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ON THE FAST GROWTH OF SOLUTIONS TO
HIGHER ORDER LINEAR DIFFERENTIAL

EQUATIONS WITH ENTIRE COEFFICIENTS

Mansouria Saidani1 and Benharrat Beläıdi23

Abstract. In this paper, we investigate the iterated order of solutions of
higher order homogeneous and nonhomogeneous linear differential equa-
tions

Ak (z) f
(k) +Ak−1 (z) f

(k−1) + · · ·+A1 (z) f
′ +A0 (z) f = 0

and

Ak (z) f
(k) +Ak−1 (z) f

(k−1) + · · ·+A1 (z) f
′ +A0 (z) f = F (z) ,

where A0 (z) ̸≡ 0, A1 (z) , · · · , Ak (z) ̸≡ 0 and F (z) ̸≡ 0 are entire func-
tions of finite iterated p−order. We improve and extend some results of
He, Zheng and Hu; Long and Zhu by using the concept of the iterated
order and we obtain general estimates of the iterated convergence expo-
nent and the iterated p-order of solutions for the above equations.
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1. Introduction

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notation of the Nevanlinna value distribution theory of
meromorphic functions see [6, 9, 20], such as T (r, f) , N (r, f) , m (r, f) . For the
definition of iterated order of meromorphic function, we use the same definition
as in [12, 14]. For all r ∈ R, we define exp1 r := er and expp+1 r := exp

(
expp r

)
,

p ∈ N. We also define for all r ∈ (0,+∞) sufficiently large log1 r := log r and
logp+1 r := log

(
logp r

)
, p ∈ N.

Definition 1.1. [12, 14] Let f be a meromorphic function. Then the iterated
p-order ρp (f) of f is defined by

ρp (f) := lim sup
r→+∞

log+p T (r, f)

log r
, (p ≥ 1 is an integer).
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For p = 1, this notation is called order and for p = 2 hyper-order. If f is an
entire function, then the iterated p-order ρp (f) of f is defined by

ρp (f) := lim sup
r→+∞

log+p T (r, f)

log r
= lim sup

r→+∞

log+p+1M (r, f)

log r
, (p ≥ 1 is an integer),

where M (r, f) = max|z|=r |f (z) |.

Definition 1.2. [12] The finiteness degree of the order of a meromorphic func-
tion f is defined by

i (f) :=


0, for f rational,

min {j ∈ N : ρj (f) <∞} , for f transcendental for which
some j ∈ N with ρj (f) <∞ exists,

+∞, for f with ρj (f) = +∞, ∀j ∈ N.

Definition 1.3. [12] Let n(r, a) be the unintegrated counting function for
the sequence of a-points of a meromorphic function f(z). Then the iterated
convergence exponent of a-points of f(z) is defined by

λp (f, a) := lim sup
r→+∞

log+p n(r, a)

log r
, (p ≥ 1 is an integer) .

In the definition of the iterated convergence exponent, we may replace n(r, a)
with the integrated counting function N(r, a), and we have

λp (f, a) := lim sup
r→+∞

log+p N(r, a)

log r
, (p ≥ 1 is an integer) ,

where N(r, a) = N(r, a, f) = N
(
r, 1

f−a

)
. If a = 0, then the iterated conver-

gence exponent of the zero-sequence is defined by

λp (f) := lim sup
r→+∞

log+p N
(
r, 1f

)
log r

, (p ≥ 1 is an integer) ,

where N
(
r, 1f

)
is the integrated counting of zeros of f (z) in {z : |z| ≤ r}.

Similarly, if a = ∞, then the iterated convergence exponent of the pole-sequence
is defined by

λp

(
1

f

)
:= lim sup

r→+∞

log+p N (r, f)

log r
, (p ≥ 1 is an integer) .

Definition 1.4. [12] The finiteness degree of the iterated convergence exponent
is defined by

iλ (f, a) :=


0, if n (r, a) = O (log r) ,

min {j ∈ N : λj (f, a) <∞} , for some j ∈ N
with λj (f, a) <∞ exists,

+∞, if λj (f, a) = ∞ for all j ∈ N.
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Remark 1.5. If a = 0, then we set iλ (f, a) = iλ (f). If a = ∞, then we set

iλ (f, a) = iλ

(
1
f

)
.

Definition 1.6. [11, 16] The iterated lower p-order µp (f) of a meromorphic
function f is defined by

µp (f) := lim inf
r→+∞

log+p T (r, f)

log r
, (p ≥ 1 is an integer) .

The Lebesgue linear measure of a set E ⊂ [0,∞) is m (E) =
∫
E

dt, and the

logarithmic measure of a set F ⊂ (1,+∞) is ml (F ) =
∫
F

dt
t . The upper density

of E ⊂ [0,∞) is given by

dens (E) = lim sup
r→+∞

m (E ∩ [0, r])

r

and the upper logarithmic density of the set F ⊂ (1,+∞) is defined by

log dens (F ) = lim sup
r−→+∞

ml (F ∩ [1, r])

log r
.

