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A PARTIAL ANSWER TO A QUESTION OF Y.
IKEDA, C. LIU AND Y. TANAKA
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Abstract. In this paper, we give a partial answer to the problem posed
by Y. Ikeda, C. Liu and Y. Tanaka in [3].
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1. Introduction and Preliminaries

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of σ-strong
networks as a generalization of development in developable spaces, and consid-
ered certain quotient images of metric spaces in terms of σ-strong networks.
By means of σ-strong networks, the authors proved that a sequential space X
has a σ-point-finite strong cs-network if and only if X is a sequence-covering
quotient compact image of a metric space, and posed the following question.

Question 1.1 ([3]). Let X be a symmetric space with a σ-point-finite cs-
network. Is X a quotient compact image of a metric space?

In this paper, we give a partial answer to the Question 1.1.

Throughout this paper, all spaces are T1 and regular, all maps are contin-
uous and onto, N denotes the set of all natural numbers. Let P and Q be two
families of subsets of X, we denote

(P)x = {P ∈ P : x ∈ P};

P
∧
Q = {P ∩Q : P ∈ P, Q ∈ Q}.

For a sequence {xn} converging to x, we say that {xn} is eventually in P , if
{x}

∪
{xn : n ≥ m} ⊂ P for some m ∈ N, and {xn} is frequently in P , if some

subsequence of {xn} is eventually in P .

Definition 1.2. Let P be a family of subsets of a space X.

1. P is a network at x in X, if x ∈ P for every P ∈ P, and whenever x ∈ U
with U is open in X, then x ∈ P ⊂ U for some P ∈ P.
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2. P is a cs-network for X [7], if each sequence S converging to a point
x ∈ U with U open in X, S is eventually in P ⊂ U for some P ∈ P.

3. P is a cs-cover [9], if every convergent sequence is eventually in some
P ∈ P.

4. P is point-finite (resp., point-countable) [2], if each point x ∈ X belongs
to only finite (resp., countable) many members of P.

5. X is sequential [2], if whenever A is a non-closed subset of X, then there
is a sequence in A converging to a point not in A.

Definition 1.3. Let P =
∪
{Px : x ∈ X} be a cover of a space X. Assume

that P satisfies the following (1) and (2) for every x ∈ X.

1. Px is a network at x.

2. If P1, P2 ∈ Px, then P ⊂ P1 ∩ P2 for some P ∈ Px.

P is a weak base for X [1], if for G ⊂ X, G is open in X if and only if for
every x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said to be a weak
neighborhood base at x.

Definition 1.4 ([4, 5]). Let d be a d-function on a space X.

1. For each x ∈ X, n ∈ N, let

Sn(x) =
{
y ∈ X : d(x, y) <

1

n

}
.

2. For every P ⊂ X, put

d(P ) = sup{d(x, y) : x, y ∈ P}.

3. X is symmetric, if {Sn(x) : n ∈ N} is a weak neighborhood base at x for
each x ∈ X.

4. X is Cauchy symmetric, if X is symmetric and every convergent sequence
is d-Cauchy.

Remark 1.5 ([5]). X is Cauchy symmetric if and only if for each x ∈ X,
d
(
Sn(x)

)
converges to 0.

Definition 1.6. Let {Pn : n ∈ N} be a sequence of covers of a space X such
that Pn+1 refines Pn for every n ∈ N.

1.
∪
{Pn : n ∈ N} is a σ-strong network for X [3], if {St(x,Pn) : n ∈ N} is

a network at each point x ∈ X.

2.
∪
{Pn : n ∈ N} is a σ-point-finite strong network for X [7], if it is a

σ-strong network and each Pn is point-finite.
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3.
∪
{Pn : n ∈ N} is a σ-point-finite strong network consisting of cs-covers

[7], if it is a σ-strong network and each Pn is a point-finite cs-cover.

Definition 1.7. Let f : X → Y be a map. Then

1. f is a compact map [2], if each f−1(y) is compact in X.

2. f is a quotient map [2], if whenever f−1(U) is open in X, then U is open
in Y .

3. f is a sequence-covering map [8], if every convergent sequence of Y is the
image of some convergent sequence of X.

For some undefined or related concepts, we refer the reader to [2, 6, 7].

2. Main Results

Theorem 2.1. The following are equivalent for a space X.

1. X is a sequence-covering quotient compact image of a metric space;

2. X is a Cauchy symmetric with σ-point-finite cs-network.

Proof. (1) =⇒ (2). By Theorem 9 and Theorem 12 in [3].

(2) =⇒ (1). Let X be a Cauchy symmetric and U =
∪
{Un : n ∈ N} be a

σ-point-finite cs-network for X. We can assume that each Un is closed under
finite intersections and Un ⊂ Un+1 for all n ∈ N. So, U is closed under finite
intersections. Put

Px =
{
P ∈ U : Sn(x) ⊂ P for some n ∈ N

}
.

Claim. For each U open in X and x ∈ U , there exists P ∈ Px such that
P ⊂ U .

In fact, conversely assume that there exists U open in X and x ∈ U such
that P ̸⊂ U for all P ∈ Px. Let

{P ∈ Px : x ∈ P ⊂ U} = {Pm(x) : m ∈ N}.

