ON A LORENTZIAN PARA-SASAKIAN MANIFOLD WITH RESPECT TO THE QUARTER-SYMMETRIC METRIC CONNECTION

Rajendra Prasad¹ and Abdul Haseeb²³

Abstract. In this paper, we study certain curvature conditions satisfied by the conharmonic curvature tensor in a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection.

AMS Mathematics Subject Classification (2010): 53B05; 53C25

Key words and phrases: Lorentzian para-Sasakian manifold; quarter-symmetric metric connection; η -Einstein manifold; conharmonic curvature tensor

1. Introduction

In 1989, K. Matsumoto [17] introduced the notion of Lorentzian para-Sasakian manifolds. I. Mihai and R. Rosca [19] introduced the same notion independently and obtained several results. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [18]; U. C. De, K. Matsumoto and A. A. Shaikh [3] and many others such as ([20],[23]-[25]).

A linear connection $\bar{\nabla}$ in a Riemannian manifold M is said to be a quarter-symmetric connection [8] if the torsion tensor T of the connection $\bar{\nabla}$

$$T(X,Y) = \bar{\nabla}_X Y - \bar{\nabla}_Y X - [X,Y]$$

satisfies

$$T(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y,$$

where η is a 1-form and ϕ is a (1,1) tensor field. If moreover, a quarter-symmetric connection $\bar{\nabla}$ satisfies the condition

$$(\bar{\nabla}_X g)(Y, Z) = 0$$

for all $X,Y,Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields of the manifold M, then $\bar{\nabla}$ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection. If we put $\phi X = X$ and $\phi Y = Y$, then the quarter-symmetric metric connection reduces

 $^{^1\}mathrm{Department}$ of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India, e-mail: rp.manpur@rediffmail.com

²Corresponding Author

³Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia, e-mail: malikhaseeb80@gmail.com

to the semi-symmetric metric connection [7]. Thus the notion of the quarter-symmetric connection generalizes the notion of the semi-symmetric connection. A quarter-symmetric metric connection has been studied by various authors ([1], [5], [9]-[11], [14]-[16]).

A relation between the quarter-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ in an *n*-dimensional Lorentzian para-Sasakian manifold M is given by [21]

(1.1)
$$\bar{\nabla}_X Y = \nabla_X Y - \eta(X) \phi Y.$$

T. Takahashi [26] introduced the notion of local ϕ -symmetry on a Sasakian manifold and obtained a few interesting properties. U. C. De, A.A. Shaikh and S. Biswas [6] generalized the notion of ϕ -symmetric manifolds to ϕ -recurrent manifolds in the context of Sasakian manifolds. Venkatesha and C.S.Bagewadi [27] studied concircular ϕ -recurrent LP-Sasakian manifolds which generalize the notion of locally concircular ϕ -symmetric LP-Sasakian manifolds and obtained some interesting results. Recently, U. C. De and Pradip Manjhi have studied ϕ -Weyl semisymmetric and ϕ -projectively semisymmetric generalized Sasakian space forms and gave some illustrative examples [4].

Motivated by the above studies, in this paper we study certain curvature conditions satisfied by the conharmonic curvature tensor in a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection.

The paper is organized as follows: In Section 2, we give a brief introduction of a Lorentzian para-Sasakian manifold. In Section 3, we deduce the relation between the curvature tensor of Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection and the Levi-Civita connection. Sections 4 and 5 are devoted to study conharmonically flat and ϕ -conharmonically flat Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection, respectively. Section 6 deals with the study of ϕ -conharmonically semi-symmetric η -Einstein Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection. In Section 7, we study Lorentzian para-Sasakian manifolds satisfying the condition $\bar{C}(\xi,X)\cdot \bar{S}=0$. A Lorentzian para-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the quarter-symmetric metric connection and manifold if recurrent with a Levi-Civita connection is studied in Section 8.

