A CLASS OF SOME THIRD-METACYCLIC 2-GROUPS

Marijana Greblički¹

Abstract. Third-metacyclic finite 2-groups are groups with a non-metacyclic second-maximal subgroup and all its third-maximal subgroups being metacyclic. Among these groups we are looking for all of those whose non-metacyclic subgroups, including group itself, are generated by involutions.

AMS Mathematics Subject Classification (2010): 20D25; 20N99

Key words and phrases: finite group; p-group; metacyclic group; second-metacyclic group; third-metacyclic group; second-maximal subgroup; third-maximal subgroup

1. Introduction

The aim of this article is to determine all third-metacyclic 2-groups whose all non-metacyclic subgroups are generated by involutions. The property of a group G that all non-metacyclic subgroups of G are generated by involutions, we denote by S for brevity. We begin with some basic definitions.

Definition 1.1. Let G be a finite group. A subgroup M_1 is maximal in G, $M_1 <_{max} G$, if for subgroup H in G from $M_1 \le H < G$ follows $H = M_1$.

A subgroup M_2 is second-maximal subgroup of G if M_2 is a maximal subgroup of any maximal subgroup of G. Generally, subgroup M_n is n-maximal subgroup of G if M_n is a maximal subgroup of any (n-1)-maximal subgroup of G.

Definition 1.2. A group G is metacyclic, $G \in \mathcal{MC}$, if it possesses a cyclic normal subgroup $N \subseteq G$ such that the factor-group G/N is also cyclic.

Definition 1.3. A group G is n-metacyclic, $G \in \mathcal{MC}_n$, if it possesses a non-metacyclic (n-1)-maximal subgroup and all its n-maximal subgroups are metacyclic. Specially, a group G is third-metacyclic, $G \in \mathcal{MC}_3$, if it possesses a non-metacyclic second-maximal subgroup and all its third-maximal subgroups are metacyclic. Obviously, if G is a p-group then $|G| \geq p^{n+2}$, because all groups of order p^2 are metacyclic.

Definition 1.4. Let G be a p-group. The group $\Omega_i(G)$ is

$$\Omega_i(G) = \langle x \in G \mid x^{p^i} = 1 \rangle, \ i \in \mathbb{N}.$$

Obviously $\Omega_i(G)$ char G. Therefore, 2-group G is generated by involutions exactly when $\Omega_1(G) = G$.

¹Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, University of Zagreb, Zagreb, Croatia, e-mail: marijana.greblicki@fer.hr

Lemma 1.5. Let G be a 2-group and $G \in \mathcal{MC}_n$. Then there exists maximal subgroup M in G, $M <_{max} G$, and $M \in \mathcal{MC}_{n-1}$.

Proof. Because $G \in \mathcal{MC}_n$ there exists $H \leq G$ such that $|G:H| = 2^{n-1}$ and $H \notin \mathcal{MC}$, while each subgroup K < G, for which is $|G:K| \geq 2^n$, is metacyclic. Then there exists a maximal subgroup $M <_{max} G$ where $H \leq M$ and $|M:H| = 2^{n-2}$. If K < M and $|M:K| = 2^{n-1}$ it follows $|G:K| = 2^n$, i.e. $K \in \mathcal{MC}$, then by Definition 1.3 is $M \in \mathcal{MC}_{n-1}$.

Lemma 1.6. Let G be a 2-group generated by involutions, i.e. $\Omega_1(G) = G$. Then G is an extension by involution of any of its maximal subgroups. Specially, if $G \in \mathcal{MC}_n$, then G is an extension by involution of any of its maximal subgroups $M \in \mathcal{MC}_{n-1}$.

Proof. Let $M <_{max} G$ be any maximal subgroup of group G. We state that there exists an involution $t \in G \setminus M$, such $G = \langle M, t \rangle = M \cdot \langle t \rangle$. That is, if such involution did not exist it would follow that all involutions from G are in M, i.e. $\Omega_1(G) = G \leq M$, and that is a contradiction with the assumption $M <_{max} G$.

Specially, if $G \in \mathcal{MC}_n$, by Lemma 1.6 follows that there exists subgroup $M \in \mathcal{MC}_{n-1}$ of group G, so that G is an extension of M by involution.

Lemma 1.7. Let G be a non-metacyclic 2-group where every non-metacyclic subgroup $H \leq G$ is generated by involutions, i.e. $\Omega_1(H) = H$. Then, every non-metacyclic subgroup $H \leq G$ and every non-metacyclic factor-group H/N, where $N \leq H$, are also groups with that property.

Proof. The first part of our claim is obvious. For $H \leq G$, $H \notin \mathcal{MC}$, is by our assumption $H = \langle i_1, ..., i_n \rangle$, where $i_j^2 = 1$, for $j \in \{1, ..., n\}$.

For $N \subseteq H$ and $H/N \notin \mathcal{MC}$ is $\overline{H} = H/N = \langle \overline{i_1}, ..., \overline{i_n} \rangle$, while $\overline{i_j} = i_j N$ and $\overline{i_j}^2 = N$, i.e. $\Omega_1(\overline{H}) = \overline{H}$.

Lemma 1.8. Let G be a 2-group with property S. If $d(Z(G)) \geq 3$ then G is an elementary abelian group. For d(Z(G)) = 2 is $Z(G) \cong E_4$, and for d(Z(G)) = 1 Z(G) is a cyclic group.

