<Ig‘2v><y>+¥ga2)<zw><x>
INCERINEDY) / / z =) 1 t)az_lvl(s,t)dtds
—A?E)(I?Zv)(y) %(Iglgb)(x)

yer—l(y — )e2—l tdtd’
041 Oéz / / ) 02(87) 3

< // Y=L (y — )22~y (s, £) — va(s, £)|dids
042

.Talyaz
< -l - wiD{p(al )
Ay
= vl = wl) = v(llu = w])

and 50 [y — Bl = Sup(eyc o 1 (,9) — oz, )| = $(Ju — wl]). Hence,
Hy(N(u), N(w)) < (|lu—wl) for all u,w € X. Since the multifunction N has
approximate endpoint property according to Theorem I, there exists u* € X
such that M(u*) = {u*}. It is easy to check that u* is a solution for the
fractional partial differential inclusion problem (IT)-(I2). O

For illustration of our main result, we give the following example.

Example 2.3. Consider the fractional partial differential inclusion

0.03zy|sinu(z, y)|
1+ | Sinu(xvy)‘

Dgu(z,y) € lO,

with boundary value conditions (I; ~“u)(z,0) = 0.1(¢*—1) and (I;~*u)(0,y) =
0.01y2, where (z,y) € [0,1] x [0,1]. Let a = (a1, a2) with a1,a2 € (0,1],
A1 = 0.1 and Ay = 0.01. Define the multifunction F : [0,1] x [0,1] x R — P(R)

by F(z,y,2) [07 0.03zy| sin z(t)]

Ifm o (0,1 1 i fi
T [sin2(0)| ] m : [0,1] x [0,1] = [0, 00) is defined by
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3 3 t
m(x,y) = T0o%Y then ||m|| = 100" Consider the map 9 (t) = 7 It is clear that

1 is nondecreasing, upper semi-continuous on (0, 1], liminf;_, (¢t — ¥ (t)) > 0

1
and ¥(t) < t for all ¢ > 0. Since I'(a; + 1) < 50 We get

a*1b? } 3 1

A= ”m”{r(a1 s+ 1))~ ﬁ(r(al ) £ 1)) < 0.12.

One can easily check that

Hu(F(@,y,0) = F(z,yu2)) < -m(, )0 (jur — ual).

Put X = Cg([0,1] x [0,1]). Define N : X — P(X) by
N(u) ={h € X : there exists v € Sp,, such that
hz,y) = w(z,y) for all (z,y) € [0,1] x [0,1]},
where

0.01z21~1 0.1ye2—1
(%24 4+ =
F(Oél) ( 0 ’Y)(y) F(Oég)

1 z Yy a;—1 _ a2—1v s s
+m/o /0(90—8) (y — )%~ o (s, t)dtds.

Since sup,epr(o) lull = 0, infuex supsearey) lu — sl = 0 and so A has the
approximate endpoint property. Now by using Theorem E2, we conclude that
the above fractional partial differential inclusion problem has a solution.

w(z,y) = (I ¢)()
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