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THE ORDER COMPLETION METHOD: A
DIFFERENTIAL-ALGEBRAIC REPRESENTATION

Dennis Ferdinand Agbebaku1 and Jan Harm van der Walt23

Abstract. This paper deals with an interpretation of the Order Com-
pletion Method for systems of nonlinear partial differential equations
(PDEs) in terms of suitable differential algebras of generalized functions.
In particular, it is shown that certain spaces of generalized functions
that appear in the Order Completion Method may be represented as
differential algebras of generalized functions. This result is based on a
characterization of order convergence of sequences of normal lower semi-
continuous functions in terms of pointwise convergence of such sequences.
It is further shown how the mentioned differential algebras are related to
the nowhere dense algebras introduced by Rosinger, and the almost ev-
erywhere algebras considered by Verneave, thus unifying two seemingly
different theories of generalized functions. Existence results for general-
ized solutions of large classes of nonlinear PDEs obtained through the
Order Completion Method are interpreted in the context of the earlier
nowhere dense and almost everywhere algebras.

AMS Mathematics Subject Classification (2010): 46F30; 35D99; 46A40;
46A19; 54E15

Key words and phrases: nonlinear generalized functions; differential al-
gebras; order completion; nonlinear PDEs

1. Introduction

For over 130 years by now, there has been a general and type independent
theorem regarding the existence of solutions of systems of nonlinear partial
differential equations (PDEs) [18], see [13] for a more recent presentation. In
this regard, consider a system of K nonlinear PDEs of the form

Dm
t u (t, y) = G

(
t, y, ..., Dp

tD
q
yui (t, y) , ...

)
(1.1)

with t ∈ R, y ∈ Rn−1, m ≥ 1, 0 ≤ p < m, q ∈ Nn−1, p + |q| ≤ m and with
analytic Cauchy data

Dp
tu (t0, y) = gp (y) , 0 ≤ p < m, (t0, y) ∈ S(1.2)
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on the hyperplane S = {(t0, y) : y ∈ Rn−1}. If the mapping G is analytic,
then there exists a neighborhood V of t0 in R, and an analytic function u :
V × Rn−1 → CK that satisfies (1.1) and (1.2). Although this existence result
is completely type independent as far as the nonlinear terms that may appear
in the equation (1.1), it is deficient on the following two counts.

Firstly, the solution can only be guaranteed to exist on a neighborhood of
the hyperplane on which the initial data (1.2) is specified. It should be noted
that this local nature of the Cauchy-Kovalevskaia Theorem is not due to the
particular techniques used in the proof, but may rather be attributed to the
very nature of linear and nonlinear PDEs. Indeed, we may recall that the
Burgers equation

ut(x, t) + u(x, t)ux(x, t) = 0, (x, t) ∈ R× (0,∞)(1.3)

with initial condition

u(x, 0) = u0(x)(1.4)

may fail to have a classical solution on R× (0,∞), even if the initial condition
u0 is analytic on R. If u′0(a) < 0 for any a ∈ R, then there is no function
u ∈ C1 (R× (0,∞)) that satisfies the initial condition (1.4), and the PDE (1.3)
on the whole domain of definition of the equation, see for instance [19].

The mentioned local nature of the Cauchy-Kovalevskaia Theorem is un-
satisfactory in at least one respect. In many of the physical systems that
are supposed to be modeled with systems of PDEs, one may be interested
in solutions that exist on domains that are larger than that delivered by the
Cauchy-Kovalevskaia Theorem. Thus, as can be seen from rather elementary
examples, such as (1.3) to (1.4), classical solutions of a given system of PDEs
may fail to exists on the whole domain of physical interest. From a physical
point of view, it may be precisely those points in the domain of definition of a
system of PDEs where the classical solution fails to exist that are of interest.
In particular, these points may represent regions where the underlying physical
system experiences shocks and various other types of nonsmooth phenomena.

Secondly, the Cauchy-Kovalevskaia Theorem is limited to the realm of an-
alytic nonlinear PDEs, with analytic initial data. In this regard Lewy [20]
showed that, for a large class of functions f1, f2 ∈ C∞ (R3

)
, the system of

equations

− ∂
∂x1

U1 +
∂

∂x2
U2 − 2x1

∂
∂x3

U2 − 2x2
∂

∂x3
U1 = f1

− ∂
∂x1

U2 +
∂

∂x2
U1 + 2x1

∂
∂x3

U1 − 2x2
∂

∂x3
U2 = f2

,(1.5)

which may be written as a single equation with complex coefficients, has no
solution with Hölder continuous first order partial derivatives in any neighbor-
hood of any point in R3.

On the other hand, in many of the applications of PDEs to mathematics
and physics, the assumption of analyticity on the PDE (1.1) and the initial



The order completion method 19

condition (1.2) may not be realistic. Indeed, although many of the equations
that appear in applications are analytic, in particular of second order, and with
polynomial nonlinear terms, the initial and / or boundary conditions that are
specified are often given by functions that are less smooth. In such situations,
the Cauchy-Kovalevskaia Theorem does not apply.

As a further motivation for the need to go beyond analytic nonlinear PDEs,
we may note that the set of all analytic functions

G : Rn × RM → CK

is of first Baire category in C∞ (Rn × RM ,RK
)
, with respect to the usual

Fréchet space topology on C∞ (Rn × RM ,RK
)
. Thus, the class of analytic

nonlinear PDEs is dramatically smaller than the class of all C∞-smooth PDEs.
In this context, it appears that the Cauchy-Kovalevskaia Theorem applies only
to a rather particular class of equations.

In view of these remarks, it is clear that the Cauchy-Kovalevskaia Theorem
is deficient on several counts. Thus, there is a particular interest in more
general existence and regularity results for the solutions of large classes of
PDEs. Furthermore, due to Lewy’s nonexistence result, it is clear that such
a general existence result must necessarily be formulated in the context of a
suitable concept of generalized function. However, Lewy’s nonexistence result
remains true even in the following stronger form, see for instance [17]: For
certain f1, f2 ∈ C∞ (R3

)
, the system (1.5) has no distributional solutions in any

neighborhood of any point of R3. Thus, the space of distributions is insufficient
from the point of view of existence of solutions, even for linear equations.
Furthermore, Schwarz [37] showed that there is no associative multiplication
on D′ (Ω) that extends the pointwise multiplication of continuous functions.
That is, nonlinear problems cannot be formulated in terms of distributions
alone.

The mentioned Lewy insufficiency result [20], as well as other nonexistence
results, see for instance [17] and [38], and the Schwarz impossibility result, are
commonly interpreted as implying that a general and type independent theory
for the existence and basic regularity properties of (generalized) solutions of
nonlinear PDEs is not possible, or at best highly unlikely. Arnold [5] attributes
the nonexistence of such a general theory to the more complicated geometry
of Rn, for n > 1, relative to that of R, which suffices for ordinary differential
equations (ODEs) alone.

In the context of the usual linear topological spaces of generalized functions,
such as Sobolev spaces and spaces of distributions, it may turn out that a
general and type independent theory for the solutions of nonlinear PDEs cannot
be obtained. Indeed, in the nearly eighty years since functional analysis was
introduced into the study of PDEs [39, 40], the Cauchy-Kovalevskaia Theorem
has not been improved upon on its own general and type independent grounds,
using the customary linear functional analytic tools. However, the apparent
failure of the customary theories of generalized functions to deliver a general
existence result for the solutions of large classes of nonlinear PDEs is not due
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to any failure of mathematics as such, but may rather be attributed to the
inherent limitations of the linear functional analytic methods themselves.

In this regard, we may mention the following. Many of the usual concepts
of generalized function, and of generalized solutions of PDEs, do not allow
sufficiently singular objects to act as solutions of PDEs. Indeed, due to the
well know Sobolev Embedding Theorem, see for instance [1], the Sobolev space
W k,p (Rn), with 1 ≤ p <∞, will for sufficiently large values of k, depending on
p and n, contain only continuous functions. Furthermore, even if a given PDE
has a solution which is classical, even analytic, everywhere except at a single
point of the domain of definition of the equation, this solution may happen
not to belong to any of the usual spaces of generalized functions. Recall that,
according to the Great Picard Theorem, a function

u : C \ {z0} → C,

which is analytic at every point of its domain of definition, and with an essential
singularity at z0, attains every complex number, with possibly one exception,
as a value in every neighborhood of z0. Such a function u0 cannot satisfy
any of the growth conditions that are, rather as a rule, imposed on generalized
functions near singularities. Indeed, elements of the Sobolev spaces W k,p (Rn)
are locally integrable, while distributions satisfy certain polynomial type growth
conditions near singularities [34].

