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Abstract. The aim of this paper is to prove a coupled coincidence fixed
point theorem in complete b−fuzzy metric space. The results presented
in this paper are generalizations of some well known, up to date research.
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1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [19] in 1965.
Since then, to use this concept in topology and analysis, many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [7] , Kramosil and Michalek [10] have introduced the concept of
fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics, particularly in connections with both
string and E-infinity theory which were given and studied by El Naschie [3, 4,
5, 6, 18]. For more information about the fuzzy metric and probabilistic metric
spaces and fixed point theory in these spaces, we recommend [1, 8, 12, 13, 14,
17].

In this paper we dealt with a b-fuzzy metric spaces, and we proved a coupled
coincidence point theorem in that spaces.

2. Preliminaries

This section we will start with the basic definitions and notations.

Definition 2.1. [9] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:
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1. ∗ is associative and commutative,

2. ∗ is continuous,

3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a ∗ b = a · b and a ∗ b =
min(a, b).

Further on, by a fuzzy set A on some universal set X we shall consider
its membership function (see [19]). For the sake of simplicity, the membership
function will be also denoted by A, i.e., A : X → [0, 1].

Definition 2.2. [9]A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
on X2 × (0,∞), satisfying the following conditions for each x, y, z ∈ X and
t, s > 0,

1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s),

5. M(x, y, ·) : (0,∞) → [0, 1] is continuous.

The function M is called a fuzzy metric.

Definition 2.3. [15] A 3-tuple (X,M, ∗) is called a b−fuzzy metric space if X
is an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
on X2× (0,∞), satisfying the following conditions for each x, y, z ∈ X, t, s > 0
and a given real number b ≥ 1,

1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t
b ) ∗M(y, z, s

b ) ≤ M(x, z, t+ s),

5. M(x, y, ·) : (0,∞) → [0, 1] is continuous.

The function M is called a b-fuzzy metric.

It should be noted that the class of b−fuzzy metric spaces is effectively
larger than that of fuzzy metric spaces, since a b−fuzzy metric space is a fuzzy
metric space when b = 1.

We present an example that shows that a b−fuzzy metric on X need not
be a fuzzy metric on X.
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Example 2.4. Let M(x, y, t) = e
−|x−y|p

t , where p > 1 is a real number, and
a ∗ b = a · b. We will show that (X,M, ∗) is a b−fuzzy metric space with
b = 2p−1.

Obviously conditions (1), (2),(3) and (5) of Definition 2.3 are satisfied.
If 1 < p < ∞, then the convexity of the function f(x) = xp (x > 0) implies(

a+ c

2

)p

≤ 1

2
(ap + cp) ,

and hence, (a+ c)
p ≤ 2p−1(ap + cp) holds. Therefore,

|x− y|p

t+ s
≤ 2p−1 |x− z|p

t+ s
+ 2p−1 |z − y|p

t+ s

≤ 2p−1 |x− z|p

t
+ 2p−1 |z − y|p

s

=
|x− z|p

t/2p−1
+

|z − y|p

s/2p−1

Thus for each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−|x−y|p

t+s

≥ M(x, z,
t

2p−1
) ∗M(z, y,

s

2p−1
).

So condition (4) of Definition 2.3 holds and (X,M, ∗) is a b− fuzzy metric
space.

It should be noted that in preceding example, for p = 2 (X,M, ∗) is not a
fuzzy metric space.

Example 2.5. Let M(x, y, t) = e
−d(x,y)

t or M(x, y, t) = t
t+d(x,y) , where d is a

b-metric on X and a ∗ c = a · c for all a, c ∈ [0, 1]. Then it is easy to show that
(X,M, ∗) is a b−fuzzy metric space.

Obviously conditions (1), (2),(3) and (5) of Definition 2.3 are satisfied. For
each x, y, z ∈ X we obtain

M(x, y, t+ s) = e
−d(x,y)

t+s

≥ e−b
d(x,z)+d(z,y)

t+s

= e−b
d(x,z)
t+s .e−b

d(z,y)
t+s

≥ e
−d(x,z)

t/b .e
−d(z,y)

s/b

= M(x, z,
t

b
) ∗M(z, y,

s

b
).