Proof. At first let $d(Z(G)) \geq 3$, i.e. there exist $K \leq Z(G)$ and involutions $a,b,c \in G$ such as $K = \langle a,b,c \rangle \cong E_8$. We claim that G is an elementary abelian group. Let us assume opposite, i.e. that there exists some element $d \in G \setminus K$, $|\langle d \rangle| = 4$ and note $H = \langle K, d \rangle = \langle a,b,c,d \rangle$. Then we have either $d^2 \in \langle a,b,c \rangle$ or $d^2 \notin \langle a,b,c \rangle$. If $d^2 \in \langle a,b,c \rangle$, we can assume, without loss of generality, that $d^2 = a$. But then we have $\langle b,c,d \rangle \cong E_4 \times Z_4$ is a non-metacyclic subgroup, but $\Omega_1(\langle b,c,d \rangle) = \langle b,c,d^2 \rangle \cong E_8$, i.e. non-metacyclic subgroup $\langle b,c,d \rangle$ of group the G is not generated by involutions, which is against our assumption.

In the case $d^2 \notin \langle a, b, c \rangle$ we have $H \cong E_8 \times Z_4$, which is a non-metacyclic group, but also $\Omega_1(H) = \langle a, b, c, d^2 \rangle \cong E_{16}$, again a contradiction. Therefore, $d^2 = 1$, i.e. G is elementary abelian group.

Now, d(Z(G)) = 2. Because of $\Omega_1(G) = G$ is $G = \langle a_1, ..., a_k \mid a_i^2 = 1, \forall i = 1, ..., k \rangle$. If $a_i \in Z(G)$, $\forall i = 1, ..., k$, then G would again be an elementary abelian group. Thus, there exists $a_j \equiv a$ such as $a \in G \setminus Z(G)$. Let us assume $Z(G) = \langle z_1 \rangle \times \langle z_2 \rangle$, where $z_i^2 \neq 1$, at least for one $i \in \{1, 2\}$. We have now $\langle a, Z(G) \rangle = \langle a, z_1, z_2 \rangle = \langle a \rangle \times \langle z_1 \rangle \times \langle z_2 \rangle \geq \langle a \rangle \times \langle z_1' \rangle \times \langle z_2' \rangle$, where $\langle z_1' \rangle \leq \langle z_1 \rangle$ and $\langle z_2' \rangle \leq \langle z_2 \rangle$. We can assume, without loss of generality, that $|z_1'| = 2$ and $|z_2'| = 4$. Now, it follows $\langle a, Z(G) \rangle \geq \langle a \rangle \times \langle z_1' \rangle \times \langle z_2' \rangle \equiv H \cong E_4 \times Z_4 \notin \mathcal{MC}$, but $\Omega_1(H) = \langle a, z_1', z_2'^2 \rangle < H$, a contradiction. Therefore, in $\langle z_1 \rangle$ and $\langle z_2 \rangle$ there are no elements or order 4. Thus $Z(G) \cong E_4$.

For
$$d(Z(G)) = 1$$
, $Z(G)$ is a cyclic group.

2. A class of some third-metacyclic 2-groups

Now we turn to solving the main problem of this article. According to Lemma 1.6 and Lemma 1.7 we reduce theorems from [2] and [1] where all \mathcal{MC}_1 and \mathcal{MC}_2 groups are classified, in the way that we extract only \mathcal{MC}_1 -groups with property \mathcal{S} from [2], and then from [1] only extensions of those \mathcal{MC}_1 -groups by involutions. We get the following results:

Theorem 2.1. Let $G \in \mathcal{MC}_1$ be a group with property S. Then $G \cong Q_8$ or $G \cong Q_8 * Z_4 \cong D_8 * Z_4$.

Theorem 2.2. Let $G \in \mathcal{MC}_2$ be a group with property S. Then G is isomorphic to one of the following groups:

- a) E_{16}
- b) $D_8 \times Z_2$
- $(D_{16} * Z_4 = \langle a, b, c \mid a^8 = b^2 = c^4 = 1, a^4 = c^2, a^b = a^{-1}, a^c = a, b^c = b \rangle.$

According to Lemma 1.6, having extended by involutions \mathcal{MC}_2 -groups from Theorem 2.2, we get all \mathcal{MC}_3 -groups with property \mathcal{S} . Before stating the main result, we introduce additional necessary definitions and known results.

Definition 2.3. A finite 2-group G is called *quasi-dihedral* if it possesses an abelian maximal subgroup A of exponent strictly larger than 2, i.e. exp(A) > 2, and an involution that is not in A, i.e. $t \in G \setminus A$, such that t inverts each element in A.

Definition 2.4. Let G be a p-group. Then the set of all elements of order k in G is

$$O_k(G) = \{g \in G \mid |g| = k\}, \text{ where } k \mid |G|.$$

The group $\langle O_k(G) \rangle$ generated by the set $O_k(G)$ is characteristic in G, $\langle O_k(G) \rangle$ char G.

Definition 2.5. Let G be a p-group. If $G = M \cdot N$, where $M, N \leq G$ such that $M \cap N = [M, N] \cong \mathbb{Z}_p$, then we say that G is second-direct product of M and N. We denote $G = M \times_2 N$.