The customary theories of generalized solutions of PDEs, and the associ-
ated linear topological spaces of generalized functions, appear unable to deliver
a general and type independent existence result for the solutions of any signif-
icantly large class of PDEs. Moreover, as exemplified by the Schwarz impos-
sibility result, these methods are unable to deal with the nonlinearities which
appear in PDEs. However, both the Lewy insufficiency and the Schwarz im-
possibility have by now been overcome on several occasions, in contexts other
than that of the usual functional analytic approach to PDEs.

Already in the late 1960s, see [26, 27, 28, 29, 30], it was shown how the
celebrated Schwarz impossibility result may be overcome by embedding D′ (Ω)
as a linear subspace into suitable algebras of generalized functions. In this way,
one may compute an arbitrary product of distributions, although the result
will, in general, no longer be a distribution. This approach to the problem
of multiplication of generalized functions has, since its inception in the 1960s,
been developed into a comprehensive nonlinear theory of generalized functions,
mainly in [31, 32, 33, 34], see also [22], with a variety of applications to the
solutions of linear and nonlinear PDEs.

An important particular case of the general theory was introduced, inde-
pendently, by Colombeau [9, 10]. This version of the theory has gained a
certain popularity among analysts, and has seen rapid development and a num-
ber of nontrivial application to PDEs and their numerical analysis, geometry
and physics, see for instance [8, 11, 12, 16, 22]. The mentioned popularity of
the Colombeau theory may be due to the close and rather natural connection
with distributions. In particular, the full Colombeau algebra G (Ω) was, until
recently, the only known differential algebra that admits a canonical linear em-
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bedding D′ (Ω) ↪→ G(Ω) that commutes with distributional derivatives. That
is, the partial derivatives in G (Ω) agree the usual derivatives in D′ (Ω), when
restricted to distributions.

As mentioned, the Colombeau algebras have come to be appreciated as a
suitable setting for the study of generalized solutions of large classes of linear
and nonlinear PDEs. Furthermore, in view of its close connection with dis-
tributions, it may appear that Colombeau’s class of generalized functions is
the most natural class of differential algebras. However, several deep results
obtained within the more general version of the theory have no counterpart
in Colombeau’s theory. In this regard, we may mention the global version
of the Cauchy-Kovalevskaia Theorem obtained within the so called nowhere
dense algebras of generalized functions [33]: Generalized solutions of all an-
alytic nonlinear PDEs are defined on the whole domain of definition of the
respective equations, and are analytic everywhere except on a closed nowhere
dense set, which for convenience may be chosen to have zero Lebesgue mea-
sure. As mentioned, due to the polynomial type growth conditions imposed on
Colombeau generalized functions near singularities, one cannot formulate, let
alone prove, such a global existence result in G (Ω). Furthermore, and also due
to the mentioned growth conditions, one cannot define arbitrary Lie groups
globally on G (Ω).

Here we should mention that a large class of differential algebras that admit
a linear embedding of D′ (Ω) which commutes with distributional derivatives,
as well as a global version of the Cauch-Kovalevskaia Theorem, was recently
introduced by Vernaeve [51]. In this way, one may come to realize that the way
in which products of generalized functions, and in particular distributions, are
defined is rather arbitrary. Indeed, multiplication, and in general, nonlinear op-
erations on such singular objects do inevitably branch in infinitely many ways,
without the possibility for the existence of some unique natural or canonical
way such nonlinear operations may be performed, see [36].

As mentioned, the customary theories for generalized functions and (gener-
alized) solutions of PDEs are formulated, almost without exception, in terms of
topology and functional analysis. Thus, the differential algebraic nonlinear the-
ories of generalized functions constitute a deescalation to the level of algebra,
insofar as these theories may be formulated entirely in algebraic terms. This
deescalation has already proven to be particularly powerful, as demonstrated
by the two main achievements of these theories. Namely, the circumvention
of the Schwarz impossibility result, and a number of existence results for the
solutions of classes of PDEs that were previously unsolved, or that were proven
to be unsolvable in spaces of distributions or hyperfunctions. In this regard,
we may recall the wide ranging, and purely algebraic characterization of the
solvability of all polynomial nonlinear PDEs with continuous coefficients [35],
as well an existence result for all C∞-smooth linear PDEs obtained by Todorov
[42]. In this way, a generalized solution is obtained, as a particular case, for
the Lewy equation (1.5).

A further deescalation in the study of the solutions of PDEs, this time
to the level of order, has resulted in a dramatic extension of of the Cauchy-
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Kovalevskaia Theorem to a large class of continuous PDEs [23]. The Order
Completion Method delivers generalized solutions of a large class of nonlin-
ear PDEs, which include all linear and all polynomial type nonlinear PDEs,
as elements of the Dedekind order completion of suitable spaces of piecewise
smooth functions. In this way, one manages to overcome the Lewy insuffi-
ciency within large margins of both nonlinearity and lack of smoothness. What
is more, this method also produces a blanket regularity result for the solutions
constructed. Indeed, as shown in [23], the generalized solutions of linear and
nonlinear PDEs obtained through the Order Completion Method may be as-
similated with usual real measurable functions, or even Hausdorff continuous
interval valued functions [3].

Furthermore, in view of the intuitively clear nature of the concept of order,
as well as the rather simple constructions involved, one also gains much insight
into the mechanisms involved in the solution of PDEs, as well as the structure
of such generalized solutions. In this regard, the deescalation from the level of
topology and functional analysis to the level of order proves to be particularly
useful and relevant. However, when it comes to further properties of the solu-
tions, such as, for instance, regularity of the solutions, functional analysis, or for
that matter any mathematics, may yet play an important, but secondary role.
Indeed, a recent reformulation of the Order Completion Method [43, 44, 45, 46]
in terms of uniform convergence spaces has resulted in significant enrichment of
the basic theory. In this regard, a further strengthening of the basic regularity
properties of generalized solutions of PDEs, as well as dramatic new insights
into the structure of generalized functions have been obtained. These advances
are made possible, mainly, by introducing new spaces of generalized functions,
much in the original spirit of Sobolev [39, 40].

One of the major problems facing the Order Completion Method is that
there does not appear to be any natural correspondence between the new
method and the classical theory of PDEs, and the associated spaces of general-
ized functions. This apparent incompatibility between the Order Completion
Method on the one hand, and the customary approach to PDEs on the other,
may be attributed to a number of fundamental issues, of which we mention
only the following.

The Order Completion Method is essentially based on approximation by
sequences of piecewise smooth functions. In particular, generalized functions
may be expressed as the limit of sequences of functions

Un ∈ C∞ (Ω \ Γn)

where, for each n ∈ N, the set Γn ⊂ Ω is closed and nowhere dense in Ω.
Such closed nowhere dense singularity sets may happen to be far larger than
those that can be handled by the usual concepts of generalized functions. In-
deed, a closed nowhere dense set Γ ⊂ Ω may have arbitrary large positive
Lebesgue measure [24]. Furthermore, the approximations constructed in the
Order Completion Method do not satisfy any a priori growth conditions near
singularities. As mentioned, such growth conditions are typical in the custom-
ary constructions of generalized functions. Thus, insofar as the nature of the
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actual approximations are concerned, the Order Completion Method appears
far removed from many of the typical theories for generalized functions and
generalized solutions of PDEs.

However, also in the way the very concepts of limit and approximation are
understood, the Order Completion Method stands apart from classical PDE
theory. In this regard, generalized solutions of PDEs are, rather as a rule,
obtained as elements of the completion of a linear topological, often metriz-
able, space of smooth functions. Thus, generalized solutions of PDEs may
be expressed as limits of sequences of classical smooth functions with respect
to some (metrizable) linear space topology. On the other hand, the approxi-
mation results upon which the Order Completion Method is based cannot be
formulated in terms of the usual concepts of topology, see [4, 43, 44, 45, 46],
but requires the use of more general notions of topology, such as convergence
spaces [7].

In this paper, we give a partial resolution of this problem. In this regard,
we will show how the Order Completion Method can be interpreted in the con-
text of the differential algebraic theory of generalized functions. In particular,
spaces of generalized function introduced in [45, 47] are interpreted as differ-
ential algebras of generalized functions. The mentioned spaces of generalized
functions are shown to be closely related to the closed nowhere dense algebras
introduced and studied in [32, 33, 34], and the almost everywhere algebras of
Vernaeve [51]. This relationship is exploited to give an interpretation of the
existence results for solutions of large classes of nonlinear PDEs obtained in
the context of the Order Completion Method in the closed nowhere dense and
almost everywhere algebras, respectively.