So condition (4) of Definition 2.3 holds and (X,M, ∗) is a b− fuzzy metric
space. Similarly, it is easy to see that for M(x, y, t) = t

t+d(x,y) , (X,M, ∗) is a

b− fuzzy metric space.
Before stating and proving our results, we present a definition and a propo-

sition in b−metric space.
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Definition 2.6. [15] A function f : R → R is called b−nondecreasing, if x > by
implies f(x) ≥ f(y) for each x, y ∈ R.

Lemma 2.7. [15] Let (X,M, ∗) be a b−fuzzy metric space. Then M(x, y, t) is
b−nondecreasing with respect to t, for all x, y in X. Also,

M(x, y, bnt) ≥ M(x, y, t), ∀n ∈ N.

Let (X,M, ∗) be a b−fuzzy metric space. For t > 0, the open ball B(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

We recall the notions of convergence and completeness in a b−fuzzy metric
space [15].

Let (X,M, ∗) be a b−fuzzy metric space. Let τ be the set of all A ⊂ X with
x ∈ A if and only if there exists t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Then τ is a topology on X (induced by the b−fuzzy metric M). A sequence
{xn} in X converges to x if and only if M(xn, x, t) → 1 as n → ∞, for each
t > 0. It is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exists
n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0. The b−fuzzy metric
space (X,M, ∗) is said to be complete if every Cauchy sequence is convergent.
A subset A of X is said to be F-bounded if there exists t > 0 and 0 < r < 1
such that M(x, y, t) > 1− r for all x, y ∈ A.

Lemma 2.8. [15]In a b−fuzzy metric space (X,M, ∗) the following assertions
hold:

(i) If the sequence {xn} in X converges to x, then x is unique,
(ii) If the sequence {xn} in X is converges to x, then {xn} is a Cauchy

sequence.

In a b−fuzzy metric space we have the following Proposition.

Proposition 2.9. [16, Prop. 1.10] Let (X,M, ∗) be a b−fuzzy metric space
and suppose that {xn} is b-convergent to x then we have

M(x, y,
t

b
) ≤ lim sup

n→∞
M(xn, y, t) ≤ M(x, y, bt),

M(x, y,
t

b
) ≤ lim inf

n→∞
M(xn, y, t) ≤ M(x, y, bt).

Remark 2.10. In general, a b−fuzzy metric is not continuous.

Definition 2.11. [2] An element (x, y) ∈ X×X is called a coupled fixed point
of a mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 2.12. [11] An element (x, y) ∈ X×X is called a coupled coincidence
point of the mappings F : X × X → X and g : X → X if F (x, y) = gx and
F (y, x) = gy.

Definition 2.13. [11] Let X be a nonempty set. Then we say that the map-
pings F : X×X → X and g : X → X are commutative if gF (x, y) = F (gx, gy).
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3. The Main Results

Let Φ denote the class of all functions ϕ : [0, 1] → [0, 1] such that ϕ is
increasing, continuous and let ϕ(t) > t for all t ∈ (0, 1).

Note that if ϕ(0) = 0 and ϕ(1) = 1 additionally hold, then ϕ(t) ≥ t,
t ∈ [0, 1], for all functions from Φ.

We start our work by proving the following crucial lemma.

Lemma 3.1. Let (X,M, ∗) be a b-fuzzy metric space with b ≥ 1 and let F :
X ×X → X and g : X → X be two mappings such that

(3.1) M(F (x, y), F (u, v), t) ≥ ϕ(min{M(gx, gu, t),M(gy, gv, t)}),

for some ϕ ∈ Φ and for all x, y, u, v ∈ X and t > 0. Assume that (x, y) is a
coupled coincidence point of the mappings F and g. Then F (x, y) = gx = gy =
F (y, x).

Proof. Since (x, y) is a coupled coincidence point of the mappings F and g, we
have gx = F (x, y) and gy = F (y, x). Assume gx ̸= gy. Then by (3.1), we get

M(gx, gy, t) = M(F (x, y), F (y, x), t) ≥ ϕ(min{M(gx, gy, t),M(gy, gx, t)})
= ϕ(M(gx, gy, t))

> M(gx, gy, t),

which is a contradiction, since the values of M can not be either 0 or 1. So
gx = gy, and hence F (x, y) = gx = gy = F (y, x).