Proposition 2.6. Let H be a normal elementary abelian subgroup of 2-group G and let $g \in G$ and $g^2 \in H$. Then

$$|C_H(g)|^2 \ge |H|.$$

Proof. Because $g^2 \in H$ and H is abelian we have $x^{g^2} = x$, for any $x \in H$. Thus $(xx^g)^g = x^gx^{g^2} = x^gx = xx^g$, $\forall x \in H$, i.e. $xx^g \in C_H(g)$. Now, for $x, y \in H$, we have $xx^g = yy^g \Leftrightarrow xy = x^gy^g = (xy)^g \Leftrightarrow xy \in C_H(g) \Leftrightarrow xy^{-1} \in C_H(g) \Leftrightarrow C_H(g)x = C_H(g)y$. Therefore, $xx^g \neq yy^g \Leftrightarrow C_H(g)x \neq C_H(g)y$, and so $|C_H(g)| \geq |H : C_H(g)| \Rightarrow |C_H(g)|^2 \geq |H|$.

Proposition 2.7. For the elementary abelian group G of order p^n , $G \cong E_{p^n}$, the number of subgroups of order p is

$$\frac{p^n-1}{p-1} = p^{n-1} + p^{n-2} + \ldots + p + 1.$$

Proof. If G is the elementary abelian group of order p^n , $G \cong E_{p^n}$, every non-identity element generates a subgroup of order p containing p-1 non-identity elements. Since any two of these subgroups are either equal or disjoint, the number of such subgroups is $\frac{p^n-1}{p-1} = p^{n-1} + p^{n-2} + ... + p + 1$.

Theorem 2.8. If G is a non-abelian p-group, possessing an abelian maximal subgroup, then

$$|G| = p \cdot |G'| \cdot |Z(G)|.$$

Proof. Let A be a maximal subgroup of G which is abelian, and $g \in G \setminus A$. The mapping $\varphi: A \to A$, $\varphi(a) = [a,g]$, is homomorphism with $Im\varphi = G', Ker\varphi = Z(G)$, and thus $A \setminus Z(G) \cong G'$. Therefore $|A| = |G| : p = |Z(G)| \cdot |G'|$ which yields the above formula.

Now we state the main theorem of this article. From Theorem 2.2 we can see that all \mathcal{MC}_2 groups with property \mathcal{S} are of order 16 or 32, so if we extend those groups by involution we will get all \mathcal{MC}_3 groups with property \mathcal{S} of order 32 and 64, respectively.

In representing groups by generator order and commutators, we will omit, for brevity, those commutators of generators which equal 1 (that is for the pairs of commuting generators).

Theorem 2.9. Let $G \in \mathcal{MC}_3$ be a group with property S. Then G is one of the following 7 groups:

a) of order 32, (extensions of E_{16} and $D_8 \times Z_2$)

 $\cong (Z_8 \times Z_2) \cdot Z_2$, quasi-dihedral group;

$$\begin{array}{l} G_1 = \langle a,b,c,d,e \mid a^2 = b^2 = c^2 = d^2 = e^2 = 1 \rangle \cong E_{32}; \\ G_2 = \langle a,b,c,d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, a^d = a^{-1}, b^d = bc \rangle = \\ = (\langle a \rangle \times \langle bd \rangle) \cdot \langle d \rangle \cong (Z_4 \times Z_4) \cdot Z_2, \ quasi-dihedral \ group; \\ G_3 = \langle a,b,c,d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, a^d = a^{-1}, b^d = ab \rangle = \\ = \langle bd,d \mid (bd)^8 = d^2 = 1, (bd)^d = (bd)^{-1} \rangle \times \langle c \mid c^2 = 1 \rangle \cong D_{16} \times Z_2 \cong d^2 = 1, a^d = a$$

$$G_{4} = \langle a, b, c, d \mid a^{4} = b^{2} = c^{2} = d^{2} = 1, a^{b} = a^{-1}, c^{d} = a^{2}c \rangle =$$

$$= \langle a, b \mid a^{4} = b^{2} = 1, a^{b} = a^{-1} \rangle * \langle cd, d \mid (cd)^{4} = d^{2} = 1, (cd)^{d} = (cd)^{-1} \rangle \cong$$

$$\cong D_{8} * D_{8}, \text{ where } (cd)^{2} = a^{2};$$

$$G_{5} = \langle a, b, c, d \mid a^{4} = b^{2} = c^{2} = d^{2} = 1, a^{b} = a^{-1}, b^{d} = abc, c^{d} = a^{2}c \rangle =$$

$$= \langle bd, c \mid (bd)^{8} = c^{2} = 1, (bd)^{c} = (bd)^{5} \rangle \cdot \langle d \mid d^{2} = 1 \rangle \cong M_{16} \cdot Z_{2} \cong D_{16} \times_{2} E_{4};$$
b) of order 64 (extensions of $D_{16} * Z_{4}$)

$$G_{6} = \langle x, y, z, e \mid x^{8} = 1, z^{2} = x^{4}, x^{y} = x^{-1}, x^{e} = x^{-1}, y^{e} = xy \rangle =$$

$$= \langle ye, e \mid (ye)^{16} = e^{2} = 1, (ye)^{e} = (ye)^{-1} \rangle * \langle z \mid z^{4} = 1 \rangle \cong D_{32} * Z_{4};$$

$$G_{7} = \langle x, y, z, e \mid x^{8} = 1, z^{2} = x^{4}, x^{y} = x^{-1}, x^{e} = x^{-1}, y^{e} = xy, z^{e} = x^{4}z =$$

$$= z^{-1} \rangle = \langle ye, x^{2}z \mid (ye)^{16} = (x^{2}z)^{2} = 1, (ye)^{x^{2}z} = (ye)^{9} \rangle \cdot \langle e \mid e^{2} = 1 \rangle \cong$$

$$\cong M_{32} \cdot Z_{2} \text{ or written differently (with } e \equiv u):$$

$$G_{7} = \langle x^{8}, u, x, y \mid x^{16} = u^{2} = y^{2} = 1, x^{y} = x^{-1}, u^{x} = x^{8}u, u^{y} = u \rangle =$$

$$= \langle x, y \mid x^{16} = y^{2} = 1, x^{y} = x^{-1} \rangle \times_{2} \langle x^{8}, u \mid (x^{8})^{2} = u^{2} = 1, (x^{8})^{u} = x^{8} \rangle \cong$$

$$\cong D_{32} \times_{2} E_{4}.$$

Proof. According to Lemma 1.6, all \mathcal{MC}_3 -groups generated by involutions are obtained by extending three \mathcal{MC}_2 -groups from Theorem 2.2 with involution.