The paper is organized as follows. In Section 2 we recall the basic con-
cepts and results underlying the recent reformulation of the Order Completion
Method in terms of convergence spaces. Spaces of generalized functions that
appear in the recent pseudo-topological formulation of the Order Completion
Method are interpreted as differential algebras of generalized functions in Sec-
tion 3. Sections 4 and 5 deal with the connections between the algebras con-
structed in Section 3, and the closed nowhere dense and almost everywhere
algebras, respectively. In Section 6 we give an interpretation of the existence
results for the solutions of large classes of nonlinear PDEs obtained in [48] in
the context of the closed nowhere dense and almost everywhere algebras.

Let us now fix some notation. By Ω we denote an open subset of Rn, and for
x ∈ Ω, Vx is the set of open neighbourhoods of x. For a function u : Ω → R, the
sequence of functions on Ω with all terms equal to u is denoted by ∆(u). The
reader who is less familiar with the theory of convergence spaces and uniform
convergence spaces is reffered to [7] and [14, 15].

2. The space NL∞(Ω)

We recall the main points regarding the construction of the space NL∞(Ω),
see [47]. Denote by NL(Ω) the set of all nearly finite, normal lower semi-
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continuous functions u : Ω → R. That is, u ∈ NL(Ω) if and only if

I[S[u]] = u, {x ∈ Ω : u(x) ∈ R} is finite,(2.1)

where for v : Ω → R we set

I[v](x) = sup{inf{v(y) : y ∈ V } : V ∈ Vx}, x ∈ Ω(2.2)

and

S[v](x) = inf{sup{v(y) : y ∈ V } : V ∈ Vx}, x ∈ Ω,(2.3)

see for instance [2, 6]. Let

ML0(Ω) =

{
u ∈ NL(Ω) ∃ Γ ⊂ Ω closed nowhere dense :

u ∈ C0(Ω \ Γ)

}
and

ML∞(Ω) =

{
u ∈ NL(Ω) ∃ Γ ⊂ Ω closed nowhere dense :

u ∈ C∞(Ω \ Γ)

}
.

On ML0(Ω), we consider the following uniform convergence structure [43].
Denote by Σ the collection of all order intervals in ML0(Ω), and for Σ′ ⊂ Σ,
we denote by [Σ′] the filter generated by Σ′, if this filter exists.

Definition 2.1. A filter U on ML0(Ω)×ML0(Ω) belongs to Jo if there exists
k ∈ N such that

∀ i = 1, ..., k :
∃ Σi =

(
Iin
)
⊆ Σ :

1) Iin+1 ⊆ Iin, n ∈ N
2) ([Σ1]× [Σ1]) ∩ ... ∩ ([Σk]× [Σk]) ⊆ U

(2.4)

and, moreover, for every i = 1, ..., k and V ⊆ Ω an open set, one has

∃ ui ∈ ML (Ω) :
∩n∈NI

i
n|V =

{
ui|V

} or ∩n∈NI
i
n|V = ∅(2.5)

where Iin|V ⊆ ML(V ) denotes the set consisting of the restrictions of members

of Iin to V .

The uniform convergence structure Jo is Hausdorff and first countable [43].
Furthermore, Jo induces the order convergence structure λo, see [4, 43, 48].
That is, a filter F on MLo(Ω) converges to u ∈ ML0(Ω) if and only if there
exist sequences (λn), (µn) ⊂ ML0(Ω) such that

1) λn ≤ λn+1 ≤ µn+1 ≤ µn, n ∈ N
2) supn∈N λn = u = infn∈N µn

3) [{[λn, µn] : n ∈ N}] ⊆ F .
(2.6)

(2.7)
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In particular, a sequence (un) converges to u ∈ ML0(Ω) if and only if it order
converges to u, see [21, 43, 48]. That is, (un) converges to u if and only if there
exist sequences (λn), (µn) ⊂ ML0(Ω) such that

1) λn ≤ λn+1 ≤ un+1 ≤ µn+1 ≤ µn, n ∈ N
2) supn∈N λn = u = infn∈N µn

(2.8)

The (Wyler) completion [25, 52] of ML0(Ω) with respect to Jo is the space
NL(Ω), equipped with a suitable uniform convergence structure [43].

The space ML∞(Ω) is equipped with the initial uniform convergence struc-
ture J∞

o with respect to the family of mappings

Dp : ML∞(Ω) → ML0(Ω), p ∈ Nn,(2.9)

where Dp(u) = I([S[Dpu]] for p ∈ Nn and u ∈ ML∞(Ω). That is, a filter U
belongs to J∞

o if and only if

[Dp ×Dp](U) ∈ Jo, p ∈ Nn.(2.10)

A filter F on ML∞(Ω) converges to u ∈ ML∞(Ω) with respect to the con-
vergence structure λ∞o induced by the uniform convergence structure J∞

o if
and only if Dp(F) ∈ λo(Dp(u)) for every p ∈ Nn. That is, the convergence
structure induced by J∞

o is the initial convergence structure with respect to
the family of mappings (2.9) and the convergence structure (2.7) on ML0(Ω).
In particular, a sequence (un) converges to u ∈ ML∞(Ω) if and only if (Dpun)
order converges to Dpu in ML0(Ω) for every p ∈ Nn.

The completion of ML∞(Ω), which is denoted by NL∞(Ω), may be rep-
resented as a set of nearly finite normal lower semi-continuous functions on Ω.
In particular, the mapping

D : NL∞(Ω) ∋ u 7→ D(u) = (Dp♯u)p∈Nn ∈ NL(Ω)ω

is a uniformly continuous injection. Here

Dp♯ : NL∞(Ω) → NL(Ω), p ∈ Nn

are the extensions through uniform continuity of the partial derivatives (2.9). In
this way, we may represent each generalized function u ∈ NL∞(Ω), through its
generalized partial derivatives, as an ω-tuple of normal lower semi-continuous
functions.

Note that the range of each mapping in (2.9) is contained in ML∞(Ω) ⊂
ML0(Ω). In particular, the diagram

ML∞(Ω) -Dp

ML0(Ω)

ML∞(Ω)

@
@
@R �

�
��

Dp ⊂
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commutes for each p ∈ Nn. Furthermore, the mappings

Dp : ML∞(Ω) → ML∞(Ω), p ∈ Nn

are clearly uniformly continuous with respect to the uniform convergence struc-
ture J∞

o , as is the inclusion ML∞(Ω) ⊂ ML0(Ω). Therefore we obtain the
commutative diagram

NL∞(Ω) -Dp♯

NL(Ω)

NL∞(Ω)

@
@
@R �

�
��

Dp♯ ⊂♯(2.11)

where ⊂♯: NL∞(Ω) → NL(Ω) denotes the extension through uniform conti-
nuity of the inclusion ML∞(Ω) ⊂ ML0(Ω). The meaning of (2.11) is that the
space NL∞(Ω) is closed under (generalized) partial derivatives.

We now turn to the issue of existence of generalized solutions of nonliner
PDEs in the space NL∞(Ω). In this regard, consider a nonlinear PDE

T (x,D)u(x) = f(x), x ∈ Ω ⊆ Rn(2.12)

of order at most m, where f ∈ C∞(Ω) and the operator T (x,D) is defined
through a C∞-smooth function

F : Ω× RM → R(2.13)

by the expression

T (x,D)u(x) = F (x, u(x), ..., Dpu(x), ...), x ∈ Ω, |p| ≤ m,(2.14)

provided that u has partial derivatives up to order m at x. Clearly the partial
differential operator T (x,D) acts as a mapping

T (x,D) : C∞(Ω) → C∞(Ω)(2.15)

where, for u ∈ C∞(Ω), T (x,D)u ∈ C∞(Ω) is defined through (2.14). Since the
mapping (2.13) is C∞-smooth, it follows that the mapping (2.15) extends to

T : ML∞(Ω) ∋ u 7→ I[S[F (·, u, ...,Dp(u), .., )]] ∈ ML∞(Ω).(2.16)

The mapping (2.16) is uniformly continuous with respect to the uniform con-
vergence structure J∞

o , see [47, Theorem 4.1]. Consequently, there exists a
unique uniformly continuous extension

T ♯ : NL∞(Ω) → NL∞(Ω)(2.17)

of (2.16). A solution u ∈ NL∞(Ω) of the equation

T ♯u = f(2.18)
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is interpreted as a generalized solution of (2.12).
In order to formulate the existence result for generalized solutions of C∞-

smooth PDEs in NL∞(Ω), some additional notations are required. In this
regard, assume that (2.13) is C∞-smooth. For each q ∈ Nn, we denote by F q

the mapping

F q : Ω× RMq → R(2.19)

such that

Dq (T (x,D)u (x)) = F q (x, ...,Dpu (x) , ...) , |p| ≤ m+ |q|

for all functions u ∈ C∞ (Ω). Finally, we denote by F∞ the mapping

F∞ : Ω× RNn

∋
(
x, (ξp)p∈Nn

)
7→ (F q (x, ..., ξp, ...))q∈Nn ∈ RNn

.