Proposition 1.7. [2] For all H ⊂ (1,+∞) the following statements hold:
(i) If ml (H) = ∞, then m (H) = ∞;
(ii) If dens (H) > 0, then m (H) = ∞;
(iii) If log dens (H) > 0, then ml (H) = ∞.

In [1], the author extended the results of Kwon [13], Chen and Yang [4]
from second order to higher order linear differential equations by considering
more general conditions to entire coefficients as follows.

Theorem 1.8. [1] Let H be a set of complex numbers satisfying dens{|z| :
z ∈ H} > 0, and let A0 (z) , · · · , Ak−1 (z) be entire functions such that for real
constants α, β, µ, where 0 ≤ β < α and µ > 0, we have

|A0 (z)| ≥ eα|z|
µ

and

|Aj (z)| ≤ eβ|z|
µ

, j = 1, · · · , k − 1

as z → ∞ for z ∈ H. Then every solution f ̸≡ 0 of the equation

(1.1) f (k) +

k−1∑
j=1

Ajf
(j) +A0f = 0,

has infinite order and ρ2 (f) ≥ µ.
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Theorem 1.9. [1] Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0, and let A0 (z) , · · · , Ak−1 (z) be entire functions with max{ρ (Aj) : j =
1, · · · , k−1} ≤ ρ (A0) = ρ < +∞ such that for real constants α, β (0 ≤ β < α) ,
we have for any given ε > 0

|A0 (z)| ≥ eα|z|
ρ−ε

and

|Aj (z)| ≤ eβ|z|
ρ−ε

, j = 1, · · · , k − 1

as z → ∞ for z ∈ H. Then every solution f ̸≡ 0 of equation (1.1) has infinite
order and ρ2 (f) = ρ (A0) .

Very recently, Long and Zhu improved the previous results in [1, 4, 13,
18] by studying the growth of meromorphic solutions of higher-order linear
differential equations (1.1) and

(1.2) f (k) +
k−1∑
j=1

Ajf
(j) +A0f = F,

where A0 (z) ̸≡ 0, A1 (z) , · · · , Ak−1 (z) and F (z) ̸≡ 0 are meromorphic func-
tions. A precise estimation of the hyper-order of meromorphic solutions of
the above equations has been given provided that there exists one dominant
coefficient.

Theorem 1.10. [15] Let E be a set of complex numbers satisfying
ml({|z| : z ∈ E}) = ∞, and let Aj (z) (j = 0, 1, · · · , k − 1) , be meromorphic
functions. Suppose there exists an integer s, 0 ≤ s ≤ k − 1, satisfying

max

{
ρ (Aj) , j ̸= s, λ

(
1

As

)}
< µ (As) ≤ ρ (As) = ρ <∞

and for some constants 0 ≤ β < α, we have, for all ε > 0 sufficiently small,

|Aj (z) | ≤ exp
(
β|z|ρ−ε

)
, j ̸= s,

|As (z) | ≥ exp
(
α|z|ρ−ε

)
,

as z → ∞ for z ∈ E. Then every nontrivial meromorphic solution f whose
poles are of uniformly bounded multiplicities of equation (1.1) satisfies ρ2 (f) =
ρ (As) .

For the case of non-homogeneous equation, they get the following result.
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Theorem 1.11. [15] Let E and Aj (z) (j = 0, 1, · · · , k − 1) , be defined as in
Theorem 1.10, and let F (z) ̸≡ 0 be a meromorphic function. Suppose there
exists an integer s, 0 ≤ s ≤ k − 1, satisfying

max

{
ρ (Aj) , j ̸= s, λ

(
1

As

)
, ρ (F )

}
< µ (As) ≤ ρ (As) = ρ <∞

and for some constants 0 ≤ β < α, we have, for all ε > 0 sufficiently small,

|Aj (z) | ≤ exp
(
β|z|ρ−ε

)
, j ̸= s,

|As (z) | ≥ exp
(
α|z|ρ−ε

)
,

as z → ∞ for z ∈ E. Then every meromorphic solution f of equation (1.2),
whose poles are of uniformly bounded multiplicities, satisfies ρ2 (f) = ρ (As) .

In this paper, we consider for k ≥ 2 the homogeneous and the non-
homogeneous linear differential equations

(1.3) Ak (z) f
(k) +Ak−1 (z) f

(k−1) + · · ·+A1 (z) f
′ +A0 (z) f = 0,

(1.4) Ak (z) f
(k) +Ak−1 (z) f

(k−1) + · · ·+A1 (z) f
′ +A0 (z) f = F (z) ,

where A0 (z) ̸≡ 0, A1 (z) , · · · , Ak (z) ̸≡ 0 and F (z) ̸≡ 0 are entire functions
of finite iterated p−order. It is well-known that if Ak (z) ≡ 1, then all solu-
tions of the linear differential equation (1.3) and (1.4) are entire functions but
when Ak is a nonconstant entire function, equation (1.3) or (1.4) can possess
meromorphic solutions. For instance the equation

zf ′′′ + 3f ′′ − 2e−2zf ′ +
(
(z − 2) e−3z + (3z − 2) e−2z + ze−z

)
f = 0

has a meromorphic solution

f (z) =
ee

−z

z
.