The following is the main result of this section.

Theorem 3.2. Let (X,M, ∗) be a complete b-fuzzy metric space. Let F :
X ×X → X and g : X → X be two functions such that

(3.2) M(F (x, y), F (u, v), t) ≥ ϕ(min{M(gx, gu, b2t),M(gy, gv, b2t)})

for all x, y, u, v ∈ X and t > 0. Assume that F and g satisfy the following
conditions:

1. F (X ×X) ⊆ g(X),

2. g(X) is complete, and

3. g is continuous and commutes with F .

If ϕ ∈ Φ, then there is a unique x in X such that gx = F (x, x) = x.

Proof. Let x0, y0 ∈ X. Since F (X × X) ⊆ g(X), we can choose x1, y1 ∈ X
such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Again since F (X×X) ⊆ g(X),
we can choose x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1).
Continuing this process, we can construct two sequences {xn} and {yn} in X
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such that gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn). For n ∈ N ∪ {0}, by
(3.2) we have

M(gxn−1, gxn, t) = M(F (xn−2, yn−2), F (xn−1, yn−1), t)

≥ ϕ(min{M(gxn−2, gxn−1, b
2t),M(gyn−2, gyn−1, b

2t)}).

Similarly by (3.2) we have

M(gyn−1, gyn, t) = M(F (yn−2, xn−2), F (yn−1, xn−1), t)

≥ ϕ(min{M(gyn−2, gyn−1, b
2t),M(gxn−2, gxn−1, b

2t)}).

Hence, we have

an(t) = min{M(gxn−1, gxn, t),M(gyn−1, gyn, t)}
≥ ϕ(min{M(gxn−2, gxn−1, b

2t),M(gyn−2, gyn−1, b
2t)})

= ϕ(an−1(b
2t))

holds for all n ∈ N. Thus, we get that

an(t) ≥ ϕ(an−1(b
2t)) > an−1(b

2t) ≥ an−1(t).

Thus {an(t)} is an increasing sequence in [0, 1] for every t > 0. Therefore,
{an(t)} tends to a limit a(t) ≤ 1. We claim that a(t) = 1. For if a(t) < 1,
letting n → ∞ in the above inequality we get a(t) ≥ ϕ(a(b2t)) > a(b2t) ≥ a(t),
a contradiction. Hence a(t) = 1, i.e.,

lim
n→∞

M(gxn, gxn+1, t) = 1, lim
n→∞

M(gyn, gyn+1, t) = 1.

Now, we prove that {gxn} and {gyn} are Cauchy sequence in g(X) for
n = 1, 2, 3, . . . .

First, we prove that for every ε ∈ (0, 1), there exist two numbers n,m ∈ N
such that

min{M(gxn, gxm, t),M(gyn, gym, t)} > 1− ε.

Suppose that this is not true. Then there is an ε ∈ (0, 1) such that for each
integer k, there exist integers m(k) and n(k) with m(k) > n(k) ≥ k such that
(3.3)
min{M(gxn(k), gxm(k), t),M(gyn(k), gym(k), t)} ≤ 1−ε for k = 1, 2, · · · .

We may assume that

(3.4) min{M(gxn(k), gxm(k)−1, t),M(gyn(k), gym(k)−1, t)} > 1− ε,

by choosing m(k) be the smallest number exceeding n(k) for which (3.3) holds.