Then Sn(x) ̸⊂ Pm(x) for all n,m ∈ N, so choose xn,m ∈ Sn(x) − Pm(x). For
n ≥ m, we denote xn,m = yk with k = m + n(n − 1)/2. Because {Sn(x)} is a
decreasing weak neighborhood base at x, the sequence {yk : k ∈ N} converges
to the point x in X. Thus, there exist m, i ∈ N such that

{x}
∪
{yk : k ≥ i} ⊂ Pm(x) ⊂ U.

Take j ≥ i with yj = xn,m for some n ≥ m. Then xn,m ∈ Pm(x). This is a
contradiction.

Then we have
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(1) Px is a network at x in X. Let U be an open subset of X and x ∈ U .
Then there P ∈ Px such that P ⊂ U by the Claim.

(2) Let P1, P2 ∈ Px and P = P1∩P2. Hence, there exist n,m ∈ N such that
Sm(x) ⊂ P1 and Sn(x) ⊂ P2. If we put k = max{m,n}, then Sk(x) ⊂ P ∈ U .
Thus, P ∈ Px and P ⊂ P1 ∩ P2.

(3) Let U be an open subset of X. By the Claim, there exists P ∈ Px

such that P ⊂ U . Conversely, if U ⊂ X satisfies that for each x ∈ U , there
exists P ∈ Px with P ⊂ U , then for each x ∈ U , there exists n ∈ N such that
Sn(x) ⊂ U . Because {Sn(x)} is a weak neighborhood at x for all x ∈ X, U is
open in X.

Therefore, P =
∪
{Px : x ∈ X} is a weak base for X and P ⊂ U .

Now, for each n ∈ N, put Pn = Un ∩ P. Then, P =
∪
{Pn : n ∈ N}

and Pn ⊂ Pn+1 for all n ∈ N. Since U is a σ-point-finite cs-network, P is a
σ-point-finite weak base.

Next, for each m,n ∈ N, put

Qm,n(x) =
{
P ∈ Pm ∩ Px : Sm(x) ⊂ P and d(P ) <

1

n

}
;

Am,n = {x ∈ X : Qm,n(x) = ∅};

Bm,n = X −Am,n;

Qm,n =
∪
{Qm,n(x) : x ∈ Bm,n};

Fm,n = Qm,n

∪
{Am,n}.

Then, each Fm,n is point-finite. Furthermore, we have

(i) Each Fm,n is a cs-cover for X.
Let x ∈ X and S = {xi : i ∈ N} be a sequence converging to x in X, then

Case 1. If x ∈ Bm,n, then there is P ∈ Qm,n(x) such that Sm(x) ⊂ P .
Hence, S is eventually in P ∈ Fm,n.

Case 2. If x /∈ Bm,n and S ∩Bm,n is finite, then S is eventually in Am,n ∈
Fm,n.

Case 3. If x /∈ Bm,n and S ∩Bm,n is infinite, then we can assume that

S ∩Bm,n = {xik : k ∈ N}.

Since X is Cauchy symmetric and S converges to x, there exists n0 ∈ N such
that
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d(xi, xj) <
1

m
and d(x, xi) <

1

m
for every i, j ≥ n0.

Now, we pick k0 ∈ N such that ik0 ≥ n0. Because

d(xik0
, x) <

1

m
and d(xik0

, xi) <
1

m
for every i ≥ n0,

it implies that S is eventually in Sm(xik0
). Furthermore, since xik0

∈ Bm,n,
we get Sm(xik0

) ⊂ P for some P ∈ Qm,n(xik0
). Hence, P ∈ Fm,n and S is

eventually in P .

Therefore, each Fm,n is a cs-cover for X.

(ii) {St(x,Fm,n) : m,n ∈ N} is a network at x.

Let x ∈ U with U is open in X. Then, Sn(x) ⊂ U for some n ∈ N. Since
X is Cauchy symmetric, it follows from Remark 1.5 that there exists j ∈ N
such that d

(
Sj(x)

)
< 1/n. Furthermore, we have P ⊂ Sj(x) for some P ∈ Px.

Indeed, since P is point-countable, we can put

Px = {Pn(x) : n ∈ N}.

On the other hand, because P is a weak base, we can choose a sequence {ni :
i ∈ N} such that {Pni(x) : i ∈ N} is a decreasing network at x. Then, there
exists i ∈ N such that Pni(x) ⊂ Sn(x). Thus, P ∈ Pk for some k ∈ N.

Because P is a sequential neighborhood at x, there exists i ∈ N such that
Si(x) ⊂ P . If not, for each n ∈ N, there exists xn ∈ Sn(x) − P . Hence, {xn}
converges to x. Then, there exists m ∈ N such that xn ∈ P for every n ≥ m.
This is a contradiction.

Denote m = max{i, k}, then

Sm(x) ⊂ Si(x) ⊂ P ∈ Pk ⊂ Pm.

Since d(P ) < 1/n, it implies that P ∈ Fm,n. Then, we have St(x,Fm,n) ⊂
Sn(x). It follows that {St(x,Fm,n) : m,n ∈ N} is a network at x.

Finally, we write

{Fm,n : m,n ∈ N} = {Hn : n ∈ N},

and for each n ∈ N, put

Gn =
∧
{Hi : i ≤ n}.

Then,
∪
{Gn : n ∈ N} is a σ-point-finite strong network consisting of cs-covers

of X.

By Theorem 12 in [3], X is a sequential space. It follows from Theorem 9 in
[3] that X is a sequence-covering quotient compact image of a metric space.

Remark 2.2. By Theorem 2.1, we get a partial answer to the Question 1.1.
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