We also know that if some of coefficients A0 (z) , A1 (z) , · · · , Ak−1 (z) are
transcendental and Ak (z) ≡ 1, then equation (1.3) has at least one solution
of infinite order. Recently several authors have investigated the properties
of solutions of equations (1.3), (1.4) and obtained many results about their
growth, see [5, 10, 11, 19]. Thus, there arise some interesting questions such
as:

Question 1.1. What conditions on A0 (z) , A1 (z) , · · · , Ak (z) will guarantee
that every solution f ̸≡ 0 of (1.3) and (1.4) is of infinite iterated order?

Question 1.2. Can we replace the meromorphic coefficients of equations (1.1)
and (1.2) in Theorem 1.10 and Theorem 1.11 by entire functions for equations
(1.3) and (1.4)?
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The main purpose of this paper is to consider the above questions. The
remainder of the paper is organized as follows. In Section 2, we shall show our
main results which improve and extend many results in the above-mentioned
papers, and thus the above questions are answered. Section 3 is for some
lemmas. The last section is for the proofs of our main results.

2. Main results

For equation (1.3), our first result is an extension of Theorem 1.9 and Theorem
1.10.

Theorem 2.1. Let H be a set of complex numbers satisfying log dens{|z| : z ∈
H} > 0 (or ml({|z| : z ∈ H}) = ∞) and let Aj (z) (j = 0, 1, · · · , k) , be entire
functions such that Ak ̸≡ 0. Suppose there exists an integer s, 0 ≤ s ≤ k such
that i (As) = p, 0 < p < +∞, and satisfying

max {ρp (Aj) , j ̸= s, j = 0, 1, · · · , k} < µp (As) ≤ ρp (As) < +∞

(p ≥ 1 is an integer) and for some constants 0 ≤ β < α, we have, for all ε > 0
sufficiently small,

|Aj (z) | ≤ expp

(
β|z|ρp(As)−ε

)
, j ̸= s, j = 0, 1, · · · , k,

|As (z) | ≥ expp

(
α|z|ρp(As)−ε

)
,

as z → ∞ for z ∈ H. Then every transcendental meromorphic solution f of

equation (1.3) with λp

(
1
f

)
< µp (f) satisfies i (f) = p + 1 and ρp+1 (f) =

ρp (As) .

When Ak (z) ≡ 1, we obtain the following corollary for entire solutions.

Corollary 2.2. Let H be a set of complex numbers satisfying log dens{|z| :
z ∈ H} > 0 (or ml({|z| : z ∈ H}) = ∞) and let Aj (z) (j = 0, 1, · · · , k − 1) , be
entire functions. Suppose there exists an integer s, 0 ≤ s ≤ k − 1 such that
i (As) = p, 0 < p < +∞, and satisfying

max {ρp (Aj) , j ̸= s, j = 0, 1, · · · , k − 1} < µp (As) ≤ ρp (As) < +∞

(p ≥ 1 is an integer) and for some constants 0 ≤ β < α, we have, for all ε > 0
sufficiently small,

|Aj (z) | ≤ expp

(
β|z|ρp(As)−ε

)
, j ̸= s, j = 0, 1, · · · , k − 1,

|As (z) | ≥ expp

(
α|z|ρp(As)−ε

)
,

as z → ∞ for z ∈ H. Then every transcendental solution f of equation (1.1)
satisfies i (f) = p+ 1 and ρp+1 (f) = ρp (As) .
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Corollary 2.3. Let Aj (z) (j = 0, 1, · · · , k) , H satisfy all of the hypotheses of
Theorem 2.1, and let φ (z) be a transcendental meromorphic function satisfying
i (φ) < p+1 or ρp+1 (φ) < ρp (As) . Then every transcendental meromorphic so-

lution f (z) (̸≡ 0) with λp

(
1
f

)
< µp (f) of equation (1.3) satisfies iλ (f − φ) =

iλ (f − φ) = p+ 1 and λp+1 (f − φ) = λp+1 (f − φ) = ρp+1 (f − φ) = ρp (As) .

Considering nonhomogeneous linear differential equation (1.4), we obtain
an extension of Theorem 1.11.

Theorem 2.4. Let H be a set of complex numbers satisfying log dens{|z| : z ∈
H} > 0 (or ml({|z| : z ∈ H}) = ∞) and let Aj (z) (j = 0, 1, · · · , k) , F (z) ̸≡ 0
be entire functions such that Ak ̸≡ 0. Suppose there exists an integer s, 0 ≤
s ≤ k such that i (As) = p, 0 < p < +∞, and satisfying

max {ρp (Aj) , j ̸= s, j = 0, 1, · · · , k, ρp (F )} < µp (As) ≤ ρp (As) < +∞,

(p ≥ 1 is an integer) and for some constants 0 ≤ β < α, we have, for all ε > 0
sufficiently small,

|Aj (z) | ≤ expp

(
β|z|ρp(As)−ε

)
, j ̸= s, j = 0, 1, · · · , k,

|As (z) | ≥ expp

(
α|z|ρp(As)−ε

)
,

as z → ∞ for z ∈ H. Then every transcendental meromorphic solution f of

equation (1.4) with λp

(
1
f

)
< µp (f) satisfies λp+1 (f) = λp+1 (f) = ρp+1 (f) =

ρp (As) .