2. Preliminaries

A differentiable manifold of dimension n is called a Lorentzian para-Sasakian manifold, if it admits a (1,1)-tensor field ϕ , a contravariant vector field ξ , a 1-form η and a Lorentzian metric g which satisfy

(2.1)
$$\phi^2 X = X + \eta(X)\xi, \quad \eta(\xi) = -1,$$

(2.2)
$$g(X,\xi) = \eta(X), \quad \phi \xi = 0, \quad \eta(\phi X) = 0,$$

$$(2.3) g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$

$$(2.4) \qquad (\nabla_X \phi)(Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi,$$

$$(2.5) \nabla_X \xi = \phi X,$$

where ∇ denotes the covariant differentiation with respect to the Lorentzian metric g.

If we put

(2.6)
$$\Phi(X,Y) = g(\phi X, Y)$$

for all vector fields X and Y, then the tensor field $\Phi(X,Y)$ is a symmetric (0,2) tensor field [17]. Also since the 1-form η is closed in an LP-Sasakian manifold, we have [3]

$$(2.7) \qquad (\nabla_X \eta)(Y) = \Phi(X, Y), \quad \Phi(X, \xi) = 0$$

for all vector fields $X, Y \in \chi(M)$.

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian para-Sasakian manifold M with respect to the Levi-Civita connection satisfy the following equations [24]:

(2.8)
$$\eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),$$

(2.9)
$$R(\xi, X)Y = -R(X, \xi)Y = g(X, Y)\xi - \eta(Y)X,$$

(2.10)
$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y,$$

(2.11)
$$R(\xi, X)\xi = -R(X, \xi)\xi = X + \eta(X)\xi,$$

(2.12)
$$S(X,\xi) = (n-1)\eta(X), \quad Q\xi = (n-1)\xi,$$

(2.13)
$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y)$$

for all vector fields $X, Y \in \chi(M)$.

Definition 2.1. A Lorentzian para-Sasakian manifold M is said to be an η -Einstein manifold if its Ricci tensor S of type (0,2) satisfies

$$(2.14) S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a and b are smooth functions on M. In particular, if b=0, then an η -Einstein manifold is an Einstein manifold.

Contracting (2.14), we have

$$(2.15) r = na - b.$$

On the other hand, putting $X = Y = \xi$ in (2.14) and using (2.1), (2.2) and (2.12), we also have

$$(2.16) -(n-1) = -a + b.$$

Hence it follows from (2.15) and (2.16) that

$$a = \frac{r}{n-1} - 1, \qquad b = \frac{r}{n-1} - n.$$

So the Ricci tensor S of an η -Einstein Lorentzian para-Sasakian manifold is given by

(2.17)
$$S(X,Y) = (\frac{r}{n-1} - 1)g(X,Y) + (\frac{r}{n-1} - n)\eta(X)\eta(Y).$$

3. Curvature tensor of Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

Let R and \bar{R} , respectively, be the curvature tensors of the Levi-Civita connection ∇ and the quarter-symmetric metric connection $\bar{\nabla}$ in a Lorentzian para-Sasakian manifold M. Then we have [2]

(3.1)
$$\bar{R}(X,Y)Z = R(X,Y)Z + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$
$$+g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi,$$

(3.2)
$$\bar{R}(\xi, Y)Z = -\bar{R}(Y, \xi)Z = -2\eta(Z)Y - 2\eta(X)\eta(Y)\xi,$$

$$\bar{R}(X,Y)\xi = 2\eta(Y)X - \eta(X)Y,$$

(3.4)
$$\bar{S}(Y,Z) = S(Y,Z) - g(Y,Z) - n\eta(Y)\eta(Z),$$

(3.5)
$$\bar{Q}Y = QY - Y - n\eta(Y)\xi, \quad \bar{Q}\xi = 2(n-1)\xi,$$

(3.6)
$$\bar{S}(Y,\xi) = 2(n-1)\eta(Y), \quad \bar{S}(\xi,\xi) = -2(n-1),$$

(3.7)
$$\bar{S}(\phi Y, \phi Z) = S(Y, Z) - g(Y, Z) - (n-2)\eta(Y)\eta(Z)$$

for all vector fields $X, Y, Z \in \chi(M)$.

