A PARTIAL ANSWER TO A QUESTION OF Y. IKEDA, C. LIU AND Y. TANAKA

Luong Quoc Tuyen¹

Abstract. In this paper, we give a partial answer to the problem posed by Y. Ikeda, C. Liu and Y. Tanaka in [3].

AMS Mathematics Subject Classification (2010): 54C10; 54D55; 54E40; 54E99

Key words and phrases: Cauchy symmetric; σ -strong network; σ -pointfinite strong network; cs-network; quotient map, compact map

1. Introduction and Preliminaries

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of σ -strong networks as a generalization of development in developable spaces, and considered certain quotient images of metric spaces in terms of σ -strong networks. By means of σ -strong networks, the authors proved that a sequential space X has a σ -point-finite strong cs-network if and only if X is a sequence-covering quotient compact image of a metric space, and posed the following question.

Question 1.1 ([3]). Let X be a symmetric space with a σ -point-finite csnetwork. Is X a quotient compact image of a metric space?

In this paper, we give a partial answer to the Question 1.1.

Throughout this paper, all spaces are T_1 and regular, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} and \mathcal{Q} be two families of subsets of X, we denote

$$(\mathcal{P})_x = \{ P \in \mathcal{P} : x \in P \};$$
$$\mathcal{P} \bigwedge \mathcal{Q} = \{ P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q} \}.$$

For a sequence $\{x_n\}$ converging to x, we say that $\{x_n\}$ is *eventually* in P, if $\{x\} \bigcup \{x_n : n \ge m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}$ is *frequently* in P, if some subsequence of $\{x_n\}$ is eventually in P.

Definition 1.2. Let \mathcal{P} be a family of subsets of a space X.

1. \mathcal{P} is a *network at* x in X, if $x \in P$ for every $P \in \mathcal{P}$, and whenever $x \in U$ with U is open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.

¹Department of Mathematics, Da Nang University, Vietnam, e-mail: tuyendhdn@gmail.com

- 2. \mathcal{P} is a *cs-network* for X [7], if each sequence S converging to a point $x \in U$ with U open in X, S is eventually in $P \subset U$ for some $P \in \mathcal{P}$.
- 3. \mathcal{P} is a *cs-cover* [9], if every convergent sequence is eventually in some $P \in \mathcal{P}$.
- 4. \mathcal{P} is *point-finite* (resp., *point-countable*) [2], if each point $x \in X$ belongs to only finite (resp., countable) many members of \mathcal{P} .
- 5. X is sequential [2], if whenever A is a non-closed subset of X, then there is a sequence in A converging to a point not in A.

Definition 1.3. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following (1) and (2) for every $x \in X$.

- 1. \mathcal{P}_x is a network at x.
- 2. If $P_1, P_2 \in \mathcal{P}_x$, then $P \subset P_1 \cap P_2$ for some $P \in \mathcal{P}_x$.

 \mathcal{P} is a weak base for X [1], if for $G \subset X$, G is open in X if and only if for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x.

Definition 1.4 ([4, 5]). Let d be a d-function on a space X.

1. For each $x \in X$, $n \in \mathbb{N}$, let

$$S_n(x) = \Big\{ y \in X : d(x,y) < \frac{1}{n} \Big\}.$$

2. For every $P \subset X$, put

$$d(P) = \sup\{d(x,y) : x, y \in P\}.$$

- 3. X is symmetric, if $\{S_n(x) : n \in \mathbb{N}\}$ is a weak neighborhood base at x for each $x \in X$.
- 4. X is *Cauchy symmetric*, if X is symmetric and every convergent sequence is *d*-Cauchy.

Remark 1.5 ([5]). X is Cauchy symmetric if and only if for each $x \in X$, $d(S_n(x))$ converges to 0.

Definition 1.6. Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a sequence of covers of a space X such that \mathcal{P}_{n+1} refines \mathcal{P}_n for every $n \in \mathbb{N}$.

- 1. $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -strong network for X [3], if $\{\mathsf{St}(x, \mathcal{P}_n) : n \in \mathbb{N}\}\$ is a network at each point $x \in X$.
- 2. $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -point-finite strong network for X [7], if it is a σ -strong network and each \mathcal{P}_n is point-finite.

3. $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -point-finite strong network consisting of cs-covers [7], if it is a σ -strong network and each \mathcal{P}_n is a point-finite cs-cover.

Definition 1.7. Let $f: X \to Y$ be a map. Then

- 1. f is a compact map [2], if each $f^{-1}(y)$ is compact in X.
- 2. f is a quotient map [2], if whenever $f^{-1}(U)$ is open in X, then U is open in Y.
- 3. f is a sequence-covering map [8], if every convergent sequence of Y is the image of some convergent sequence of X.

For some undefined or related concepts, we refer the reader to [2, 6, 7].

2. Main Results

Theorem 2.1. The following are equivalent for a space X.

- 1. X is a sequence-covering quotient compact image of a metric space;
- 2. X is a Cauchy symmetric with σ -point-finite cs-network.

Proof. $(1) \Longrightarrow (2)$. By Theorem 9 and Theorem 12 in [3].