When Ak (z) ≡ 1, we obtain the following corollary for entire solutions.

Corollary 2.5. Let H be a set of complex numbers satisfying log dens{|z| :
z ∈ H} > 0 (or ml({|z| : z ∈ H}) = ∞) and let Aj (z) (j = 0, 1, · · · , k − 1) ,
F (z) ̸≡ 0 be entire functions. Suppose there exists an integer s, 0 ≤ s ≤ k − 1
such that i (As) = p, 0 < p < +∞, and satisfying

max {ρp (Aj) , j ̸= s, j = 0, 1, · · · , k − 1, ρp (F )} < µp (As) ≤ ρp (As) < +∞,

(p ≥ 1 is an integer) and for some constants 0 ≤ β < α, we have, for all ε > 0
sufficiently small,

|Aj (z) | ≤ expp

(
β|z|ρp(As)−ε

)
, j ̸= s, j = 0, 1, · · · , k − 1,

|As (z) | ≥ expp

(
α|z|ρp(As)−ε

)
,

as z → ∞ for z ∈ H. Then every transcendental solution f of equation (1.2)
satisfies λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρp (As) .
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Corollary 2.6. Let Aj (z) (j = 0, 1, · · · , k) , F (z) , H satisfy all of the hy-
potheses of Theorem 2.4, and let φ (z) be a transcendental meromorphic func-
tion satisfying i (φ) < p + 1 or ρp+1 (φ) < ρp (As). Then every transcenden-

tal meromorphic solution f (z) with λp

(
1
f

)
< µp (f) of equation (1.4) sat-

isfies iλ (f − φ) = iλ (f − φ) = p + 1 and λp+1 (f − φ) = λp+1 (f − φ) =
ρp+1 (f − φ) = ρp (As) .

3. Preliminary lemmas

Our proofs depend mainly upon the following lemmas.

Lemma 3.1. [7] Let f be a transcendental meromorphic function in the plane,
and let µ > 1 be a given constant. Then there exist a set E1 ⊂ (1,+∞) that has
a finite logarithmic measure, and a constant B > 0 depending only on µ and
(m,n) (m,n ∈ {0, 1, · · · , k}) m < n such that for all z with |z| = r ̸∈ [0, 1]∪E1,
we have ∣∣∣∣ f (n)(z)f (m)(z)

∣∣∣∣ ≤ B

(
T (µr, f)

r
(logµ r) log T (µr, f)

)n−m

.

By using similar reasoning as in the proof of Lemma 3.5 in [17], we easily
obtain the following lemma when ρp (f) = ρp (g) = +∞.

Lemma 3.2. Let f (z) = g(z)
d(z) be a meromorphic function, where g (z), d (z)

are entire functions of finite iterated order satisfying µp (g) = µp (f) = µ ≤
ρp (f) = ρp (g) ≤ +∞, 0 < p < +∞, i (d) < p or ρp (d) < µ. Let z be a point
with |z| = r at which |g (z) | = M (r, g) and νg (r) denote be the central index
of g. Then the estimation

f (n) (z)

f (z)
=

(
νg (r)

z

)n

(1 + o (1)) , n ≥ 1,

holds for all |z| = r outside a set E2 of r of finite logarithmic measure.

Lemma 3.3. [3] Let g(z) be an entire function of finite iterated order satisfying
i(g) = p + 1, ρp+1(g) = ρ, iµ(g) = q + 1, µq+1 (g) = µ, 0 < p, q < ∞, and let
νg (r) be the central index of g. Then we have

lim sup
r→+∞

logp+1 νg (r)

log r
= ρ, lim inf

r→+∞

logq+1 νg (r)

log r
= µ.

Lemma 3.4. [8] Let φ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
nondecreasing functions such that φ(r) ≤ ψ(r) for all r /∈ (E3 ∪ [0, 1]) , where
E3 is a set of finite logarithmic measure. Let α > 1 be a given constant. Then
there exists an r1 = r1(α) > 0 such that φ(r) ≤ ψ(αr) for all r > r1.

Lemma 3.5. [10] Let p ≥ 1 be an integer and let f (z) = g(z)
d(z) be a meromorphic

function, where g (z), d (z) are entire functions satisfying µp (g) = µp (f) = µ ≤
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ρp (f) = ρp (g) ≤ +∞, 0 < p < +∞, ρp (d) = λp

(
1
f

)
= β < µ. Then there

exists a set E4 of finite logarithmic measure such that for all |z| = r /∈ E4 and
|g (z) | =M (r, g) and for r sufficiently large, we have∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ ≤ r2s, (s is an integer) .

Lemma 3.6. [5] Let p ≥ 1 be an integer, and let f (z) be an entire function
such that i (f) = p, ρp (f) = ρ < +∞. Then, there exists a set E5 ⊂ (1,+∞)
of r of finite linear measure such that for any given ε > 0, we have

exp
{
− expp−1

{
rρ+ε

}}
≤ |f (z)| ≤ expp

{
rρ+ε

}
(r /∈ E5) .