We equip RNn

with the product topology.

Theorem 2.2. Consider a nonlinear PDE (2.12). Assume that the mapping
(2.13) as well as the righthand term f are C∞-smooth, and satisfy

∀ x0 ∈ Ω :
∃ ξ (x0) ∈ RNn

, F∞ (x0, ξ (x0)) = (Dqf (x0))q∈Nn :

∃ V a neighborhood of x0, W a neighborhood of ξ (x0) :
F∞ : V ×W → RNn

is open.

(2.20)

Then there exists a solution u ∈ NL∞(Ω) of (2.18).

3. NL∞(Ω) as a Differential Algebra

In this section, we show that the space NL∞(Ω) considered in Section 2
admits a representation as a differential algebra of generalized functions, in the
sense of [33, 34]. In this regard, we recall [50] that NL(Ω) is an Archimedean,
and hence also commutative, f-algebra with respect to the usual pointwise
order, with the algebraic operations given by

[u+ v](x) = I[S[u⊕ v]](x), [uv](x) = I[S[u⊙ v]](x), [αu](x) = αu(x),

where u ⊕ v and u ⊙ v denote the pointwise sum and product of functions
u, v ∈ NL(Ω). It is easy to see that ML0(Ω) is a subalgebra and a sublattice of
NL(Ω). Hence the convergence structure induced on ML0(Ω) by the uniform
convergence structure Jo, namely, the order convergence structure, is a first
countable algebra convergence structure, see [48]. Thus the following properties
of the convergence structure λ∞o on ML∞(Ω) are easily verified.

Proposition 3.1. The convergence structure λ∞o induced on ML∞(Ω) is a
first countable algebra convergence structure.
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Proof. In view of (2.10), the convergence structure λ∞o is the initial conver-
gence structure with respect to the family of mappings (Dp : ML∞(Ω) →
ML0(Ω))p∈Nn , where ML0(Ω) is equipped with the order convergence struc-
ture λo. Hence λ∞o is a first countable and Hausdorff vector space conver-
gence structure. Furthermore, since λo is an algebra convergence structure on
ML0(Ω) it follows that

Dp(FG) ⊇
∑
q≤p

(
p

q

)
Dq(F)Dp−q(G)

converges to ∑
q≤p

(
p

q

)
DquDp−qv = Dp(uv)

in ML0(Ω) for all p ∈ Nn, F ∈ λ∞o (u) and G ∈ λ∞o (v). Hence λ∞o is an algebra
convergence structure.

The set NL∞(Ω), as the completion of the uniform convergence space
ML∞(Ω), may be constructed concretely in terms of the Cauchy filters on
ML∞(Ω), see for instance [52]. Indeed, if we denote by C[ML∞(Ω)] the set
of Cauchy filters on C[ML∞(Ω)], then

NL∞(Ω) = C[ML∞(Ω)]/ ∼C= {[F ]C : F ∈ C[ML∞(Ω)]}

where ∼C is the equivalence relation on ML∞(Ω) defined as

F ∼C G ⇔ F ∩ G ∈ C[ML∞(Ω)],

and [F ]C denotes the ∼C-equivalence class generated by F . Thus properties of
the Cauchy filters onML∞(Ω) will determine the structure of the setNL∞(Ω).
In view of (2.10), a filter F on ML∞(Ω) is a Cauchy filter if and only if

Dp(F) is a Cauchy filter on ML0(Ω), p ∈ Nn.(3.1)

Thus the Cauchy filters on ML∞(Ω) are determined by the Cauchy filters on
ML0(Ω). For this reason we proceed by first considering the Cauchy filters on
ML0(Ω). In this regard, we have the following.

Proposition 3.2. A filter F on ML0(Ω) is a Cauchy filter with respect to Jo

if and only if the filter F − F converges to 0.

Proof. Assume that F −F converges to 0. Then (2.7) implies that there exist
sequences (λn), (µn) ⊂ ML0(Ω) such that

1) λn ≤ λn+1 ≤ 0 ≤ µn+1 ≤ µn, n ∈ N
2) sup{λn : n ∈ N} = 0 = inf{µn : n ∈ N}
3) [{[λn, µn] : n ∈ N}] ⊆ F −F .

(3.2)
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The statement (3.2) implies that for every n ∈ N there exists Fn ∈ F so that
Fn − Fn ⊆ [λn, µn]. In particular, the sets Fn may be selected in such a way
that

Fn+1 ⊆ Fn, n ∈ N.(3.3)

Since Fn − Fn ⊆ [λn, µn] for every n ∈ N, it follows that each of the sets
Fn is order bounded so that the sets Un =

{
u ∈ ML0(Ω) : v ≤ u, v ∈ Fn

}
and Ln =

{
u ∈ ML0(Ω) : u ≤ v, v ∈ Fn

}
are nonempty. Since NL(Ω) ⊃

ML0(Ω) is Dedekind complete, it follows that the sequences (λ′n) and (µ′
n)

defined as

λ′n = inf Fn, µ′
n = supFn, n ∈ N(3.4)

are well-defined in NL(Ω). Furthermore, the inclusions in (3.3) imply that

λ′n ≤ λ′n+1 ≤ µ′
n+1 ≤ µ′

n, n ∈ N.(3.5)

Since NL(Ω) is Dedekind complete, w0 = supn∈N λ
′
n and w1 = infn∈N µ

′
n exist

in NL(Ω). Clearly, w0 ≤ w1. We claim that w0 = w1. As Fn − Fn ⊆ [λn, µn]
for every n ∈ N, it follows from (3.4) and [21, Theorem 13.1] that

λn ≤ µ′
n − λ′n ≤ µn, n ∈ N.(3.6)

However, according to (3.2), we have supn∈N λn = infn∈N µn = 0 in ML0(Ω),
hence also in NL(Ω). Therefore (3.6) and [21, Theorems 13.1 and 15.2] imply
that

w1 − w0 = inf
n∈N

µ′
n − sup

n∈N
λ′n = inf

n∈N
(µ′

n − λ′n) = 0

which verifies our claim. For each n ∈ N, let Dn be the open and dense set
where λ′n is finite. Then λ′n is normal lower semi-continuous on Dn, since Dn is
open. According to [4, Proof of Theorem 26], see also Remark 3.3, there exists
an increasing sequence (λn,m) ⊂ C0(Dn) with the property that

sup
m∈N

λn,m(x) = λ′n(x), x ∈ Dn.(3.7)

For each m,n ∈ N set λ′n,m = I(S(λn,m∗)) where

λn,m∗ =

 λn,m(x) if x ∈ Dn

0 if x /∈ Dn

Since Dn is open, it follows from (2.2), (2.3) and the continuity of λn,m on Dn

that λ′m,n(x) = λm,n(x), x ∈ Dn. Since λm,n ∈ C0(Dn) it follows that λ
′
m,n ∈

ML0(Ω). Furthermore, since Dn is dense in Ω, it follows from (2.1), (3.7)
and [50, Eq. (3) & Lemma 6] that λ′n = supm∈N λn,m. Therefore, the sequence
(λ′n,m) increases to λ′n for each n ∈ N. Since (λ′n) increases to w0, it now follows
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from [4, Lemma 36] that the sequence (λ∗n), where λ
∗
n = sup{λ′1,n, ..., λ′n,n} ∈

ML0(Ω) for each n ∈ N, increases to w0 and satisfies

λ∗n ≤ λ′n, n ∈ N.(3.8)

In the same way we can construct a sequence (µ∗
n) in ML0(Ω) that decreases

to w0 and satisfies

µ′
n ≤ µ∗

n, n ∈ N.(3.9)

For each n ∈ N, let In = [λ∗n, µ
∗
n]. We verify that (In) satisfies the conditions

in (2.4) and (2.5). Since (λ∗n) is an increasing sequence and (µ∗
n) a decreasing

sequence, the collection Σ1 = (In) satisfies condition 1) in (2.4). Condition 2)
in (2.4) follows from (3.4) and the inequalities in (3.8) and (3.9), while (2.5)
follows from the fact that (λ∗n) increases to w0 and (µ∗

n) decreases to w0. Since
In ⊇ [λn, µn] ⊇ Fn ∈ F for all n ∈ N, it follows that F × F ∈ Jo so that F is
a Cauchy filter on ML0(Ω).
Conversely, assume that F is a Cauchy filter on ML0(Ω), and let Σj = (Ijn),
with j = 1, ..., k, be the sequences of order intervals in ML0(Ω) associated with
F through Definition 2.1. For each j = 1, ..., k and n ∈ N, set λjn = inf Ijn and
µj
n = sup Ijn. We claim that (µj

n − λjn) decreases to 0 in ML0(Ω). Since (λjn)
is increasing and (µj

n) is decreasing, it follows that (µj
n − λjn) is decreasing.