(2) \Longrightarrow (1). Let X be a Cauchy symmetric and $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$ be a σ -point-finite *cs*-network for X. We can assume that each \mathcal{U}_n is closed under finite intersections and $\mathcal{U}_n \subset \mathcal{U}_{n+1}$ for all $n \in \mathbb{N}$. So, \mathcal{U} is closed under finite intersections. Put

$$\mathcal{P}_x = \{ P \in \mathcal{U} : S_n(x) \subset P \text{ for some } n \in \mathbb{N} \}.$$

Claim. For each U open in X and $x \in U$, there exists $P \in \mathcal{P}_x$ such that $P \subset U$.

In fact, conversely assume that there exists U open in X and $x \in U$ such that $P \not\subset U$ for all $P \in \mathcal{P}_x$. Let

$$\{P \in \mathcal{P}_x : x \in P \subset U\} = \{P_m(x) : m \in \mathbb{N}\}.$$

Then $S_n(x) \not\subset P_m(x)$ for all $n, m \in \mathbb{N}$, so choose $x_{n,m} \in S_n(x) - P_m(x)$. For $n \geq m$, we denote $x_{n,m} = y_k$ with k = m + n(n-1)/2. Because $\{S_n(x)\}$ is a decreasing weak neighborhood base at x, the sequence $\{y_k : k \in \mathbb{N}\}$ converges to the point x in X. Thus, there exist $m, i \in \mathbb{N}$ such that

$$\{x\} \bigcup \{y_k : k \ge i\} \subset P_m(x) \subset U$$

Take $j \ge i$ with $y_j = x_{n,m}$ for some $n \ge m$. Then $x_{n,m} \in P_m(x)$. This is a contradiction.

Then we have

(1) \mathcal{P}_x is a network at x in X. Let U be an open subset of X and $x \in U$. Then there $P \in \mathcal{P}_x$ such that $P \subset U$ by the Claim.

(2) Let $P_1, P_2 \in \mathcal{P}_x$ and $P = P_1 \cap P_2$. Hence, there exist $n, m \in \mathbb{N}$ such that $S_m(x) \subset P_1$ and $S_n(x) \subset P_2$. If we put $k = \max\{m, n\}$, then $S_k(x) \subset P \in \mathcal{U}$. Thus, $P \in \mathcal{P}_x$ and $P \subset P_1 \cap P_2$.

(3) Let U be an open subset of X. By the Claim, there exists $P \in \mathcal{P}_x$ such that $P \subset U$. Conversely, if $U \subset X$ satisfies that for each $x \in U$, there exists $P \in \mathcal{P}_x$ with $P \subset U$, then for each $x \in U$, there exists $n \in \mathbb{N}$ such that $S_n(x) \subset U$. Because $\{S_n(x)\}$ is a weak neighborhood at x for all $x \in X$, U is open in X.

Therefore, $\mathcal{P} = \bigcup \{ \mathcal{P}_x : x \in X \}$ is a weak base for X and $\mathcal{P} \subset \mathcal{U}$.

Now, for each $n \in \mathbb{N}$, put $\mathcal{P}_n = \mathcal{U}_n \cap \mathcal{P}$. Then, $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$. Since \mathcal{U} is a σ -point-finite *cs*-network, \mathcal{P} is a σ -point-finite weak base.

Next, for each $m, n \in \mathbb{N}$, put

$$\mathcal{Q}_{m,n}(x) = \left\{ P \in \mathcal{P}_m \cap \mathcal{P}_x : S_m(x) \subset P \text{ and } d(P) < \frac{1}{n} \right\};$$

$$A_{m,n} = \left\{ x \in X : \mathcal{Q}_{m,n}(x) = \emptyset \right\};$$

$$B_{m,n} = X - A_{m,n};$$

$$\mathcal{Q}_{m,n} = \bigcup \{ \mathcal{Q}_{m,n}(x) : x \in B_{m,n} \};$$

$$\mathcal{F}_{m,n} = \mathcal{Q}_{m,n} \bigcup \{ A_{m,n} \}.$$

Then, each $\mathcal{F}_{m,n}$ is point-finite. Furthermore, we have

(i) Each $\mathcal{F}_{m,n}$ is a cs-cover for X. Let $x \in X$ and $S = \{x_i : i \in \mathbb{N}\}$ be a sequence converging to x in X, then

Case 1. If $x \in B_{m,n}$, then there is $P \in \mathcal{Q}_{m,n}(x)$ such that $S_m(x) \subset P$. Hence, S is eventually in $P \in \mathcal{F}_{m,n}$.

Case 2. If $x \notin B_{m,n}$ and $S \cap B_{m,n}$ is finite, then S is eventually in $A_{m,n} \in \mathcal{F}_{m,n}$.

Case 3. If $x \notin B_{m,n}$ and $S \cap B_{m,n}$ is infinite, then we can assume that

$$S \cap B_{m,n} = \{ x_{i_k} : k \in \mathbb{N} \}.$$

Since X is Cauchy symmetric and S converges to x, there exists $n_0 \in \mathbb{N}$ such that

A partial answer to a question of Y. Ikeda, C. Liu and Y. Tanaka

$$d(x_i, x_j) < \frac{1}{m}$$
 and $d(x, x_i) < \frac{1}{m}$ for every $i, j \ge n_0$.