A. Extension of E_{16} :

Let $G = \langle a,b,c,d,e \rangle$ and $H = \langle a,b,c,d \rangle \cong E_{16}$ be a maximal subgroup in G, $e \in G \setminus H$, $e^2 = 1$. If $G' = 1 \Rightarrow G \cong E_{32}$. For $G' \neq 1$ follows $Z(G) \leq H$ (otherwise, $G = H \cdot Z(G)$ is an abelian group), so is $Z(G) = C_H(e)$. According to Proposition 2.6, it follows $|C_H(e)|^2 \geq |H| = 16$, i.e. $|C_H(e)| \in \{4, 8, 16\}$. We know $C_H(e) \leq Z(G)$, thus for $|C_H(e)| \in \{8, 16\}$ is $d(Z(G)) \geq 3$, and according to Lemma 1.8, it follows that $G \cong E_{32}$. Therefore remains the case $|C_H(e)| = 4$, so we can take, without loss of generality, $Z(G) = C_H(e) = \langle a,b \rangle \cong E_4$. Group H is an abelian maximal subgroup of group G, so $|G| = 2 \cdot |G'| \cdot |Z(G)| \Rightarrow |G'| = 4$. We have $\overline{G} = G/Z(G) = \langle \overline{c}, \overline{d}, \overline{e} \rangle$, $\langle \overline{c}, \overline{d} \rangle = \overline{H}$, thus according to Proposition 2.6, it follows $|C_{\overline{H}}(\overline{e})|^2 \geq |\overline{H}| = 4 \Rightarrow |C_{\overline{H}}(\overline{e})| \in \{2,4\}$.

Case 1:
$$|C_{\overline{H}}(\overline{e})| = 2$$

We can assume, without loss of generality, $C_{\overline{H}}(\overline{e}) = \langle \overline{c} \rangle$, so we have $\overline{c}^{\overline{e}} = \overline{c}$ i $\overline{d}^{\overline{e}} = \overline{c} \overline{d}$, i.e. for originals, without loss of generality, we have $c^e = ac$ and $d^e = a^{\gamma}b^{\delta}cd$, $(\gamma, \delta) \neq (0, 0)$. From $d^{e^2} = d^1 = d$ and $d^{e^2} = (d^e)^e = (a^{\gamma}b^{\delta}cd)^e = ad$ we get a contradiction, so this case does not apply.

Case 2:
$$|C_{\overline{H}}(\overline{e})| = 4$$

It follows that $C_{\overline{H}}(\overline{e}) = \overline{H}$, so $\overline{c^e} = \overline{c}$ and $\overline{d^e} = \overline{d}$. For originals we have $c^e = a^{\alpha}b^{\beta}c$, $d^e = a^{\gamma}b^{\delta}d$, where (α,β) , $(\gamma,\delta) \neq (0,0)$, because $Z(G) = \langle a,b \rangle$. Because a,b and ab are interchangeable without loss of generality we have: $c^e = ac$, $d^e = ad$ or $d^e = bd$. From $c^e = ac$, $d^e = ad$ follows $G' = \langle a \rangle$, which is a contradiction with |G'| = 4. Therefore, $c^e = ac$, $d^e = bd$. Now $(de)^2 = de^2d^e = dbd = b$, thus $M = \langle a,c,de \mid a^2 = c^2 = (de)^4 = 1, a^{de} = a, c^{de} = ac \rangle$, where we denote $a \equiv x,c \equiv y$, $de \equiv z$, $M = \langle x,y,z \mid x^2 = y^2 = z^4 = 1, x^z = x, y^z = xy \rangle = \langle x,y \rangle \cdot \langle z \rangle \cong E_4 \cdot Z_4$. Group M is a non-metacyclic subgroup of G, but $\Omega_1(M) = \langle x,y,z^2 \rangle \neq M$, a contradiction with our theorem

assumption. Therefore, only extension of group $H \cong E_{16}$ with property S is group $G \equiv G_1 \cong E_{32}$.