Lemma 3.7. [11] Let Aj (z) (j = 0, 1, · · · , k) , F (z) (̸≡ 0) be meromorphic
functions and let f (z) be a meromorphic solution of (1.4) satisfying one of
the following conditions:
(i) max {i (F ) = p, i (Aj) (j = 0, 1, · · · , k)} < i (f) = p+ 1 (0 < p < +∞) ,
(ii) b = max {ρp+1 (F ) , ρp+1 (Aj) (j = 0, 1, · · · , k)} < ρp+1 (f) , then λp+1(f) =
λp+1(f) = ρp+1 (f) .

Lemma 3.8. Let f (z) = g(z)
d(z) be a meromorphic function, where g (z), d (z)

are entire functions. If 0 ≤ ρp (d) < µp (f) , then µp (g) = µp (f) and ρp (g) =
ρp (f) . Moreover, if ρp (f) = +∞, then ρp+1 (g) = ρp+1 (f) .

Proof. We divided into the following three cases.
Case 1. ρp (f) < +∞. By definition of the iterated order, there exists an
increasing sequence {rn}, (rn → +∞) and a positive integer n0 such that for all

n > n0 and for any given ε ∈
(
0,

ρp(f)−ρp(d)
2

)
(as 0 ≤ ρp (d) < µp (f) ≤ ρp (f)) ,

(3.1) T (rn, f) ≥ expp−1

{
rρp(f)−ε
n

}
,

and

(3.2) T (rn, d) ≤ expp−1

{
rρp(d)+ε
n

}
.

Since T (r, f) ≤ T (r, g) + T (r, d) +O(1), we get, for all sufficiently large n,

(3.3) expp−1

{
rρp(f)−ε
n

}
≤ T (rn, g) + expp−1

{
rρp(d)+ε
n

}
+O(1).

Since ε ∈
(
0,

ρp(f)−ρp(d)
2

)
, then (3.3) becomes

(1− o (1)) expp−1

{
rρp(f)−ε
n

}
≤ T (rn, g) +O(1),

for all sufficiently large n. Hence

ρp (f) ≤ ρp (g) .
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On the other hand, since T (r, g) ≤ T (r, f) + T (r, d), and ρp (d) < ρp (f), so we
obtain

ρp (g) ≤ ρp (f) .

Therefore, we get ρp (g) = ρp (f). By using the similar way above and the
definition of iterated lower p-order µp (f) and µp (g) , we can prove

µp (g) = µp (f) .

Case 2. ρp (f) = +∞. Suppose on the contrary to the assertion that µp (g) <
µp (f) . We aim for a contradiction. By the definition of iterated lower p-order,
there exists an increasing sequence {rn}, (rn → +∞) and a positive integer n0
such that for all n > n0 and for any given ε > 0

T (rn, g) < expp−1

{
rµp(g)+ε
n

}
, T (rn, d) ≤ expp−1

{
rµp(d)+ε
n

}
.

Since T (rn, f) ≤ T (rn, g) + T (rn, d) +O(1), we get, for all sufficiently large n,

T (rn, f) ≤ expp−1

{
rµp(g)+ε
n

}
+ expp−1

{
rµp(d)+ε
n

}
+O(1),

hence µp (f) ≤ max {µp (g) , µp (d)} . This is a contradiction with our assump-
tion.
Case 3. µp(f) < +∞ and ρp(f) = +∞. By using the similar way in proving
Cases 1 and 2, we can prove Case 3.

Finally, we will prove ρp+1 (g) = ρp+1 (f). Suppose that ρp (f) = +∞.
Then there exists an increasing sequence {rn}, (rn → +∞), such that

ρp+1 (f) = lim
n→∞

log+p+1 T (rn, f)

log rn
.

Combining ρp (d) < µp (f) and the definitions of the iterated p-order and the
iterated lower p-order, we get

lim
n→∞

T (rn, d)

T (rn, f)
= 0.

Then, there exists a positive integer N , such that for n > N

T (rn, f) ≤ 2T (rn, g) +O(1).

Thus, ρp+1 (f) ≤ ρp+1 (g) . By using a similar argument as in proving Case 1,
since T (r, g) ≤ T (r, f) + T (r, d), then there exists a positive integer N , such
that for n > N

T (rn, g) ≤ 2T (rn, f).

Hence, ρp+1 (g) ≤ ρp+1 (f) . Therefore ρp+1 (f) = ρp+1 (g) .

Remark 3.9. Lemma 3.8 was obtained for p = 1 by Long and Zhu in [15].
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4. Proof of Theorems and Corollaries

Proof of Theorem 2.1.

Proof. By (1.3), we have

(4.1) |As| ≤
∣∣∣∣ f

f (s)

∣∣∣∣
|A0|+

k∑
j=1
j ̸=s

|Aj |
∣∣∣∣f (j)f

∣∣∣∣
 .

Using Lemma 3.1, there exists a set E1 ⊂ (0,+∞) with m(E1) < ∞ and a
constant B > 0, such that for all z satisfying |z| = r /∈ E1

(4.2)

∣∣∣∣f (j) (z)f (z)

∣∣∣∣ ≤ B [T (2r, f)]
k+1

, j = 1, 2, · · · , k, j ̸= s.