4. Conharmonically flat Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

As a special subgroup of the conformal transformation group, Ishii [13] introduced the notion of conharmonic transformation under which a harmonic function transforms into a harmonic function. The conharmonic curvature tensor C of type (1,3) in a Lorentzian para-Sasakian manifold M of dimension n is defined by ([12],[13])

(4.1)
$$C(X,Y)Z = R(X,Y)Z - \frac{1}{(n-2)}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY]$$

for all vector fields $X,Y,Z\in\chi(M)$, which is invariant under conharmonic transformation.

Analogous to the equation (4.1), we define the conharmonic curvature tensor \bar{C} in a Lorentzian para-Sasakian manifold M with respect to the quarter symmetric metric connection $\bar{\nabla}$ by

(4.2)
$$\bar{C}(X,Y)Z = \bar{R}(X,Y)Z - \frac{1}{(n-2)}[\bar{S}(Y,Z)X - \bar{S}(X,Z)Y + g(Y,Z)\bar{Q}X - g(X,Z)\bar{Q}Y],$$

where \bar{R} , \bar{S} and \bar{Q} are the Riemannian curvature tensor, the Ricci tensor and the Ricci operator with respect to the connection $\bar{\nabla}$, respectively. A manifold whose conharmonic curvature tensor vanishes at every point of the manifold is called conharmonically flat manifold.

Let us assume that the manifold M with respect to the quarter-symmetric metric connection is conharmonically flat, that is, $\bar{C} = 0$. Then from (4.2), we have

$$(4.3) \ \bar{R}(X,Y)Z = \frac{1}{(n-2)} [\bar{S}(Y,Z)X - \bar{S}(X,Z)Y + g(Y,Z)\bar{Q}X - g(X,Z)\bar{Q}Y].$$

By putting $Y=Z=\xi$ in (4.3) and then using (3.3), (3.6) and (2.2), we find

$$(4.4) \bar{Q}X = -2X - 2n\eta(X)\xi.$$

Similarly we have

$$\bar{Q}Y = -2X - 2n\eta(Y)\xi.$$

Now from (4.3)-(4.5), we have

(4.6)
$$\bar{R}(X,Y)Z = \frac{1}{(n-2)}[\bar{S}(Y,Z)X - \bar{S}(X,Z)Y - 2g(Y,Z)X + 2g(X,Z)Y]$$

$$-2ng(Y,Z)\eta(X)\xi + 2ng(X,Z)\eta(Y)\xi].$$

Putting $X = \xi$ and using (3.2), (3.6), (2.1) and (2.2), we get

$$\bar{S}(Y,Z) = -2(n-1)g(Y,Z) - 4(n-1)\eta(Y)\eta(Z)$$

which by using (3.4) becomes

$$(4.7) S(Y,Z) = -(2n-3)g(Y,Z) - (3n-4)\eta(Y)\eta(Z).$$

Hence contracing (4.7), we obtain

$$(4.8) r = -2(n-1)(n-2).$$

Thus we have the following theorem:

Theorem 4.1. An n-dimensional conharmonically flat Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection is an η -Einstein manifold with the scalar curvature r = -2(n-1)(n-2).

5. ϕ -conharmonically flat Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

Definition 5.1 ([22]). An *n*-dimensional (n > 3) Lorentzian para-Sasakian manifold satisfying the condition

(5.1)
$$\phi^2 C(\phi X, \phi Y)\phi Z = 0$$

is called ϕ -conharmonically flat.

Analogous to the equation (5.1), we define that an n-dimensional Lorentzian para-Sasakian manifold is ϕ -conharmonically flat with respect to the quarter-symmetric metric connection if it satisfies

(5.2)
$$\phi^2 \bar{C}(\phi X, \phi Y) \phi Z = 0$$

for any vector fields $X, Y, Z \in \chi(M)$.