Let

dk(t) = min{M(gxn(k), gxm(k), t),M(gyn(k), gym(k), t)}.
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Using (3.3), and the fact that a ∗ b ≥ min{a, c} ∗min{b, d} we have

1− ε

≥ dk(t) ≥ min{M(gxn(k), gxm(k)−1,
t

2b
) ∗M(gxm(k)−1, gxm(k),

t

2b
),

M(gyn(k), gym(k)−1,
t

2b
) ∗M(gym(k)−1, gym(k),

t

2b
)}

≥ min{min{M(gxn(k), gxm(k)−1,
t

2b
),M(gyn(k), gym(k)−1,

t

2b
)}

∗ min{M(gxm(k)−1, gxm(k),
t

2b
),M(gym(k)−1, gym(k),

t

2b
)},

min{M(gxn(k), gxm(k)−1,
t

2b
),M(gyn(k), gym(k)−1,

t

2b
)}

∗ min{M(gxm(k)−1, gxm(k),
t

2b
),M(gym(k)−1, gym(k),

t

2b
)}

≥ min{M(gxm(k)−1, gxm(k),
t

2b
),M(gym(k)−1, gym(k),

t

2b
)} ∗ ak(

t

2b
),

Thus, as k → ∞ in the above inequality we have

1− ε ≥ lim
k→∞

dk(t) ≥ (1− ε) ∗ lim
k→∞

ak(
t

2b
) = 1− ε,

that is

lim
k→∞

dk(t) = 1− ε,

for every t > 0.

On the other hand, we have

dk(t)

≥ min{M(gxn(k), gxn(k)+1,
t

3b
) ∗M(gxn(k)+1, gxm(k)+1,

t

3b
)

∗ M(gxm(k)+1, gxm(k),
t

3b
)}, {M(gyn(k), gyn(k)+1,

t

3b
)

∗ M(gyn(k)+1, gym(k)+1,
t

3b
) ∗M(gym(k)+1, gym(k),

t

3b
)}

≥ min{min{M(gxn(k), gxn(k)+1,
t

3b
),M(gyn(k), gyn(k)+1,

t

3b
)}

∗ min{M(gxn(k)+1, gxm(k)+1,
t

3b
),M(gyn(k)+1, gym(k)+1,

t

3b
)}

∗ min{M(gxm(k)+1, gxm(k),
t

3b
),M(gym(k)+1, gym(k),

t

3b
)},

min{M(gxn(k), gxn(k)+1,
t

3b
),M(gyn(k), gyn(k)+1,

t

3b
)}

∗ min{M(gxn(k)+1, gxm(k)+1,
t

3b
),M(gyn(k)+1, gym(k)+1,

t

3b
)}
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∗ min{M(gxm(k)+1, gxm(k),
t

3b
),M(gym(k)+1, gym(k),

t

3b
)}

= min{M(gxn(k), gxn(k)+1,
t

3b
),M(gyn(k), gyn(k)+1,

t

3b
)}

∗ min{M(gxn(k)+1, gxm(k)+1,
t

3b
),M(gyn(k)+1, gym(k)+1,

t

3b
)}

∗ min{M(gxm(k)+1, gxm(k),
t

3b
),M(gym(k)+1, gym(k),

t

3b
)}

≥ ak(
t

3b
) ∗min{M(gxn(k)+1, gxm(k)+1,

t

3b
),

M(gyn(k)+1, gym(k)+1,
t

3b
)} ∗ ak(

t

3b
)

= ak(
t

3b
) ∗min

{
M(F (xn(k), yn(k)), F (xm(k), ym(k)),

t
3b ),

M(F (yn(k), xn(k)), F (ym(k), xm(k)),
t
3b )

}
∗ ak(

t

3b
)

≥ ak(
t

3b
) ∗min{ϕ(M(gxn(k), gxm(k),

tb

3
),M(gyn(k), gym(k),

tb

3
))} ∗ ak(

t

3b
)

= ak(
t

3b
) ∗ ϕ(dk(

tb

3
)) ∗ ak(

t

3b
).

Thus, as k → ∞ in the above inequality we have

1− ε ≥ 1 ∗ ϕ(1− ε) ∗ 1 = ϕ(1− ε) > 1− ε,

which is a contradiction.
Thus {gxn} and {gyn} are Cauchy sequences in g(X). Since g(X) is com-

plete, we obtain {gxn} and (gyn) are convergent to some x ∈ X and y ∈ X,
respectively. Since g is continuous, we have {ggxn} is convergent to gx and
{ggyn} is convergent to gy. Also, since g and F do commute, we have

ggxn+1 = g(F (xn, yn)) = F (gxn, gyn),

and
ggyn+1 = g(F (yn, xn)) = F (gyn, gxn).