Furthermore, since λjn ≤ µj
n for each n ∈ N, it follows that µj

n−λjn ≥ 0, n ∈ N.
Now suppose that there is some u ∈ ML0(Ω) such that 0 < u ≤ µj

n − λjn,
n ∈ N. Since NL(Ω) is Dedekind complete, there exists v ∈ NL(Ω) so that
v = sup{λjn : n ∈ N}. Hence λjn ≤ v < u+ v ≤ µj

n, n ∈ N. It follows from the
normal lower semi-continuity of u and u+v that there exists an open set V ⊆ Ω
and c, d ∈ R so that λjn(x) ≤ v(x) < c < d < [u + v](x) ≤ µj

n(x) for every
n ∈ N and x ∈ V . This contradicts (2.5). Hence our claim is verified. Similarly,
(λjn−µj

n) increases to 0. Furthermore, [λ1n−µ1
n, µ

1
n−λ1n]∪...∪[λkn−µ1

n, µ
1
n−λkn] ∈

F − F and [λ1n − µ1
n, µ

1
n − λ1n] ∪ ... ∪ [λkn − µ1

n, µ
1
n − λkn] ∈ [0] for all n ∈ N, so

that (F − F)× [0] ∈ Jo. Hence F − F converges to 0 in ML0(Ω).

Remark 3.3. As mentioned, ML0(Ω) is an Archimedean f-algebra. Therefore
it follows that the order convergence structure λo is an algebra convergence
structure on ML0(Ω). The convergence vector space structure of ML0(Ω)
induces a uniform convergence structure on ML0(Ω). In particular, a filter
F on ML0(Ω) is a Cauchy filter with respect to this uniform convergence
structure if and only if F − F converges to 0. Thus Proposition 3.2 states
that the Cauchy filters with respect to Jo are precisely those induced by the
convergence vector space structure of ML0(Ω).

Corollary 3.4. A sequence (un) in ML0(Ω) is a Cauchy sequence with respect
to the uniform order convergence structure if and only if there exists a sequence
(µn) ⊆ ML0(Ω) decreasing to 0 such that −µn ≤ un − um ≤ µn whenever
m ≥ n.

Proof. According to Remark 3.3, the Cauchy sequences with respect to Jo

are precisely those associated with the uniform structure induced on ML0(Ω)
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through its convergence vector space structure. SinceML0(Ω) is an Archimede-
an Riesz space, it follows by [50, Proposition 20] that a sequence (un) in
ML0(Ω) is a Cauchy sequence with respect to Jo if and only if (un) is an
order Cauchy sequence [53, Exercise 101.8], which completes the proof.

Proposition 3.5. A sequence (un) in ML0(Ω) is a Cauchy sequence with
respect to the uniform order convergence structure if and only if there exists a
residual set R ⊆ Ω such that (un(x)) is a convergent sequence in R for each
x ∈ R.

Proof. Assume that (un) is a Cauchy sequence in ML0(Ω), and let (µn) be
the sequence associated with (un) through Corollary 3.4. Since (µn) decreases
to 0, it order converges to 0 in ML0(Ω), hence also in NL(Ω). Since Ω is a
Baire space, it follows [49, Theorem 2.4] that there exists a residual set R ⊆ Ω
such that (µn(x)) decreases to 0 for all x ∈ R. Thus (un(x)) is a convergent
sequence in R for all x ∈ R.
Conversely, assume that there is a residual set R ⊆ Ω such that (un(x)) con-
verges to some αx ∈ R for all x ∈ R. Since (un) is pointwise bounded on R, it
follows [49, Lemma 2.1] that there exist u0, v0 ∈ NL(Ω) so that u0 ≤ un ≤ v0
for every n ∈ N. Hence, since NL(Ω) is Dedekind complete, the sequences (λ′n)
and (µ′

n) defined as λ′n = infk≥n uk and µ′
n = supk≥n uk are well defined in

NL(Ω). Furthermore (λ′n) is clearly increasing, while (µ′
n) is decreasing and

λ′n ≤ un ≤ µ′
n for all n ∈ N. We claim that u = supn∈N λ

′
n = infn∈N µ

′
n = v.

Suppose that this were not the case, so that u ̸= v. Since u ≤ v, it follows from
[50, Lemma 6] that there is a nonempty, open set A ⊆ Ω such that u(x) < v(x)
for all x ∈ A. In fact, without loss of generality, we may assume that both u
and v are finite on A, and that

u(x) < α− ϵ < α+ ϵ < v(x), x ∈ A(3.10)

for some α ∈ R and ϵ > 0. For each n ∈ N, consider the functions φn and ψn

defined as

φn : A ∋ x 7→ sup
k≥n

uk(x) ∈ R, ψn : A ∋ x 7→ inf
k≥n

uk(x) ∈ R.(3.11)

Since A is open, it follows from [50, Eq. (3)] that λ′n(x) = I[S[ψn]](x) and
µ′
n(x) = I[S[φn]](x) for all x ∈ A and n ∈ N. Note that µ′

n = I[S[φn]] ≤ S[φn].
Hence, since λ′n ≤ u < v ≤ µ′

n for all n ∈ N, it follows from (2.3) and (3.11)
that for every n ∈ N, x ∈ A and W ∈ Vx there exists xn ∈ W so that
φn(xn) ≥ α + ϵ. Since φn is lower semi-continuous, being the supremum of
lower semi-continuous functions, it follows that for each n ∈ N there exists
Dn ⊆ A open and dense in A so that φn(x) ≥ α + ϵ, x ∈ Dn. It follows from
(3.11) that

un(x) ≥ α+ ϵ, x ∈ R′ =
∩
n∈N

Dn, n ∈ N.(3.12)

It follows from (2.2) that for all x ∈ A, n ∈ N and W ∈ Vx there exists xn ∈W
so that S[ψn](xn) < α − ϵ. The upper semi-continuity of S[ψn] implies that
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there exists for each n ∈ N a set En ⊆ A which is open and dense in A so that
S[ψn](x) < α − ϵ for all x ∈ En. But ψn ≤ S[ψn] for every n ∈ N so that

ψn(x) < α − ϵ for every x ∈ En and n ∈ N. Letting R′′ =
∩
n∈N

En we have by

(3.11) that

(un(x)) is not convergent in R for every x ∈ R′′.(3.13)

Since A is an open subset of Rn, it is a Baire space so that R′ =
∩

n∈NDn

and R′′ are residual sets in A. As (un(x)) is convergent in R for every x ∈ R,
it follows from (3.12) and (3.13) that R ∩ A is of first Baire category in A,
a contradiction. Hence the assumption that u ̸= v is false, which verifies our
claim.
Applying [4, Lemma 36], it follows that there exist sequences (λ′′n) and (µ′′

n) in
ML0(Ω) that respectively increase and decrease to u, such that λ′′n ≤ un ≤ µ′′

n

for all n ∈ N. The sequence (µn), defined by µn = µ′′
n − λ′′n decreases to 0 and

satisfies −µn ≤ un−um ≤ µn for all n ∈ N and m ≥ n. The result now follows
by Corollary 3.4.

The preceding results on Cauchy filters and Cauchy sequences in M0(Ω)
now determine the nature of Cauchy filters on ML∞(Ω) as follows.

Corollary 3.6. A filter F on ML∞(Ω) is a Cauchy filter with respect to J∞
o

if and only if F−F ∈ λ∞o (0). That is, the convergence vector space structure of
ML∞(Ω) induces the same Cauchy filters as the uniform convergence structure
J∞
o .

Corollary 3.7. A sequence (un) in ML∞(Ω) is a Cauchy sequence if and
only if there exists a residual set R ⊆ Ω such that (Dpun(x)) is a convergent
sequence in R for all x ∈ R and p ∈ Nn.