Now, we pick $k_0 \in \mathbb{N}$ such that $i_{k_0} \geq n_0$. Because

$$d(x_{i_{k_0}}, x) < \frac{1}{m}$$
 and $d(x_{i_{k_0}}, x_i) < \frac{1}{m}$ for every $i \ge n_0$,

it implies that S is eventually in $S_m(x_{i_{k_0}})$. Furthermore, since $x_{i_{k_0}} \in B_{m,n}$, we get $S_m(x_{i_{k_0}}) \subset P$ for some $P \in Q_{m,n}(x_{i_{k_0}})$. Hence, $P \in \mathcal{F}_{m,n}$ and S is eventually in P.

Therefore, each $\mathcal{F}_{m,n}$ is a *cs*-cover for X.

(ii) $\{ \mathsf{St}(x, \mathcal{F}_{m,n}) : m, n \in \mathbb{N} \}$ is a network at x.

Let $x \in U$ with U is open in X. Then, $S_n(x) \subset U$ for some $n \in \mathbb{N}$. Since X is Cauchy symmetric, it follows from Remark 1.5 that there exists $j \in \mathbb{N}$ such that $d(S_j(x)) < 1/n$. Furthermore, we have $P \subset S_j(x)$ for some $P \in \mathcal{P}_x$. Indeed, since \mathcal{P} is point-countable, we can put

$$\mathcal{P}_x = \{ P_n(x) : n \in \mathbb{N} \}.$$

On the other hand, because \mathcal{P} is a weak base, we can choose a sequence $\{n_i : i \in \mathbb{N}\}$ such that $\{P_{n_i}(x) : i \in \mathbb{N}\}$ is a decreasing network at x. Then, there exists $i \in \mathbb{N}$ such that $P_{n_i}(x) \subset S_n(x)$. Thus, $P \in \mathcal{P}_k$ for some $k \in \mathbb{N}$.

Because P is a sequential neighborhood at x, there exists $i \in \mathbb{N}$ such that $S_i(x) \subset P$. If not, for each $n \in \mathbb{N}$, there exists $x_n \in S_n(x) - P$. Hence, $\{x_n\}$ converges to x. Then, there exists $m \in \mathbb{N}$ such that $x_n \in P$ for every $n \geq m$. This is a contradiction.

Denote $m = \max\{i, k\}$, then

$$S_m(x) \subset S_i(x) \subset P \in \mathcal{P}_k \subset \mathcal{P}_m.$$

Since d(P) < 1/n, it implies that $P \in \mathcal{F}_{m,n}$. Then, we have $\mathsf{St}(x, \mathcal{F}_{m,n}) \subset S_n(x)$. It follows that $\{\mathsf{St}(x, \mathcal{F}_{m,n}) : m, n \in \mathbb{N}\}$ is a network at x.

Finally, we write

$$\{\mathcal{F}_{m,n}:m,n\in\mathbb{N}\}=\{\mathcal{H}_n:n\in\mathbb{N}\},\$$

and for each $n \in \mathbb{N}$, put

$$\mathcal{G}_n = \bigwedge \{\mathcal{H}_i : i \le n\}.$$

Then, $\bigcup \{ \mathcal{G}_n : n \in \mathbb{N} \}$ is a σ -point-finite strong network consisting of *cs*-covers of *X*.

By Theorem 12 in [3], X is a sequential space. It follows from Theorem 9 in [3] that X is a sequence-covering quotient compact image of a metric space. \Box

Remark 2.2. By Theorem 2.1, we get a partial answer to the Question 1.1.

Acknowledgement

The author would like to express their thanks to refere for his/her helpful comments and valuable suggestions.

References

- Arhangel'skii, A. V., Mappings and spaces. Russian Math. Surveys 21(4) (1966), 115-162.
- [2] Engelking, R., General Topology. PWN-Polish, Scientific Publishers, Warszawa 1977.
- [3] Ikeda, Y., Liu, C., Tanaka, Y., Quotient compact images of metric spaces, and related matters. Topology Appl. 122(1-2) (2002), 237-252.
- [4] Ge, Y., Lin, S., g-metrizable spaces and the images of semi-metric spaces. Czech. Math. J., 57(132) (2007), 1141-1149.
- [5] Tanaka, Y., Symmetric spaces, g-developable spaces and g-metrizable spaces. Math. Japonica 36 (1991), 71-84.
- [6] Tanaka, Y., Theory of k-networks II. Q. and A. General Topology 19 (2001), 27-46.
- [7] Tanaka, Y., Ge, Y., Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32(1) (2006), 99-117.
- [8] Tanaka, Y., Li, Z., Certain covering-maps and k-networks, and related matters. Topology Proc. 27(1) (2003), 317-334.
- [9] Yan, P., On strong sequence-covering compact mappings. Northeastern Math. J. 14 (1998), 341-344.

Received by the editors April 3, 2016 First published online January 30, 2017