Assume that the manifold is ϕ -conharmonically flat with respect to the quarter-symmetric metric connection. Then from (5.2), we have

$$(5.3) g(\bar{C}(\phi X, \phi Y)\phi Z, \phi W) = 0$$

for any $X, Y, Z, W \in \chi(M)$. Using (4.2) in (5.3), we have

$$(5.4) g(\bar{R}(\phi X, \phi Y)\phi Z, \phi W) = \frac{1}{(n-2)} [g(\phi Y, \phi Z)\bar{S}(\phi X, \phi W)]$$

$$-g(\phi X,\phi Z)\bar{S}(\phi Y,\phi W)+g(\phi X,\phi W)\bar{S}(\phi Y,\phi Z)-g(\phi Y,\phi W)\bar{S}(\phi X,\phi Z)].$$

Now in view of (3.1) and (3.4), (5.4) becomes

$$(5.5) g(R(\phi X, \phi Y)\phi Z, \phi W) = \frac{1}{(n-2)} [g(\phi Y, \phi Z)S(\phi X, \phi W)$$
$$-g(\phi X, \phi Z)S(\phi Y, \phi W) + g(\phi X, \phi W)S(\phi Y, \phi Z) - g(\phi Y, \phi W)S(\phi X, \phi Z)].$$
$$+\frac{1}{(n-2)} [-g(\phi Y, \phi Z)g(\phi X, \phi W) + g(\phi X, \phi Z)g(\phi Y, \phi W)$$
$$-g(\phi X, \phi W)g(\phi Y, \phi Z) + g(\phi Y, \phi W)g(\phi X, \phi Z)].$$

Let $\{e_1, e_2,, e_{n-1}\}$ be a local orthonormal basis of vector fields in M. Using that $\{\phi e_1, \phi e_2,, \phi e_{n-1}, \xi\}$ is also a local orthonormal basis, if we put $X = W = e_i$ in (5.5) and sum up with respect to i, then

(5.6)
$$\sum_{i=1}^{n-1} g(R(\phi e_i, \phi Y)\phi Z, \phi e_i) = \frac{1}{(n-2)} \sum_{i=1}^{n-1} [g(\phi Y, \phi Z)S(\phi e_i, \phi e_i) - g(\phi e_i, \phi Z)S(\phi Y, \phi e_i) + g(\phi e_i, \phi e_i)S(\phi Y, \phi Z) - g(\phi Y, \phi e_i)S(\phi e_i, \phi Z)].$$

$$+ \frac{1}{(n-2)} \sum_{i=1}^{n-1} [-g(\phi Y, \phi Z)g(\phi e_i, \phi e_i) + g(\phi e_i, \phi Z)g(\phi Y, \phi e_i) - g(\phi e_i, \phi e_i)g(\phi Y, \phi Z) + g(\phi Y, \phi e_i)g(\phi e_i, \phi Z)].$$

It can be easily verified that [22]

(5.7)
$$\sum_{i=1}^{n-1} g(R(\phi e_i, \phi Y)\phi Z, \phi e_i) = S(\phi Y, \phi Z) + g(\phi Y, \phi Z),$$

(5.8)
$$\sum_{i=1}^{n-1} S(\phi e_i, \phi e_i) = r + n - 1,$$

(5.9)
$$\sum_{i=1}^{n-1} g(\phi e_i, \phi Z) S(\phi Y, \phi e_i) = S(\phi Y, \phi Z),$$

(5.10)
$$\sum_{i=1}^{n-1} g(\phi e_i, \phi e_i) = n - 1,$$

(5.11)
$$\sum_{i=1}^{n-1} g(\phi e_i, \phi Z) g(\phi Y, \phi e_i) = g(\phi Y, \phi Z).$$

By the virtue of (5.7)-(5.11), equation (5.6) can be written as

(5.12)
$$S(\phi Y, \phi Z) + g(\phi Y, \phi Z) = \frac{1}{(n-2)} [(r+n-1)g(\phi Y, \phi Z) + (n-3)S(\phi Y, \phi Z)] - 2g(\phi Y, \phi Z),$$

from which it follows that

(5.13)
$$S(\phi Y, \phi Z) = (r - 2n + 5)g(\phi Y, \phi Z).$$

By using (2.3) and (2.13) in (5.13), we get

$$(5.14) S(Y,Z) = (r-2n+5)g(Y,Z) + (r-3n+6)\eta(Y)\eta(Z).$$

Hence contracting (5.14), we obtain

(5.15)
$$r = \frac{2(n-1)(n-3)}{n-2}.$$

Thus we have the following theorem:

Theorem 5.2. Let M be an n-dimensional (n > 3), ϕ -conharmonically flat Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. Then M is an η -Einstein manifold with the scalar curvature $r = \frac{2(n-1)(n-3)}{n-2}$.