B. Extension of $D_8 \times Z_2$:

We denote $H \equiv D_8 \times Z_2 = \langle a, b, c \mid a^4 = b^2 = c^2 = 1, a^b = a^{-1} \rangle$. Then $\mho_1(H) =$ $\Phi(H) = \langle a^2 \rangle \cong Z_2, \ Z(H) = \langle a^2, c \rangle \cong E_4.$ For the set $O_4(H) = \{x \in H \mid |x| = 1\}$ $\{A\} = \{a, a^3, ac, a^3c\}$ is $\langle O_4(H) \rangle = \langle a, c \rangle \cong Z_4 \times Z_2$. Let $G = \langle H, d \rangle$, |d| = 2, be an extension of the group H by involution d. Since $\mho_1(H) = \Phi(H) = \langle a^2 \rangle$ and $Z(H) = \langle a^2, c \rangle$ are characteristic in G, it is possible to interchange: element a with any element of order 4 in $O_4(H) = \{a, a^3, ac, a^3c\}$; element b with any involution which is not in Z(H), thus with elements from $O_2(H) \setminus Z(H) =$ $\{b, ab, a^2b, a^3b, bc, abc, a^2bc, a^3bc\}$; element c with any central involution which is not in $\mho_1(H)$, thus with elements from $Z(H)\backslash \mho_1(H)=\{c,a^2c\}$. Now we have $a^d \in \{a, a^3, ac, a^3c\} - 4$ cases, $c^d \in \{c, a^2c\} - 2$ cases, and $b^d = a^{\alpha}bc^{\gamma}$, $\alpha \in$ $\{0,1,2,3\}-4$ cases, $\gamma \in \{0,1\}-2$ cases, so for a group G constructed as $G = \langle H, d \rangle$ we have $4 \cdot 2 \cdot 4 \cdot 2 = 64$ cases altogether. Now, we observe each particular case. If $a^d = a$, $c^d = c$ we would have non-metacyclic subgroup $\langle a,c,d\rangle\cong Z_4\times E_4$ which is not generated by involutions, a contradiction. If we take $a^d = a^3$, $c^d = a^2c$ it follows, by replacing element a with element ac, $(ac)^d = a^3a^2c = ac$, $c^d = (ac)^2c$, so this case leads to case $a^d = a$, $c^d = a^2c$. If we take $a^d = ac$, $c^d = a^2c$, by replacing element a with element ac, we have $(ac)^d = aca^2c = a^3$, but from $a^{d^2} = a$ and $a^{d^2} = (ac)^d = a^3$ we get a contradiction. For $a^d = a^3c$, $c^d = c$, by replacing element c with element a^2c we get $a^d = a^3c = a(a^2c)$, $(a^2c)^d = a^2c^2c = a^2c$, so this case leads to case $a^d = ac$, $c^d = c$ which leads to a contradiction. For $a^d = ac$, $c^d = c$ the group G contains the subgroup $\langle a,c,d \mid a^4=c^2=d^2=1,c^a=c,c^d=c,d^a=cd\rangle=$ $\langle c, d \rangle \cdot \langle a \rangle \cong E_4 \cdot Z_4$, a contradiction.

Therefore, we have two cases: 1.) $a^d = a$, $c^d = a^2c$, 2.) $a^d = a^3$, $c^d = c$,

where $b^d = a^{\alpha}bc^{\gamma}$, $\alpha \in \{0, 1, 2, 3\}$, $\gamma \in \{0, 1\}$. In case 1.) we have $b^{d^2} = b$ and $b^{d^2} = (b^d)^d = (a^{\alpha}bc^{\gamma})^d = a^{\alpha}a^{\alpha}bc^{\gamma}a^{2\gamma}c^{\gamma} = a^{2\alpha+2\gamma}b$. Thus, $2(\alpha+\gamma) \equiv 0 \pmod{4} \Rightarrow (\alpha+\gamma) \equiv 0 \pmod{2} \Rightarrow (\alpha,\gamma) \in \{(0,0),(1,1),(3,1),(2,0)\}$. Now we replace in case 1.) element b with involution bc, and in case 2.) element b with involution $a^{\beta}b$, for $\beta \in \{0,1,2,3\}$:

- 1.) From $(bc)^d = a^{\alpha}bc^{\gamma}a^2c = a^{\alpha+2}(bc)c^{\gamma}$ follows: $(\alpha, \gamma) \in \{(0, 0), (1, 1)\},$ because α can be replaced with $\alpha + 2$.
- 2.) From $(a^{\beta}b)^d = a^{3\beta}a^{\alpha}bc^{\gamma} = a^{2\beta}a^{\alpha}(a^{\beta}b)c^{\gamma}$ for $\beta \in \{1,3\}$ follows $(a^{\beta}b)^d = a^{\alpha+2}(a^{\beta}b)c^{\gamma}$, so we have $(\alpha,\gamma) \in \{(0,0),(0,1),(1,0),(1,1)\}$. In case 2.) for $(\alpha,\gamma) = (0,0)$ we get $b^d = b$, so $\langle a^2,b,c,d \rangle \cong E_{16}$, and we have already solved this case.

Also in case 2.) for $(\alpha, \gamma) = (1, 1)$ we have $b^d = abc$, so by replacing element a with element ac we get $(ac)^d = a^3c = a^3c^3 = (ac)^3$, $b^d = ac \cdot b$, so this case leads to case $(\alpha, \gamma) = (1, 0)$. Therefore we have 4 groups:

$$G_2 = \langle a,b,c,d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, a^d = a^{-1}, b^d = bc \rangle = (\langle a \rangle \times \langle bd \rangle) \cdot \langle d \rangle \cong (Z_4 \times Z_4) \cdot Z_2;$$

$$\begin{split} G_3 &= \langle a,b,c,d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, a^d = a^{-1}, b^d = ab \rangle = \\ &= \langle bd,d \mid (bd)^8 = d^2 = 1, (bd)^d = (bd)^{-1} \rangle \times \langle c \mid c^2 = 1 \rangle \cong D_{16} \times Z_2 \cong \\ &\cong (Z_8 \times Z_2) \cdot Z_2, \text{ quasi-dihedral group;} \\ G_4 &= \langle a,b,c,d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, c^d = a^2c \rangle = \\ &= \langle a,b \mid a^4 = b^2 = 1, a^b = a^{-1} \rangle * \langle cd,d \mid (cd)^4 = d^2 = 1, (cd)^d = \\ &= (cd)^{-1} \rangle \cong D_8 * D_8, \text{ where } (cd)^2 = a^2; \\ G_5 &= \langle a,b,c,d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, b^d = abc, c^d = a^2c \rangle = \\ &= \langle bd,c \mid (bd)^8 = c^2 = 1, (bd)^c = (bd)^5 \rangle \cdot \langle d \mid d^2 = 1 \rangle \cong M_{16} \cdot Z_2 \cong \\ &\cong D_{16} \times_2 E_4. \end{split}$$