In view of Corollary 3.6, we may further particularize the construction of
NL∞(Ω). Indeed, since λ∞0 is a first countable vector space convergence struc-
ture, see Proposition 3.1, we may express NL∞(Ω) as

NL∞(Ω) = Cs[ML∞(Ω)]/ ∼s= {[(un)]s : (un) ∈ Cs[ML∞(Ω)]},(3.14)

where Cs[ML∞(Ω)] is the set of Cauchy sequences on ML∞(Ω), ∼s is the
equivalence relation

(xn) ∼s (yn) ⇔ ⟨xn⟩ ∼C ⟨yn⟩(3.15)

and for (un) ∈ Cs[ML∞(Ω)], [(un)]s denotes the ∼s-equivalence class gener-
ated by (un). In view of [7, Proposition 2.5.4] it follows that

(un) ∼s (vn) ⇔ (un − vn) ∈ λ∞0 (0)

Thus [49, Theorem 2.4], Proposition 3.1 and (2.8) imply that

(un) ∼s (vn) ⇔

 ∃ R ⊆ Ω a residual set :
∀ p ∈ Nn, x ∈ R :

Dpun(x)−Dpvn(x) → 0 in R

 .
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With the preliminary results now settled, we proceed with the mooted de-
scription of NL∞(Ω) as a differential algebra. In order to place the construc-
tion of NL∞(Ω) in the context of differential algebras of generalized functions,
we must obtain sequences of smooth functions from the Cauchy sequences in
Cs[ML∞(Ω)]. The key mechanism used to achieve this is the well known prin-
ciple of Partition of Unity. In this regard, we may recall the following version
of this principle, see for instance [41, Theorem 15].

Theorem 3.8. Let O be a locally finite open cover of a smooth manifold M .
Then there is a collection

{φU :M → [0, 1] : U ∈ O}

of C∞-smooth mappings φU such that the following hold.

(i) For each U ∈ O, the support of φU is contained in U .

(ii) For each x ∈M , we have
∑

U∈O φU (x) = 1.

A useful consequence of Theorem 3.8 concerns the separation of disjoint,
closed sets by C∞-smooth, real valued mappings. In this regard, consider a
nonempty, open set Ω ⊆ Rn. Let A and B be disjoint, nonempty, closed subsets
of Ω. Then it follows from Theorem 3.8 that there exists φ ∈ C∞ (Ω, [0, 1]) so
that

A ⊆ φ−1(1), B ⊆ φ−1(0).(3.16)

This leads to the following.

Lemma 3.9. Let (un) be a Cauchy sequence in ML∞(Ω) with respect to J∞
o .

Then C∞(Ω)N ∩ [(un)]s ̸= ∅.

Proof. We claim that for each n ∈ N there is a sequence (un,m) ⊆ C∞(Ω) that
converges to un in ML∞(Ω). Denote by Γn ⊂ Ω the smallest closed nowhere
dense set such that u ∈ C∞ (Ω \ Γn). For each m ∈ N, we consider the set
B 1

m
(Γn), which is defined as the closure of the set{

x ∈ Ω
∃ x0 ∈ Γn :

∥x− x0∥ ≤ 1
2m

}
and the set

C 1
m
(Γn) =

{
x ∈ Ω

∀ x0 ∈ Γn :
∥x− x0∥ ≥ 1

m

}
Each of the sets B 1

m
(Γn) and C 1

m
(Γn) is closed, and for each m ∈ N, B 1

m
(Γn)

and C 1
m
(Γn) are disjoint. As such, by (3.16), there exists a function φm ∈

C∞ (Ω, [0, 1]) so that

φm (x) =


0 if x ∈ B 1

m
(Γn)

1 if x ∈ C 1
m
(Γn)
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Each of the functions un,m = φmun is C∞-smooth and satisfies

un,m (x) =


0 if x ∈ B 1

m
(Γn)

un (x) if x ∈ C 1
m
(Γn)

Furthermore, ∩
m∈N

B 1
m
(Γn) = Γn,

∪
m∈N

C 1
m
(Γn) = Ω \ Γn

which verifies our claim.
Let R ⊆ Ω be the residual set associated with (un) through Corollary 3.7. Set

R0 = R ∩

(∪
n∈N

(Ω \ Γn)

)
For each p ∈ Nn there exists a function αp : R0 → R so that (Dpun(x))
converges to αp(x) for all x ∈ R0. Since (Dpun,m(x)) converges to Dpun(x) for
x ∈ R0 and p ∈ Nn, it follows that we may select a strictly increasing sequence
(mn) of integers such that (Dpun,mn(x)) converges to αp(x) for all x ∈ R0 and
p ∈ Nn. According to Corollary 3.7 the sequence (un,mn) is a Cauchy sequence
in ML∞(Ω).
It remains to verify that (un,mn) ∼C (un). In this regard, it is sufficient to note
that the sequence (un(x)−un,mn(x)) converges to 0 in R for every x ∈ R0.

Theorem 3.10. Let A∞
o = Cs[ML∞(Ω)] ∩ C∞(Ω)N and I∞

o = λ∞o (0) ∩
C∞(Ω)N. Then the following statements are true:

(i) A∞
o is a subalgebra of C∞(Ω)N and I∞

o is an ideal in A∞
o .

(ii) ∆(C∞(Ω)) ⊆ A∞
o and ∆(C∞(Ω)) ∩ I∞

o = {0}.

(iii) For each p ∈ Nn we have Dp(A∞
o ) ⊆ A∞

o and Dp(I∞
o ) ⊆ I∞

o , hence

Dp : A∞
o /I∞

o ∋ (un) + I∞
o 7→ (Dpun) + I∞

o ∈ A∞
o /I∞

o , p ∈ Nn

are well defined, linear and satisfy the Leibnitz rule for derivatives of
products.

(iv) There exists a bijective mapping I∞o : NL∞(Ω) → A∞
o /I∞

o such that the
diagram

NL∞ (Ω) - NL∞ (Ω)
Dp♯

? ?

I∞o I∞o

A∞
o /I∞

o
- A∞

o /I∞
o

Dp
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commutes for every p ∈ Nn.

Proof. The result in (i) follows directly from Lemma 3.9, while (ii) follows from
the fact that λ∞o is a Hausdorff convergence structure on ML∞(Ω). Indeed,
for each u ∈ C∞(Ω), the sequence ∆(u) with all terms equal to u is convergent
to u, and is therefore a Cauchy sequence in ML∞(Ω). Since λ∞o is Hausdorff,
it follows from ∆(u) ∈ I∞

o ⊆ λ∞o (0) that u = 0. The inclusions in (iii) follow
from the fact that the partial differential operators are linear and uniformly
continuous on ML∞(Ω), see (2.10). It follows immediately that the mappings
Dp in (iii) are well defined. Since Dp : C∞(Ω) → C∞(Ω) is linear and satisfies
the Leibnitz rule for each p ∈ Nn, the mappings Dp in (iii) satisfy these prop-
erties as well, see for instance [34, Chapter 1, §9].
We now prove (iv). Consider the mappings L : A∞

o ∋ u = (un) 7→ u♯ ∈
NL∞(Ω) and R : A∞

o ∋ u = (un) 7→ u + I∞
o ∈ A∞

o /I∞
o , where u♯ is the

limit of (un) in NL∞(Ω), that is, L(u) is the equivalence class generated by
u = (un). According to Lemma 3.9 the mapping L is a surjection, while R is a
surjection by definition of A∞

o /I∞
o . Indeed, R is the canonical quotient map-

ping associated with the ideal I∞
o in the algebra A∞

o . Therefore, for u, v ∈ A∞
o ,

we have R(u) = R(v) if and only if u− v ∈ I∞
o . Now consider the map

I∞o : NL∞(Ω) ∋ u♯ 7→ R(L−1(u♯)) ∈ A∞
o /I∞

o .(3.17)

Since L is a surjection, the mapping (3.17) is defined at each u♯ ∈ NL∞(Ω).
Furthermore, according to (3.14), L(u) = L(v) if and only if u − v ∈ I∞

o .
Hence L(u) = L(v) if and only if R(u) = R(v), so that I∞o (u♯) is well defined
in A∞

o /I∞
o for each u♯ ∈ NL∞(Ω). Furthermore, since R is a surjection, so is

I∞o . If I∞o (u♯) = I∞o (v♯) for some u♯, v♯ ∈ NL∞(Ω), then u− v ∈ I∞
o for some

u ∈ L−1(u♯) and v ∈ L−1(v♯), so that u ∼s v. This implies that u♯ = v♯, since
J∞
o is Hausdorff. Hence I∞o is injective. Now observe that the diagram

A∞
o

-

A∞
o

Dp

? ?

L L

NL∞ (Ω)

-

NL∞ (Ω)
Dp♯

commutes for every p ∈ Nn, since the partial differential operators
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Dp : M∞(Ω) → M∞(Ω) are uniformly continuous. Furthermore, the diagram

A∞
o

-

A∞
o

Dp

? ?

R R

A∞
o /I∞

o

-

A∞
o /I∞

o

Dp

also commutes for each p ∈ Nn. Hence the result follows from the commutative
diagram

NL∞(Ω) - A∞
o /I∞

o

I∞o

@
@

@
@

@I

�
�
�
�
��

A∞
o

L R

The meaning of Theorem 3.10 is that the space NL∞(Ω) of generalized
functions may be identified with the differential algebra A∞

o /I∞
o . Therefore

we have a representation of NL∞(Ω) as a differential algebra of generalized
functions. This representation allows us to transfer results obtained through
the Order Completion Method to the algebraic theory of generalized functions,
and vice versa. In view of the identification of NL∞(Ω) with the differential
algebra A∞

o /I∞
o , we will henceforth denote the latter by NL∞(Ω).