6. ϕ -conharmonically semi-symmetric η -Einstein Lorentzian para-Sasakian manifolds with respect to the quarter-symmetric metric connection

Definition 6.1. An η -Einstein Lorentzian para-Sasakian manifold (M^n, g) , n > 1 is said to be ϕ -conharmonically semisymmetric with respect to the quarter-symmetric metric connection if

$$\bar{C}(X,Y) \cdot \phi = 0$$

on M for all $X, Y \in \chi(M)$.

Let M be an n-dimensional ϕ -conharmonically semi-symmetric η -Einstein Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. Therefore $\bar{C}(X,Y)\cdot \phi=0$ becomes

(6.1)
$$(\bar{C}(X,Y) \cdot \phi)Z = \bar{C}(X,Y)\phi Z - \phi \bar{C}(X,Y)Z = 0$$

for any vector fields $X, Y, Z \in \chi(M)$. From (4.2), we have

(6.2)
$$\bar{C}(X,Y)\phi Z = \bar{R}(X,Y)\phi Z - \frac{1}{(n-2)}[\bar{S}(Y,\phi Z)X - \bar{S}(X,\phi Z)Y + g(Y,\phi Z)\bar{Q}X - g(X,\phi Z)\bar{Q}Y].$$

By using (3.1), (3.4) and (3.5), the last equation takes the form

(6.3)
$$\bar{C}(X,Y)\phi Z = R(X,Y)\phi Z + \eta(X)g(Y,\phi Z)\xi - \eta(Y)g(X,\phi Z)\xi$$
$$-\frac{1}{(n-2)}[S(Y,\phi Z)X - g(Y,\phi Z)X - S(X,\phi Z)Y + g(X,\phi Z)Y + g(Y,\phi Z)(QX - 2X - n\eta(X)\xi) - g(X,\phi Z)(QY - 2Y - n\eta(Y)\xi)].$$

Also we have

$$(6.4) \qquad \phi \bar{C}(X,Y)Z = \phi R(X,Y)Z + \eta(X)\eta(Z)\phi Y - \eta(Y)\eta(Z)\phi X$$

$$-\frac{1}{(n-2)}[S(Y,Z)\phi X - S(X,Z)\phi Y - g(Y,Z)\phi X + g(X,Z)\phi Y$$

$$-n\eta(Y)\eta(Z)\phi X + n\eta(X)\eta(Z)\phi Y + g(Y,Z)(\phi QX - \phi X) - g(X,Z)(\phi QY - \phi Y)].$$

By using (6.3) and (6.4), (6.1) takes the form

$$(6.5) \ g(Y,\phi Z)X - g(X,\phi Z)Y + \eta(X)g(Y,\phi Z)\xi - \eta(Y)g(X,\phi Z)\xi - g(Y,Z)\phi X \\ + g(X,Z)\phi Y - \eta(X)\eta(Z)\phi Y + \eta(Y)\eta(Z)\phi X \\ - \frac{1}{(n-2)}[S(Y,\phi Z)X - g(Y,\phi Z)X - S(X,\phi Z)Y + g(X,\phi Z)Y \\ + g(Y,\phi Z)(QX - 2X - n\eta(X)\xi) - g(X,\phi Z)(QY - 2Y - n\eta(Y)\xi)] \\ + \frac{1}{(n-2)}[S(Y,Z)\phi X - S(X,Z)\phi Y - g(Y,Z)\phi X + g(X,Z)\phi Y$$

 $-n\eta(Y)\eta(Z)\phi X + n\eta(X)\eta(Z)\phi Y + g(Y,Z)(\phi QX - \phi X) - g(X,Z)(\phi QY - \phi Y)] = 0.$