By Lemma 3.5, there exists a set E4 of finite logarithmic measure such that for
all |z| = r /∈ E4 and |g (z) | =M (r, g) and for r sufficiently large

(4.3)

∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ ≤ r2s,

where g (z) is an entire function satisfying µp (g) = µp (f) = µ ≤ ρp (f) =
ρp (g) ≤ +∞, 0 < p < +∞. By the hypotheses of Theorem 2.1, there exists a
set H with log dens{|z| : z ∈ H} > 0 (or ml({|z| : z ∈ H}) = ∞) such that for
all z ∈ H as z → ∞, we have

(4.4) |Aj (z) | ≤ expp

(
β|z|ρp(As)−ε

)
, j ̸= s, j = 0, 1, · · · , k

(4.5) |As (z) | ≥ expp

(
α|z|ρp(As)−ε

)
.

Set H1 = {|z| : z ∈ H}�(E1∪E4), so ml (H1) = ∞. It follows from (4.1), (4.2),
(4.3), (4.4) and (4.5) that for all z satisfying |z| = r ∈ H1 and |g(z)| =M(r, g),

expp

(
α|z|ρp(As)−ε

)
≤ kBr2s (T (2r, f))

k+1
expp

(
β|z|ρp(As)−ε

)
,

using 0 ≤ β < α, we obtain

(4.6) exp
(
(1− o (1)) expp−1

(
α|z|ρp(As)−ε

))
≤ kBr2s (T (2r, f))

k+1
.

It follows from (4.6) and Lemma 3.4 that

ρp (As) ≤ ρp+1 (f) .

On the other hand, by the hypotheses of Theorem 2.1, for sufficiently large r,
we have

(4.7) |Aj (z) | ≤ expp

(
rρp(As)+ε

)
, j ̸= s, j = 0, 1, · · · , k
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and by Lemma 3.6, for any given ε > 0, there exists a set E5 ⊂ (1,+∞) of
finite linear measure, such that for all z satisfying |z| = r /∈ E5 we obtain
(4.8)

|Ak (z) | ≥ exp
{
− expp−1

(
rρp(Ak)+ε

)}
≥ exp

{
− expp−1

(
rρp(As)+ε

)}
.

It follows by (1.3) that

(4.9)

∣∣∣∣f (k) (z)f (z)

∣∣∣∣ ≤ 1

|Ak (z) |

k−1∑
j=1

|Aj (z) |
∣∣∣∣f (j) (z)f (z)

∣∣∣∣+ |A0 (z) |

 .

By Hadamard factorization theorem, we can write f as f(z) = g(z)
d(z) , where g(z)

and d(z) are entire functions of finite iterated order satisfying µp (g) = µp (f) ≤
ρp (f) = ρp (g) ≤ +∞, 0 < p < +∞, i (d) < p or ρp (d) = λp (d) = λp

(
1
f

)
<

µp (f) . By Lemma 3.2, there exists a set E2 of finite logarithmic measure such
that for all z satisfying |z| = r /∈ E2 at which |g (z) | =M (r, g) we have

(4.10)
f (j) (z)

f (z)
=

(
νg (r)

z

)j

(1 + o (1)) , j = 1, · · · , k.

By substituting (4.7), (4.8) and (4.10) into (4.9), we obtain∣∣∣∣νg (r)z

∣∣∣∣k |1 + o (1)|

≤ 1

exp
{
− expp−1

(
rρp(As)+ε

)}


k−1∑
j=1

∣∣∣∣νg (r)z

∣∣∣∣j |1 + o (1)|+ 1

 expp

(
rρp(As)+ε

)

=


k−1∑
j=1

∣∣∣∣νg (r)z

∣∣∣∣j |1 + o (1)|+ 1

 exp
{
2 expp−1

(
rρp(As)+ε

)}
.

Hence

(4.11) |νg (r)| |1 + o (1)| ≤ krk |1 + o (1)| exp
{
2 expp−1

(
rρp(As)+ε

)}
,

for all z satisfying |z| = r /∈ ([0, 1] ∪ E2 ∪ E5) and |g (z) | =M (r, g) , r → +∞.
By (4.11) and Lemma 3.4, we get

(4.12) lim sup
r→+∞

logp+1 νg (r)

log r
≤ ρp (As) + ε.

Since ε > 0 is arbitrary, by (4.12) and Lemma 3.3, we obtain

ρp (As) ≥ ρp+1 (g)

since ρp (d) < µp (f) , so by Lemma 3.8 we have ρp+1 (g) = ρp+1 (f) . This and
the fact that ρp (As) ≤ ρp+1 (f) yield ρp+1 (f) = ρp (As) and i (f) = p + 1.
Theorem 2.1 is thus proved.
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Proof of Corollary 2.3.