4. NL∞(Ω) and A∞
nd(Ω)

In this section we determine the extent to which the differential algebra
NL∞(Ω) is related to Rosinger’s nowhere dense algebra, introduced in [32],
see also [33, 34]. We recall briefly the construction of the algebra A∞

nd(Ω).

Let I∞
nd,N (Ω) denote the subset of C∞ (Ω)

N
which is defined through the

asymptotic vanishing condition

u = (un) ∈ I∞
nd,N (Ω) ⇔


∃ Γ ⊂ Ω closed nowhere dense :
∀ x ∈ Ω \ Γ , p ∈ Nn :
∃ nx,p ∈ N :
∀ n ≥ nx,p, q ∈ Nn, q ≤ p :

Dqun(x) = 0

(4.1)
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The set I∞
nd,N (Ω) is an ideal in C∞ (Ω)

N
. To see that this is so, fix u ∈ I∞

nd,N (Ω)

and v ∈ C∞ (Ω)
N
. The termwise partial derivatives of the product w = uv =

(unvn)n∈N may be expressed as

Dp(uv) =

∑
q≤p

(
p
q

)
Dp−qunD

qvn

 , p ∈ Nn.(4.2)

Let Γ ⊂ Ω be the closed nowhere dense set associated with u through (4.1).
For any x ∈ Ω \ Γ and p ∈ Nn let nx,p be the natural number associated with
u through (4.1) so that Dqun(x) = 0 for all q ∈ Nn and n ∈ N so that q ≤ p
and n ≥ nx,p. It now follows from (4.2) that Dqwn(x) = 0 for all q ∈ Nn and

n ∈ N so that q ≤ p and n ≥ nx,p. Hence uv ∈ I∞
nd,N (Ω)

N
.

Furthermore, it is easily seen that I∞
nd,N (Ω) satisfies the inclusions

Dp
(
I∞
nd,N (Ω)

)
⊆ I∞

nd,N, p ∈ Nn(4.3)

so that

A∞
nd,N (Ω) = C∞ (Ω)

N
/I∞

nd,N (Ω)(4.4)

is a differential algebra of generalized functions.

In order to establish the relationship that exists between the differential
algebras NL∞(Ω) and A∞

nd(Ω), we introduce an auxiliary algebra A∞
nd,o(Ω). In

this regard, we note that I∞
nd,N is an ideal in A∞

o . Furthermore,

∆(C∞(Ω)) ∩ I∞
nd,N = {0}

and, due to Theorem 3.10 (ii) and (4.3), the inclusions

Dp(A∞
o ) ⊆ A∞

o , Dp
(
I∞
nd,N (Ω)

)
⊆ I∞

nd,N, p ∈ Nn

hold. Therefore

A∞
nd,o(Ω) = A∞

o /I∞
nd,N

is a differential algebra of generalized functions, with partial differential oper-
ations defined as

Dp : A∞
o /I∞

nd,N ∋ u+ I∞
nd,N 7→ Dpu+ I∞

nd,N ∈ A∞
o /I∞

nd,N, p ∈ Nn.

Theorem 4.1. There exists an injective algebra homomorphism

Γnd,0 : A∞
nd,o(Ω) → A∞

nd,N(Ω)

and a surjective algebra homomorphism

Γnd : A∞
nd,o(Ω) → NL∞(Ω)
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so that the diagram

A∞
nd,o(Ω)

-

A∞
nd,o(Ω)

Dp

? ?

Γnd Γnd

NL∞(Ω)

-

NL∞(Ω)
Dp

6 6
Γnd,0 Γnd,0

A∞
nd,N(Ω)

- A∞
nd,N(Ω)

Dp

(4.5)

commutes for every p ∈ Nn.

Proof. Consider the mappings

Γnd,0 : A∞
nd,o(Ω) ∋ u+ I∞

nd,N 7→ u+ I∞
nd,N ∈ A∞

nd,N(Ω)

and

Γnd : A∞
nd,o(Ω) ∋ u+ I∞

nd,N 7→ u+ I∞
o ∈ NL∞(Ω).

The mapping Γnd,0 is a well defined and injective algebra homomorphism, since
A∞

o ⊂ C∞(Ω)N. Furthermore, I∞
nd,N ⊆ I∞

o so that Γnd is a well defined and
surjective algebra homomorphism.

For every u+ I∞
nd,N ∈ A∞

nd,o(Ω) and p ∈ Nn we have

Dp(Γnd,0(u+ I∞
nd,N)) = Dp(u+ I∞

nd,N)

= Dp(u) + I∞
nd,N

= Γnd,0(D
p(u) + I∞

nd,N)

= Γnd,0(D
p(u+ I∞

nd,N))

and
Dp(Γnd(u+ I∞

nd,N)) = Dp(u+ I∞
o )

= Dp(u) + I∞
o

= Γnd(D
p(u) + I∞

nd,N)

= Γnd(D
p(u+ I∞

nd,N)).

Therefore, the diagram (4.5) commutes.

As a consequence of Theorem 4.1, every generalized solution in NL∞(Ω) of
a PDE (2.12), with the map (2.13) and the righthand term f both C∞-smooth,
corresponds to a generalized solution in the differential algebra A∞

nd(Ω). This
result will be discussed in detail in Section 6.
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5. NL∞(Ω) and A∞
ae(Ω)

It is known [34, Corollary 1, page 244], that there exists a linear injection

E : D′(Ω) → A∞
nd(Ω).

However, it is not known whether or not such an embedding exists so that the
diagram

D′ (Ω) - D′ (Ω)
Dp

? ?

E E

A∞
nd (Ω)

- A∞
nd (Ω)

Dp

commutes for all p ∈ Nn.
Vernaeve [51] introduced a modified construction of a ‘nowhere dense alge-

bra’, the so called almost everywhere algebra, which does admit a linear em-
bedding of the distributions which commutes with partial derivatives. In this
section, we establish the relationship between Vernaeve’s almost everywhere
algebra, and the differential algebra NL∞(Ω).

For the convenience of the reader, we recall briefly the construction of the
almost everywhere algebra. Denote by M0 the set of all closed, nowhere dense
subsets of Ω. Let

E∞
ae (Ω) =

(un)

∣∣∣∣∣∣∣∣
∃ Γ ∈ M0 :
∀ n ∈ N :

(1) un : Ω −→ R :
(2) un ∈ C∞(Ω \ Γ)

(5.1)

Clearly, E∞
ae (Ω) is an algebra over R with respect to the termwise operations

on sequences of functions. Consider the ideals

I∞
E :=

(un) ∈ E∞
ae (Ω)

∣∣∣∣∣∣∣∣
∀ x ∈ Ω :
∃ V ∈ Vx, N ∈ N :
∀ n ∈ N, n ≥ N :

un(y) = 0, y ∈ V

(5.2)

and

I∞
ae :=

(un) ∈ E∞
ae (Ω)

∣∣∣∣∣∣
∃ Γ ∈ M0 :
∀ n ∈ N :

un(x) = 0, x ∈ Ω \ Γ

 .(5.3)

As I∞
ae and I∞

E are ideals in E∞
ae (Ω), so is

I∞
E + I∞

ae = {(un) + (vn) | (un) ∈ I∞
ae , (vn) ∈ I∞

E }.
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The almost everywhere algebra A∞
ae(Ω) is defined as

A∞
ae(Ω) = E∞

ae/(I∞
E + I∞

ae).

For (un) ∈ E∞
ae (Ω) and p ∈ N, set Dp(un) = (Dpun) where

Dpun(x) =

 Dpun(x) if x ∈ Ω \ Γ

0 if x ∈ Γ

with Γ ∈ M0 the closed nowhere dense set associated with (un) through (5.1).
Clearly, the inclusions Dp(E∞

ae (Ω)) ⊆ E∞
ae (Ω) and Dp(I∞

E + I∞
ae) ⊆ I∞

E + I∞
ae

hold. In particular, if (un)−(vn) ∈ I∞
E +I∞

ae , thenD
p(un)−Dp(vn) ∈ I∞

E +I∞
ae .

Therefore

Dp : A∞
ae(Ω) ∋ (un) + (I∞

E + I∞
ae) 7→ Dp(un) + (I∞

E + I∞
ae)(5.4)

is well defined for each p ∈ Nn. Furthermore, since Dp : E∞
ae (Ω) → E∞

ae (Ω) is
linear and satisfies the Leibnitz rule, the same is true for (5.4). Therefore (5.4)
defines a partial differential operator on A∞

ae(Ω) for each p ∈ Nn.