Taking $Y = \xi$ and then using (2.1), (2.2), (2.12) and (3.6), (6.5) reduces to

$$S(X, \phi Z)\xi + (2n - 4)g(X, \phi Z)\xi + n\eta(Z)\phi X = 0$$

which in view of (2.17) becomes

$$\left(\frac{r}{n-1} + 2n - 5\right)g(X, \phi Z)\xi + n\eta(Z)\phi X = 0.$$

Now considering Z to be orthogonal to ξ , then $\eta(Z)=0$ and $g(X,\phi Z)\neq 0$, which implies that

$$r = -(n-1)(2n-5).$$

Thus we can state the following theorem:

Theorem 6.2. For an n-dimensional ϕ -conharmonically semi-symmetric η -Einstein Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, the scalar curvature is r = -(n-1)(2n-5).

7. Lorentzian para-Sasakian manifolds satisfying $\bar{C}(\xi,X)\cdot\bar{S}=0$

Let us consider a Lorentzian para-Sasakian manifold satisfying $\bar{C}(\xi,X)\cdot\bar{S}=0.$ Then we have

(7.1)
$$\bar{S}(\bar{C}(\xi, X)Y, Z) + \bar{S}(Y, \bar{C}(\xi, X)Z) = 0.$$

In view of (4.2), we have

(7.2)
$$\bar{C}(\xi, X)Y = -\frac{1}{(n-2)} [-\eta(Y)X + (2n-4)\eta(X)\eta(Y)\xi + S(X, Y)\xi - \eta(Y)QX + (2n-3)g(X, Y)\xi].$$

Making use of (7.2), (7.1) takes the form

$$(7.3) \ \bar{S}(\bar{C}(\xi, X)Y, Z) = -\frac{1}{(n-2)} [\eta(Y)g(X, Z) + 2(n-1)(2n-3)g(X, Y)\eta(Z)$$

$$+(4(n-1)(n-2) + n(n-1) + n)\eta(X)\eta(Y)\eta(Z)$$

$$+2(n-1)\eta(Z)S(X, Y) - \eta(Y)S(QX, Z)].$$

Similarly we have

$$(7.4) \ \bar{S}(Y, \bar{C}(\xi, X)Z) = -\frac{1}{(n-2)} [\eta(Z)g(X, Y) + 2(n-1)(2n-3)g(X, Z)\eta(Y)$$

$$+(4(n-1)(n-2) + n(n-1) + n)\eta(X)\eta(Y)\eta(Z)$$

$$+2(n-1)\eta(Y)S(X, Z) - \eta(Z)S(QX, Y)].$$

Using (7.3) and (7.4) in (7.1), we have

$$(7.5) \qquad 2(4(n-1)(n-2) + n(n-1) + n)\eta(X)\eta(Y)\eta(Z) + \eta(Y)g(X,Z)$$

$$+\eta(Z)g(X,Y) + 2(n-1)\eta(Z)S(X,Y) + 2(n-1)\eta(Y)S(X,Z)$$

$$+2(n-1)(2n-3)g(X,Y)\eta(Z) + 2(n-1)(2n-3)g(X,Z)\eta(Y)$$

$$-\eta(Y)S(QX,Z) - \eta(Z)S(QX,Y) = 0.$$

Let λ be the eigenvalue of the endomorphism Q corresponding to an eigenvector X. Then

By using (7.6), (7.5) takes the form

$$(7.7) 2(4(n-1)(n-2) + n(n-1) + n)\eta(X)\eta(Y)\eta(Z) + \eta(Y)g(X,Z)$$
$$+\eta(Z)g(X,Y) + 2(n-1)\lambda\eta(Z)g(X,Y) + 2(n-1)\lambda\eta(Y)g(X,Z)$$
$$+2(n-1)(2n-3)g(X,Y)\eta(Z) + 2(n-1)(2n-3)g(X,Z)\eta(Y)$$

$$-\lambda^2 \eta(Y)g(X,Z) - \lambda^2 \eta(Z)g(X,Y) = 0$$

which after putting $Z = \xi$ reduces to

$$(7.8) [\lambda^2 - 2(n-1)\lambda - 2(n-1)(2n-3) - 1]g(X,Y)$$

$$-[\lambda^2 - 2(n-1)\lambda - 2(n-1)(2n-3) - 1 + 2(4(n-1)(n-2) + n(n-1) + n)]\eta(X)\eta(Y) = 0.$$