Proof. Setting h = f − φ, where φ is such that i (φ) < p + 1 or ρp+1 (φ) <
ρp (As) . By Theorem 2.1, we have i (f) = p+ 1 and ρp+1 (f) = ρp (As) . Using
the properties of iterated order, we get ρp+1 (h) = ρp+1 (f) = ρp (As) . By
substituting f = h+ φ into (1.3), we obtain

Ak (z)h
(k) +Ak−1 (z)h

(k−1) + · · ·+A1 (z)h
′ +A0 (z)h

(4.13) = −
(
Ak (z)φ

(k) +Ak−1 (z)φ
(k−1) + · · ·+A1 (z)φ

′ +A0 (z)φ
)
.

SetK (z) = Ak (z)φ
(k)+Ak−1 (z)φ

(k−1)+· · ·+A1 (z)φ
′+A0 (z)φ. If i (φ) < p+

1 or ρp+1 (φ) < ρp (As) , then by Theorem 2.1, we deduce that φ is not a solution
of equation (1.3), implying that K (z) ̸≡ 0, and in this case we have ρp+1 (K) ≤
ρp+1 (φ) < ρp (As) = ρp+1 (f) , so max {ρp+1 (K) , ρp+1 (Aj) (j = 0, 1, · · · , k)}
< ρp+1 (f) = ρp (As) and by Lemma 3.7, we obtain iλ (f − φ) = iλ (f − φ) =

p+ 1 and λp+1 (f − φ) = λp+1 (f − φ) = ρp+1 (f − φ) = ρp (As) .

Proof of Theorem 2.4.

Proof. By (1.4), we have

(4.14)

∣∣∣∣f (k) (z)f (z)

∣∣∣∣ ≤ 1

|Ak (z) |

k−1∑
j=1

|Aj (z) |
∣∣∣∣f (j) (z)f (z)

∣∣∣∣+ |A0 (z) |+
∣∣∣∣F (z)

f (z)

∣∣∣∣
 .

By Hadamard factorization theorem, we can write f as f(z) = g(z)
d(z) , where

g(z) and d(z) are entire functions of finite iterated order satisfying µp (g) =
µp (f) ≤ ρp (f) = ρp (g) ≤ +∞, 0 < p < +∞, i (d) < p or ρp (d) = λp (d) =

λp

(
1
f

)
< µp (f) . By Lemma 3.2, there exists a set E2 of finite logarithmic

measure such that for all z satisfying |z| = r /∈ E2 at which |g (z) | = M (r, g)
we have (4.10). By the hypotheses of Theorem 2.4 and Lemma 3.6, for any
given ε > 0, there exists a set E5 ⊂ (1,+∞) of a finite linear measure, such
that for all z satisfying |z| = r /∈ E5

(4.15)

|Ak (z) | ≥ exp
{
− expp−1

(
rρp(Ak)+ε

)}
≥ exp

{
− expp−1

(
rρp(As)+ε

)}
.

On the other hand, for sufficiently large r, we have

|F (z) | ≤ expp

(
rρp(As)+ε

)
, |Aj (z) | ≤ expp

(
rρp(As)+ε

)
,(4.16)

j ̸= s, j = 0, 1, · · · , k.

So, for any given ε (0 < 2ε < µp(g)− ρp(d)) and sufficiently large r, we obtain∣∣∣∣F (z)

f (z)

∣∣∣∣ =
|F (z) d (z) |

|g(z)|
=

|F (z)| |d (z)|
M(r, g)

≤
expp

(
rρp(As)+ε

)
expp

(
rρp(d)+ε

)
expp

(
rµp(g)−ε

) ≤ expp

(
rρp(As)+ε

)
.(4.17)
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By substituting (4.10), (4.15), (4.16) and (4.17) into (4.14), for z satisfying
|z| = r /∈ ([0, 1] ∪ E2 ∪ E5) , r → +∞ and |g (z) | =M (r, g) , we have∣∣∣∣νg (r)z

∣∣∣∣k |1 + o (1)|

≤ 1

exp
{
− expp−1

(
rρp(As)+ε

)}


k−1∑
j=1

∣∣∣∣νg (r)z

∣∣∣∣j |1 + o (1)|+ 2

 expp

(
rρp(As)+ε

)

=


k−1∑
j=1

∣∣∣∣νg (r)z

∣∣∣∣j |1 + o (1)|+ 2

 exp
{
2 expp−1

(
rρp(As)+ε

)}
.

Hence

(4.18) |νg (r)| |1 + o (1)| ≤ (k + 1) rk |1 + o (1)| exp
{
2 expp−1

(
rρp(As)+ε

)}
,

for all z satisfying |z| = r /∈ ([0, 1] ∪ E2 ∪ E5) and |g (z) | =M (r, g) , r → +∞.
By (4.18) and Lemma 3.4, we get

(4.19) lim sup
r→+∞

logp+1 νg (r)

log r
≤ ρp (As) + ε.

Since ε (0 < 2ε < µp(g)− ρp(d)) is arbitrary, by (4.19) and Lemma 3.3, we
obtain

ρp (As) ≥ ρp+1 (g)

since ρp (d) < µp (f) , so by Lemma 3.8 we have ρp+1 (g) = ρp+1 (f), hence
ρp+1 (f) ≤ ρp (As) . On the other hand, by (1.4), we have

(4.20) |As| ≤
∣∣∣∣ f

f (s)

∣∣∣∣
∣∣∣∣F (z)

f (z)

∣∣∣∣+ |A0|+
k∑

j=1
j ̸=s

|Aj |
∣∣∣∣f (j)f

∣∣∣∣
 .