C. Extension of $D_{16} * Z_4$:

We denote $H \equiv D_{16} * Z_4 = \langle x, y, z \mid x^8 = y^2 = 1, z^2 = x^4, x^y = x^{-1} \rangle$. A \mathcal{MC}_2 -group H is extension of \mathcal{MC}_1 -group $D_8 * Z_4$ by an involution. Now we extend group H by involution to \mathcal{MC}_3 -group G, i.e. for $e \in G \setminus H$, |e| = 2 we have:

$$G = \langle H, e \mid (H), e^2 = 1, x^e = x^{\gamma}, y^e = x^{\delta}y, z^e = x^{4\varepsilon}z \rangle,$$

where (H) denotes relations in $H, \gamma \in \{1, 3, 5, 7\}, \delta \in \{0, ..., 7\}, \varepsilon \in \{0, 1\}$. We have $Z(H) = \langle z \rangle \cong Z_4$ char $H \triangleleft G$. From $y^{e^2} = y$ and $y^{e^2} = (x^{\delta}y)^e = x^{\gamma\delta}x^{\delta}y$ follows $\delta(\gamma+1) \equiv 0 \pmod{8}$. For $\gamma=1$ is $2\delta \equiv 0 \pmod{8}$, i.e. $\delta \in \{0,4\}$. For $\gamma = 3$ is $4\delta \equiv 0 \pmod{8}$, i.e. $\delta \in \{0, 2, 4, 6\}$. For $\gamma = 5$ is $6\delta \equiv 0 \pmod{8}$, i.e. $\delta \in \{0,4\}$. For $\gamma = 7$ is $8\delta \equiv 0 \pmod{8}$, i.e. $\delta \in \{0,...,7\}$. We have 32 possibilities. Involution y can be replaced with any involution $x^{\alpha}y, \ \alpha \in \{0, ..., 7\}$. We have $(x^{\alpha}y)^{e} = x^{\alpha\gamma}x^{\delta}y = x^{\alpha\gamma+\delta-\alpha}x^{\alpha}y = x^{\delta'}x^{\alpha}y$, so it follows that δ must be transferred into new $\delta' = \alpha(\gamma - 1) + \delta$, $\alpha \in \{0, ..., 7\}$, i.e. for $\gamma = 1$ is $\delta' \in \{0, 4\}$; for $\gamma = 3$ is $\delta' = 0$; for $\gamma = 5$ is $\delta' = 0$; for $\gamma = 7$ is $\delta' \in \{0, 1\}$. For $\varepsilon \in \{0, 1\}$ we have 12 possible cases. For the sake of brevity we again denote $\delta' \equiv \delta$. Now, for $\delta = 0$ is $y^e = y$, but for $\varepsilon = 0$ we have $\langle z, y, e \rangle \cong Z_4 \times E_4$, a contradiction. Thus, for $\delta = 0$ must be $\varepsilon = 1$. In the case $\gamma = 1, \delta = 4, \varepsilon = 0$ we get the group $\langle x^2, z, e \rangle = \langle x^2 \rangle \times \langle x^2 z, e \rangle \cong Z_4 \times E_4$, so this case also leads to a contradiction. For $\gamma \in \{1, 3, 5, 7\}$ and $\delta = 0, \varepsilon = 1$ we get group $\langle x^4, y, e \rangle \cong E_8$, a contradiction again. Furthermore, a group in which we have $x^e = x^{-1}$, $y^e = y$, $z^e = x^4z$ does not stand, because if we observe this group as a factor-group over $\langle x^4 \rangle$ we get: $\overline{x}^{\overline{e}} = \overline{x}, \ \overline{y}^{\overline{e}} = \overline{y}, \ \overline{z}^{\overline{e}} = \overline{z}, \text{ i.e. } \langle \overline{x}, \overline{z}, \overline{e} \rangle \cong Z_4 \times E_4, \text{ and this is a non-metacyclic}$ group not generated with involutions, so according to Lemma 1.6, the original group is also not generated with involutions. It is a contradiction. The group in which we have $x^e = x, y^e = x^4y, z^e = x^4z$ also does not stand, because its factor-group over $\langle x^4 \rangle$ is again group $\langle \overline{x}, \overline{z}, \overline{e} \rangle \cong Z_4 \times E_4$. Therefore we have 2 groups:

$$G_{6} = \langle x, y, z, e \mid x^{8} = 1, z^{2} = x^{4}, x^{y} = x^{-1}, x^{e} = x^{-1}, y^{e} = xy \rangle = \langle ye, e \mid (ye)^{16} = e^{2} = 1, (ye)^{e} = (ye)^{-1} \rangle * \langle z \mid z^{4} = 1 \rangle \cong D_{32} * Z_{4};$$

$$G_{7} = \langle x, y, z, e \mid x^{8} = 1, z^{2} = x^{4}, x^{y} = x^{-1}, x^{e} = x^{-1}, y^{e} = xy, z^{e} = x^{4}z = z^{-1} \rangle = \langle ye, x^{2}z \mid (ye)^{16} = (x^{2}z)^{2} = 1, (ye)^{x^{2}z} = (ye)^{9} \rangle \cdot \langle e \mid e^{2} = 1 \rangle \cong M_{32} \cdot Z_{2} \cong D_{32} \times_{2} E_{4}.$$

This ends proof of Theorem 2.9. Now it remains to verify that all the established groups $G_1 - G_5$ and G_6, G_7 are not mutually isomorphic.