By replacing $Y = \xi$ in (7.8), we get

$$[\lambda^2 - 2(n-1)\lambda - 2(n-1)(2n-3) - 1 + 4(n-1)(n-2) + n(n-1) + n]\eta(X) = 0.$$

This gives

$$\lambda^2 - 2(n-1)\lambda + (n-1)^2 = 0, \quad \eta(X) \neq 0.$$

Hence we can state the following:

Theorem 7.1. If an n-dimensional Lorentzian para-Sasakian manifold satisfies $\bar{C}(\xi, X) \cdot \bar{S} = 0$, then the non-zero eigenvalues of the symmetric endomorphism Q of the tangent space corresponding to S are congruent, such as (n-1).

8. A Lorentzian para-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the quarter-symmetric metric connection and M is recurrent with respect to the Levi-Civita connection

Definition 8.1 ([2]). A Lorentzian para-Sasakian manifold with respect to the Levi-Civita connection is called the recurrent, if its curvature tensor R satisfies the condition

(8.1)
$$(\nabla_W R)(X, Y)Z = A(W)R(X, Y)Z,$$

where A is the 1-form

Analogous to the equation (8.1), a Lorentzian para-Sasakian manifold with respect to the quarter symmetric metric connection $\overline{\nabla}$ is called the recurrent, if its curvature tensor \overline{R} satisfies the condition

(8.2)
$$(\bar{\nabla}_W \bar{R})(X, Y)Z = A(W)\bar{R}(X, Y)Z,$$

where \bar{R} is the curvature tensor with respect to the connection $\bar{\nabla}$.

Theorem 8.2. If an n-dimensional Lorentzian para-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the quarter-symmetric metric connection and the manifold is recurrent with respect to the Levi-Civita connection and the associated 1-form A is equal to the associated 1-form η , then the scalar curvature r vanishes by providing the trace of ϕ is zero.

Proof. From (1.1), (2.6) and (2.8), we have

$$(8.3) \qquad (\bar{\nabla}_W R)(X, Y)Z = \bar{\nabla}_W R(X, Y)Z - R(\bar{\nabla}_W X, Y)Z - R(X, \bar{\nabla}_W Y)Z$$

$$-R(X,Y)\bar{\nabla}_W Z = (\nabla_W R)(X,Y)Z + 2\eta(W)[g(Y,\phi Z)X - g(X,\phi Z)Y].$$

Suppose that $(\bar{\nabla}_W R)(X,Y)Z=0$, then from (8.3) it follows that

(8.4)
$$(\nabla_W R)(X, Y)Z + 2\eta(W)[g(Y, \phi Z)X - g(X, \phi Z)Y] = 0$$

which after applying (8.1) becomes

(8.5)
$$A(W)R(X,Y)Z + 2\eta(W)[g(Y,\phi Z)X - g(X,\phi Z)Y] = 0.$$

Now contracting X in (8.5), we get

(8.6)
$$A(W)S(Y,Z) + 2(n-1)g(Y,\phi Z)\eta(W) = 0.$$

Suppose the associated 1-form A is equal to the associated 1-form η , then from the last equation, we get

(8.7)
$$S(Y,Z) = -2(n-1)g(Y,\phi Z), \quad \eta(W) \neq 0.$$

Hence contracting (8.7), we get

(8.8)
$$r = -2(n-1)\psi$$
, where $\psi = trace\phi$

which completes the proof of the theorem.