Using Lemma 3.1, there exists a set E1 ⊂ (0,+∞) with m(E1) < +∞ and a
constant B > 0, such that for all z satisfying |z| = r /∈ E1

(4.21)

∣∣∣∣f (j) (z)f (z)

∣∣∣∣ ≤ B [T (2r, f)]
k+1

, j = 1, 2, · · · , k, j ̸= s.

By Lemma 3.5, there exists a set E4 of finite logarithmic measure such that for
all |z| = r /∈ E4 and |g (z) | =M (r, g) and for r sufficiently large

(4.22)

∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ ≤ r2s.

By the hypotheses of Theorem 2.4, there exists a set H with log dens{|z| :
z ∈ H} > 0 (or ml({|z| : z ∈ H}) = ∞) such that for all z ∈ H, we have that
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(4.4) and (4.5) hold. Set H1 = {|z| : z ∈ H}� (E1 ∪ E4) , so ml (H1) = ∞. By
substituting (4.4), (4.5), (4.17), (4.21) and (4.22) into (4.20), for z satisfying
|z| = r ∈ H1, r → +∞ and |g (z) | =M (r, g) , we have

expp

(
α|z|ρp(As)−ε

)
≤ (k + 1)Br2s (T (2r, f))

k+1
expp

(
β|z|ρp(As)−ε

)
,

using 0 ≤ β < α, we obtain

(4.23) exp
(
(1− o (1)) expp−1

(
α|z|ρp(As)−ε

))
≤ (k + 1)Br2s (T (2r, f))

k+1
.

It follows from (4.23) and Lemma 3.4 that

ρp (As) ≤ ρp+1 (f) .

This and the fact that ρp (As) ≥ ρp+1 (f) yield ρp (As) = ρp+1 (f) and i (f) =
p+ 1. Since max {ρp+1 (F ) , ρp+1 (Aj) (j = 0, 1, · · · , k)} < ρp+1 (f) = ρp (As) ,
then max {i (F ) , i (Aj) (j = 0, 1, · · · , k)} < i (f) = p + 1 (0 < p < +∞) , by
Lemma 3.7, we obtain λp+1(f) = λp+1(f) = ρp+1 (f) = ρp (As) . Theorem 2.4
is thus proved.

Proof of Corollary 2.6.

Proof. Setting h = f − φ such that i (φ) < p + 1 or ρp+1 (φ) < ρp (As) . By
Theorem 2.4, we have i (f) = p+1 and ρp+1 (f) = ρp (As) . Using the properties
of iterated order, we get ρp+1 (h) = ρp+1 (f) = ρp (As) . By substituting f =
h+ φ into (1.4), we get

Ak (z)h
(k) +Ak−1 (z)h

(k−1) + · · ·+A1 (z)h
′ +A0 (z)h

(4.24) = F (z)−
(
Ak (z)φ

(k) +Ak−1 (z)φ
(k−1) + · · ·+A1 (z)φ

′ +A0 (z)φ
)
.

SetG (z) = F (z)−
(
Ak (z)φ

(k) +Ak−1 (z)φ
(k−1) + · · ·+A1 (z)φ

′ +A0 (z)φ
)
.

If i (φ) < p + 1 or ρp+1 (φ) < ρp (As) , then by Theorem 2.4, we deduce that
φ is not a solution of equation (1.4), implying that G (z) ̸≡ 0, and in this
case we have ρp+1 (G) ≤ ρp+1 (φ) < ρp (As) = ρp+1 (f) , so max{ρp+1 (G) ,
ρp+1 (Aj) (j = 0, 1, · · · , k)} < ρp+1 (f) = ρp (As) and by Lemma 3.7, we ob-
tain iλ (f − φ) = iλ (f − φ) = p + 1 and λp+1 (f − φ) = λp+1 (f − φ) =
ρp+1 (f − φ) = ρp (As) .
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[5] Ferraoun, A., Beläıdi, B., Growth of solutions of complex differential equations
with coefficients being Lacunary series of finite iterated order. Nonlinear Studies
23 (2) (2016), 237–252.

[6] Goldberg, A.A., Ostrovskii, I.V., The distribution of values of meromorphic func-
tions. Moscow: Irdat Nauk, 1970. (in Russian), Transl. Math. Monogr. 236, Prov-
idence RI: Amer. Math. Soc., 2008.

[7] Gundersen, G.G., Estimates for the logarithmic derivative of a meromorphic func-
tion, plus similar estimates, J. London Math. Soc. (2) 37 (1) (1988), 88–104.

[8] Gundersen, G.G., Finite order solutions of second order linear differential equa-
tions. Trans. Amer. Math. Soc. 305 (1) (1988), 415–429.

[9] Hayman, W.K., Meromorphic functions. Oxford Mathematical Monographs, Ox-
ford: Clarendon Press, 1964.
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