Remark 2.10. (Maximal subgroups of the \mathcal{MC}_3 2-groups with property \mathcal{S})

Having observed all maximal subgroups of the groups established in Theorem 2.9, we verify that each of those groups is a \mathcal{MC}_3 2-group with property \mathcal{S} and also prove that the groups established in Theorem 2.9 are not mutually isomorphic. Specifically, those maximal subgroups are either metacyclic $(D_{16}, SD_{16}, M_{16}, D_{32}, SD_{32}, M_{32}, Z_{16} \times Z_2, Z_8 \times Z_2, Z_4 \times Z_4)$ or non-metacyclic $(E_{16}, D_8 \times Z_2, D_8 \times Z_4, D_{16} \times Z_4, D_{16} \times Z_2)$. Here is a list of all determined maximal subgroups:

a) of order 32

$$G_1 = \langle a, b, c, d \rangle \cong E_{32}$$

According to Proposition 2.7 group G_1 has 31 maximal subgroups, and all these subgroups are isomorphic to E_{16} .

$$G_2=\langle a,b,c,d|a^4=b^2=c^2=d^2=1,a^b=a^{-1},a^d=a^{-1},b^d=bc\rangle\cong (Z_4\times Z_4)\cdot Z_2$$

 $\Phi(G_2) = \langle a^2, c \rangle \cong E_4$ holds. Therefore, $G_2/\Phi(G_2) \cong E_8$ and according to Proposition 2.7 it follows that G_2 possesses 7 maximal subgroups which are:

$$\begin{split} H_1 &= \langle a,b,c \rangle \cong \langle a,b \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_2 &= \langle a,c,d \rangle \cong \langle a,d \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_3 &= \langle a,c,bd \rangle \cong \langle a \rangle \times \langle bd \rangle \cong Z_4 \times Z_4, \\ H_4 &= \langle b,d,c \rangle \cong \langle bd,d \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_5 &= \langle b,ad,c \rangle \cong \langle bad,ad \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_6 &= \langle ab,d,c \rangle \cong \langle abd,d \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_7 &= \langle ab,ad,c \rangle \cong \langle abad,ad \rangle \times \langle c \rangle \cong D_8 \times Z_2. \end{split}$$

$$G_3 = \langle a, b, c, d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, a^d = a^{-1}, b^d = ab \rangle \cong (Z_8 \times Z_2) \cdot Z_2$$

 $\Phi(G_3) = \langle a \rangle \cong Z_4$ holds. Therefore, $G_3/\Phi(G_3) \cong E_8$, so it follows that G_3 possesses 7 maximal subgroups which are:

$$\begin{split} H_1 &= \langle a,b,c \rangle \cong \langle a,b \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_2 &= \langle a,b,d \rangle \cong \langle bd,d \rangle \cong D_{16}, \\ H_3 &= \langle a,c,d \rangle \cong \langle a,d \rangle \times \langle c \rangle \cong D_8 \times Z_2, \\ H_4 &= \langle a,bc,b \rangle \cong \langle bcd,d \rangle \cong D_{16}, \\ H_5 &= \langle a,bd,c \rangle \cong \langle bd \rangle \times \langle c \rangle \cong Z_8 \times Z_2, \\ H_6 &= \langle a,cd,b \rangle \cong \langle bcd,cd \rangle \cong D_{16}, \\ H_7 &= \langle a,bd,cd \rangle \cong \langle bd,cd \rangle \cong D_{16}. \end{split}$$

$$G_4 = \langle a, b, c, d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, c^d = a^2 c \rangle \cong D_8 * D_8$$

 $\Phi(G_4) = \langle a^2 \rangle \cong Z_2$ holds. Therefore, $G_4/\Phi(G_4) \cong E_{16}$, so it follows that G_4

possesses 15 maximal subgroups which are:

 $H_1 = \langle a, b, c \rangle \cong \langle a, b \rangle \times \langle c \rangle \cong D_8 \times Z_2,$

 $H_2 = \langle a, b, d \rangle \cong \langle a, b \rangle \times \langle d \rangle \cong D_8 \times Z_2,$

 $H_3 = \langle a, c, d \rangle \cong \langle ac, d \rangle * \langle a \rangle \cong D_8 * Z_4,$

 $H_4 = \langle b, c, d \rangle \cong \langle cd, d \rangle \times \langle b \rangle \cong D_8 \times Z_2,$

 $H_5 = \langle a, b, cd \rangle \cong \langle a, b \rangle * \langle cd \rangle \cong D_8 * Z_4,$

 $H_6 = \langle a, c, bd \rangle \cong \langle a, bd \rangle * \langle ac \rangle \cong D_8 * Z_4,$ $H_7 = \langle a, d, bc \rangle \cong \langle a, bc \rangle * \langle ad \rangle \cong D_8 * Z_4,$