As in the case of the nowhere dense algebra A∞
nd,N(Ω), the algebra A∞

ae(Ω)
is related to NL∞(Ω) via an auxiliary algebra A∞

ae,o(Ω), which is defined as
follows. Let

I∞
ae,0 = (I∞

E + I∞
ae) ∩ C∞(Ω)N.

Clearly, I∞
ae,0 ⊆ I∞

o is an ideal in A∞
o . Furthermore,

Dp(I∞
ae,0) ⊆ I∞

ae,0, Dp(A∞
o ) ⊆ A∞

o

so that

A∞
ae,o(Ω) = A∞

o /I∞
ae,0

is a differential algebra, with partial derivatives defined as

Dp : A∞
ae,o(Ω) ∋ u+ I∞

ae,0 7→ Dpu+ I∞
ae,0 ∈ A∞

ae,o(Ω), p ∈ Nn.

Theorem 5.1. There exists an injective algebra homomorphism

Γae,0 : A∞
ae,o(Ω) → A∞

ae(Ω)

and a surjective algebra homomorphism

Γae : A∞
ae,o(Ω) → NL∞(Ω)
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so that the diagram

A∞
ae,o(Ω)

-

A∞
ae,o(Ω)

Dp

? ?

Γae Γae

NL∞(Ω)

-

NL∞(Ω)
Dp

6 6
Γae,0 Γae,0

A∞
ae(Ω)

- A∞
ae(Ω)

Dp

(5.5)

commutes for every p ∈ Nn.

Proof. Define Γae,0 and Γae as

Γae,0 : A∞
ae,o(Ω) ∋ u+ I∞

ae,o 7→ u+ (I∞
E + I∞

ae) ∈ A∞
ae(Ω)

and

Γae : A∞
ae,o(Ω) ∋ u+ I∞

ae,o 7→ u+ I∞
o ∈ NL∞(Ω),

respectively. The mapping Γae,0 is a well defined and injective algebra homo-
morphism, since A∞

o ⊂ E∞
ae (Ω)

N and I∞
ae,o = A∞

o ∩ (I∞
E + I∞

ae). Furthermore,
I∞
ae,o ⊆ I∞

o so that Γae is a well defined and surjective algebra homomorphism.
The commutativity of (5.5) follows in the same way as that of (4.5), see the

proof of Theorem 4.1.

6. Solutions of Nonlinear PDEs

Consider a nonlinear PDE of the form (2.12), with (2.13) and the righthand
term f both C∞-smooth. Since (2.13) is C∞-smooth, the operator

T (x,D) : C∞(Ω) → C∞(Ω)(6.1)

extends to

T (x,D) : C∞(Ω)N ∋ (un) 7→ (T (x,D)un) ∈ C∞(Ω)N.

Furthermore,

T (x,D)(A∞
o ) ⊆ A∞

o

and, for (un), (vn) ∈ C∞(Ω),

(un)− (vn) ∈ I∞
nd,N ⇒ T (x,D)(un)− T (x,D)(vn) ∈ I∞

nd,N
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and
(un)− (vn) ∈ I∞

o ⇒ T (x,D)(un)− T (x,D)(vn) ∈ I∞
o .

In the same way, we define

T (x,D) : E∞
ae (Ω) ∋ (un) 7→ (T (x,D)un) ∈ E∞

ae (Ω),

where for un ∈ C∞(Ω \ Γ) with Γ ∈ M0,

T (x,D)un(x) = 0, x ∈ Γ.

In addition, for (un), (vn) ∈ E∞
ae (Ω)

(un)− (vn) ∈ I∞
E + I∞

ae ⇒ T (x,D)(un)− T (x,D)(vn) ∈ I∞
E + I∞

ae

and
(un)− (vn) ∈ I∞

ae,o ⇒ T (x,D)(un)− T (x,D)(vn) ∈ I∞
ae,o.

Therefore the mappings

T (x,D) : NL∞(Ω) ∋ u+ I∞
o 7→ T (x,D)u+ I∞

o ∈ NL∞(Ω),

T (x,D) : A∞
nd,N(Ω) ∋ u+ I∞

nd,N 7→ T (x,D)u+ I∞
nd,N ∈ A∞

nd,N(Ω),

T (x,D) : A∞
nd,o(Ω) ∋ u+ I∞

nd,o 7→ T (x,D)u+ I∞
nd,o ∈ A∞

nd,o(Ω),

T (x,D) : A∞
ae(Ω) ∋ u+ (I∞

E + I∞
ae) 7→ T (x,D)u+ (I∞

E + I∞
ae) ∈ A∞

ae(Ω)

and
T (x,D) : A∞

ae,o(Ω) ∋ u+ I∞
ae,o 7→ T (x,D)u+ I∞

ae,o ∈ A∞
ae,o(Ω)

are well defined extensions of (6.1). Furthermore, due to Theorems 4.1 and 5.1,
in particular the commutativity of the diagrams (4.5) and (5.5), the diagrams

A∞
nd,o(Ω)

-

A∞
nd,o(Ω)

T (x,D)

? ?

Γnd Γnd

NL∞(Ω)

-

NL∞(Ω)
T (x,D)

6 6
Γnd,0 Γnd,0

A∞
nd,N(Ω)

- A∞
nd,N(Ω)

T (x,D)

(6.2)
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and

A∞
ae,o(Ω)

-

A∞
ae,o(Ω)

T (x,D)

? ?

Γae Γae

NL∞(Ω)

-

NL∞(Ω)
T (x,D)

6 6
Γae,0 Γae,0

A∞
ae(Ω)

- A∞
ae(Ω)

T (x,D)

(6.3)

commute. We therefore have the following.

Theorem 6.1. Consider a PDE (2.12) with (2.13) and f both C∞-smooth. If
(2.12) admits a generalized solution u+ I∞

o ∈ NL∞(Ω), in the sense that

T (x,D)(u+ I∞
o ) = ∆(f) + I∞

o ,

then there exist v + I∞
nd,N ∈ A∞

nd,N(Ω) and w + (I∞
E + I∞

ae) ∈ A∞
ae(Ω) so that

T (x,D)(v + I∞
nd,N) = ∆(f) + I∞

nd,N in A∞
nd,N(Ω)

and

T (x,D)(w + (I∞
E + I∞

ae)) = ∆(f) + (I∞
E + I∞

ae), in A∞
ae(Ω),

respectively.

Proof. The result follows immediately from the commutativity of the diagrams
(6.2) and (6.3), and the surjectivity of the mappings Γnd and Γae.

Theorems 2.2 and 6.1 lead to an existence result for generalized solutions
of (2.18) in the algebras A∞

nd,N(Ω) and A∞
ae,N(Ω), respectively.

Theorem 6.2. Consider a nonlinear PDE (2.12). Assume that the mapping
(2.13) as well as the righthand term f are C∞-smooth, and satisfy

∀ x0 ∈ Ω :
∃ ξ (x0) ∈ RNn

, F∞ (x0, ξ (x0)) = (Dqf (x0))q∈Nn :

∃ V a neighborhood of x0, W a neighborhood of ξ (x0) : :
F∞ : V ×W → RNn

open

(6.4)

Then there exist v + I∞
nd,N ∈ A∞

nd,N(Ω) and w + (I∞
E + I∞

ae) ∈ A∞
ae(Ω) so that

T (x,D)(v + I∞
nd,N) = ∆(f) + I∞

nd,N in A∞
nd,N(Ω)
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and

T (x,D)(w + (I∞
E + I∞

ae)) = ∆(f) + (I∞
E + I∞

ae), in A∞
ae(Ω),

respectively.

Proof. According to Theorem 2.2, there exists u♯ ∈ NL∞(Ω) so that

T ♯u♯ = f.

Then, according to Lemma 3.9, there exists a sequence (un) ∈ A∞
o so that

T (x,D)(un) = (T ♯un) converges to f in NL∞(Ω), hence in ML∞(Ω). There-
fore, by Corollary 3.7, T (x,D)(un)−∆(f) ∈ I∞

o . Therefore

T (x,D)((un) + I∞
o ) = ∆(f) + I∞

o in NL∞(Ω).

The result now follows immediately from Theorem 6.1.

7. Conclusion

It has been shown that the space of generalized functions that underly the
recent development of Order Completion Method [23], as presented in [48], may
be represented as a differential algebra of generalized functions. Furthermore,
this algebra was shown to be closely related to the earlier nowhere dense alge-
bras of Rosinger, see for instance [34], and the almost everywhere algebra of
Vernaeve [51]. This result has a twofold power, since each theory, the Order
Completion Method and its various recent extensions on the one hand, and the
earlier algebraic theory on the other, may benefit from the other’s respective
strengths.
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