Acknowledgement

The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

References

- [1] Ahmad, M., Jun, J. B., Haseeb, A., Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric metric connection. Bull. Korean Math. Soc. 46 (2009), 477-487.
- [2] Barman, A., Weakly symmetric and weakly Ricci-symmetric LP-Sasakian manifolds admitting a quarter-symmetric metric connection. Novi Sad J. Math. 45 (2) (2015), 143-153.
- [3] De, U. C., Matsumoto, K., Shaikh, A. A., On Lorentzian para-Sasakian manifolds. Rendiconti del Seminario Matematico di Messina, Serie II 3 (1999), 149-158.
- [4] De, U. C., Manjhi, P., φ-semisymmetric generalized Sasakian space forms. Arab J. Math. Sci. 21 (2015), 170-178.
- [5] De, U. C., Özgür, C., Sular, S., Quarter-symmetric metric connection in a Kenmotsu manifold. SUT Journal of Mathematics 44 (2008), 297-306.

- [6] De, U. C., Shaikh, A. A., Biswas, S., ϕ -recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2) (2003), 43-48.
- [7] Friedmann, A., Schouten, J. A., Über die Geometric der halbsymmetrischen Übertragung. Math., Zeitschr. 21 (1924), 211-233.
- [8] Golab, S., On semi-symmetric and quarter-symmetric linear connections. Tensor (N. S.) 29 (1975), 249-254.
- [9] Haseeb, A., Some new results on para-Sasakian manifolds with a quartersymmetric metric connection. Facta Universitatis (NIŠ), Ser. Math. Inform. 30 (2015), 765-776.
- [10] Hirica, I. E., Nicolescu, L., On quarter-symmetric metric connections on pseudo Riemannian manifolds. Balkan J. Geom. Appl. 16 (2011), 56-65.
- [11] Hui, S.K., On ϕ -pseudo symmetric Kenmotsu manifolds with respect to quarter-symmetric metric connection. Applied Sciences 15 (2013), 71-84.
- [12] Hui, S.K., Lemence, R. S., Ricci pseudosymmetric quasi-Einstein manifolds. SUT J. Math. 51 (2015), 67-85.
- [13] Ishii, Y., On conharmonic transformations. Tensor (N. S.) 7 (1957), 73-80.
- [14] Kalpana, Srivastava, P., Some curvature properties of a quarter-symmetric metric connection in an SP-Sasakian manifold. Int. Math. Forum 50 (2010), 2477-2484.
- [15] Kumar, K. T. P., Bagewadi, C. S., Venkatesha, Projective ϕ -symmetric K-contact manifolds admitting quarter-symmetric metric connections. Diff. Geom. Dyn. Sys. 13 (2011), 128-137.
- [16] Kumar, K. T. P., Venkatesha, Bagewadi, C. S., On ϕ -recurrent para-Sasakian manifolds admitting quarter-symmetric metric connection. ISRN Geometry, Vol. 2012, Article ID 317253.
- [17] Matsumoto, K., On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151-156.
- [18] Matsumoto, K., Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor (N. S.) 47 (1988), 189-197.
- [19] Mihai, I., Rosca, R., On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publ., Singapore (1992), 155-169.
- [20] Mihai, I., Shaikh, A. A., De, U. C., On Lorentzian para-Sasakian manifolds. Korean J. Math. Sci. 6 (1999), 1-13.
- [21] Mondal, A. K., De, U. C., Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
- [22] Özgür, C., φ-conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematički 12 (2003), 99-106.
- [23] Özgür, C., Ahmad, M., Haseeb, A., CR-submanifolds of a Lorentzian para-Sasakian manifold with a semi-symmetric metric connection. Hacettepe J. Mathematics and Statistics 39 (2010), 489-496.
- [24] Shaikh, A. A., Baishya, K. K., Some results on LP-Sasakian manifolds. Bull. Math. Soc. Sci. Math. Rommanie Tome 97 (2006), 197-205.
- [25] Singh, R. N., Pandey, S. K., On a quarter-symmetric metric connection in an LP-Sasakian manifold. Thai J. Math. 12 (2014), 357-371.

- [26] Takahashi, T., ϕ -symmetric spaces. Tohoku Math. J. 29 (1977), 91-113.
- [27] Venkatesha, Bagewadi, C. S., On concircular ϕ -recurrent LP-Sasakian manifolds. Diff. Geom. Dyn. Sys. 10 (2008), 312-319.

Received by the editors April 13, 2016 First published online September 8, 2016