 $H_8 = \langle b, c, ad \rangle \cong \langle ad, b \rangle \times \langle bc \rangle \cong D_8 \times Z_2,$

 $H_9 = \langle b, d, ac \rangle \cong \langle ac, b \rangle \times \langle bd \rangle \cong D_8 \times Z_2,$

 $H_{10} = \langle c, d, ab \rangle \cong \langle cd, d \rangle \times \langle ab \rangle \cong D_8 \times Z_2,$

 $H_{11} = \langle a, bc, bd \rangle \cong \langle a, bc \rangle \times \langle acd \rangle \cong D_8 \times Z_2,$

 $H_{12} = \langle b, ac, ad \rangle \cong \langle ac, b \rangle * \langle bcd \rangle \cong D_8 * Z_4,$

 $H_{13} = \langle c, ab, ad \rangle \cong \langle ad, c \rangle \times \langle abc \rangle \cong D_8 \times Z_2,$

 $H_{14} = \langle ab, ac, d \rangle \cong \langle ac, d \rangle \times \langle abd \rangle \cong D_8 \times Z_2,$ $H_{15} = \langle bc, cd, a \rangle \cong \langle cd, bc \rangle \times \langle acd \rangle \cong D_8 \times Z_2.$

$$G_5 = \langle a, b, c, d \mid a^4 = b^2 = c^2 = d^2 = 1, a^b = a^{-1}, b^d = abc, c^d = a^2c \rangle \cong M_{16} \cdot Z_2 \cong D_{16} \times_2 E_4$$

 $\Phi(G_5) = \langle ac \rangle \cong Z_4$ holds. Therefore, $G_5/\Phi(G_5) \cong E_8$, so it follows that G_5 possesses 7 maximal subgroups which are:

 $H_1 = \langle ac, a, b \rangle \cong \langle ac, a \rangle \times \langle b \rangle \cong D_8 \times Z_2,$

 $H_2 = \langle ac, a, d \rangle \cong \langle ac, d \rangle * \langle a \rangle \cong D_8 * Z_4,$

 $H_3 = \langle ac, b, d \rangle \cong \langle bd, d \rangle \cong D_{16},$

 $H_4 = \langle ac, ab, d \rangle \cong \langle abd, d \rangle \cong D_{16},$

 $H_5 = \langle ac, ad, b \rangle \cong \langle bad, ad \rangle \cong SD_{16},$

 $H_6 = \langle ac, bd, a \rangle \cong \langle bd, c \rangle \cong M_{16},$

 $H_7 = \langle ac, ab, ad \rangle \cong \langle abad, ad \rangle \cong SD_{16}.$

b) of order 64

 $\Phi(G_6) = \langle x \rangle \cong Z_8$ holds. Therefore, $G_6/\Phi(G_6) \cong E_8$, so it follows that G_6 possesses 7 maximal subgroups which are:

 $H_1 = \langle x, y, z \rangle \cong \langle x, y \rangle * \langle z \rangle \cong D_{16} * Z_4,$

 $H_2 = \langle x, y, e \rangle \cong \langle ye, e \rangle \cong D_{32},$

 $H_3 = \langle x, z, e \rangle \cong \langle x, e \rangle * \langle z \rangle \cong D_{16} * Z_4,$

 $H_4 = \langle x, yz, e \rangle \cong \langle yze, e \rangle \cong SD_{32},$

 $H_5 = \langle x, ye, z \rangle \cong \langle ye \rangle \times \langle x^2 z \rangle \cong Z_{16} \times Z_2,$

 $H_6 = \langle x, ze, y \rangle \cong \langle yze, e \rangle \cong SD_{32},$

 $H_7 = \langle x, ye, ze \rangle \cong \langle ye, z^2e \rangle \cong D_{32}.$

$$G_7 = \langle x,y,z,e \mid x^8 = 1, x^4 = z^2, x^y = x^{-1}, x^e = x^{-1}, y^e = xy, z^e = z^{-1} \rangle \cong M_{32} \cdot Z_2 \cong D_{32} \times_2 E_4$$

 $\Phi(G_7) = \langle x \rangle \cong Z_8$ holds. Therefore, $G_7/\Phi(G_7) \cong E_8$, so it follows that G_7 possesses 7 maximal subgroups which are:

$$\begin{split} H_1 &= \langle x,y,z \rangle \cong \langle x,y \rangle * \langle z \rangle \cong D_{16} * Z_4, \\ H_2 &= \langle x,y,e \rangle \cong \langle ye,e \rangle \cong D_{32}, \\ H_3 &= \langle x,z,e \rangle \cong \langle x,e \rangle \times \langle x^2z \rangle \cong D_{16} \times Z_2, \\ H_4 &= \langle x,yz,e \rangle \cong \langle yze,e \rangle \cong SD_{32}, \\ H_5 &= \langle x,ye,z \rangle \cong \langle ye,x^2z \rangle \cong M_{32}, \\ H_6 &= \langle x,ze,y \rangle \cong \langle yze,ze \rangle \cong D_{32}, \\ H_7 &= \langle x,ye,ze \rangle \cong \langle ye,ze \rangle \cong SD_{32}. \end{split}$$

References

- [1] Ćepulić, V., Ivanković, M., Kovač Striko, E., Second-metacyclic finite 2-groups. Glasnik Matematički 40(60) (2005), 59-69.
- [2] Janko, Z., Finite 2-groups with exactly four cyclic subgroups of order 2ⁿ. J. Reine Angew. Math. 566 (2004), 135-181.

Received by the editors December 19, 2015 First published online August 26, 2016