Thus

M(ggxn+1, F (x, y), t) = M(F (gxn, gyn), F (x, y), t)

≥ ϕ(min{M(ggxn, gx, b
2t),M(ggyn, gy, b

2t)}).

Letting n → ∞, and using the Proposition 2.9, we get that

M(gx, F (x, y), bt) ≥ lim sup
n→∞

M(F (gxn, gyn), F (x, y), t)

≥ lim sup
n→∞

ϕ(min{M(ggxn, gx, b
2t),M(ggyn, gy, b

2t)})

≥ ϕ(min{M(gx, gx, bt),M(gy, gy, bt)}) = 1.

Hence gx = F (x, y). Similarly, we may show that gy = F (y, x). By Lemma
3.1, (x, y) is coupled fixed point of the mappings F and g. So

gx = F (x, y) = F (y, x) = gy.
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Thus, using the Proposition 2.9 we have

M(x, gx, bt) ≥ lim sup
n→∞

M(gxn+1, gx, t)

= lim sup
n→∞

M(F (xn, yn), F (x, y), t)

≥ lim sup
n→∞

ϕ(min{M(gxn, gx, b
2t),M(gyn, gy, b

2t)})

≥ ϕ(min{M(x, gx, bt),M(y, gy, bt)}).

Hence, we get

M(x, gx, bt) ≥ ϕ(min{M(x, gx, bt),M(y, gy, bt)}).

Similarly, we may show that

M(y, gy, bt) ≥ ϕ(min{M(x, gx, bt),M(y, gy, bt)}).

Thus

min{M(x, gx, bt),M(y, gy, bt)} ≥ ϕ(min{M(x, gx, bt),M(y, gy, bt)})
> min{M(x, gx, bt),M(y, gy, bt)}.

The last inequality happened only ifM(x, gx, t) = 1 andM(y, gy, t) = 1. Hence
x = gx and y = gy. Thus we get

gx = F (x, x) = x.

To prove the uniqueness, let z ∈ X with z ̸= x such that

z = gz = F (z, z).

Then

M(x, z, t) = M(F (x, x), F (z, z), t)

≥ ϕ(min{M(gx, gz, b2t),M(gx, gz, b2t)})
= ϕ(M(gx, gz, b2t))

> M(gx, gz, b2t) = M(x, z, b2t)

≥ M(x, z, t).

We get M(x, z, t) > M(x, z, t), which is a contradiction. Thus F and g have a
unique common fixed point.

Corollary 3.3. Let (X,M, ∗) be a complete b-fuzzy metric space. Let F :
X ×X → X and g : X → X be two functions such that

(3.5) M(F (x, y), F (u, v), t) ≥
√

min{M(gx, gu, b2t),M(gy, gv, b2t)}

for all x, y, u, v ∈ X and t > 0. Assume that F and g satisfy the following
conditions:
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1. F (X ×X) ⊆ g(X),

2. g(X) is complete, and

3. g is continuous and commutes with F .

Then there is a unique x in X such that gx = F (x, x) = x.

Corollary 3.4. Let (X,M, ∗) be a complete b-fuzzy metric space. Let F :
X ×X → X and g : X → X be two functions such that

M(F (x, y), F (u, v), t)(3.6)

≥ 2min{M(gx, gu, b2t),M(gy, gv, b2t)}
−(min{M(gx, gu, b2t),M(gy, gv, b2t)})2

for all x, y, u, v ∈ X and t > 0. Assume that F and g satisfy the following
conditions:

1. F (X ×X) ⊆ g(X),

2. g(X) is complete, and

3. g is continuous and commutes with F .

Then there is a unique x in X such that gx = F (x, x) = x.

Proof. It is enough to set ϕ(t) = 2t− t2 in Theorem 3.2.

Corollary 3.5. Let (X,M, ∗) be a complete fuzzy metric space. Let F : X ×
X → X and g : X → X be two functions such that

(3.7) M(F (x, y), F (u, v), t) ≥ ϕ(min{M(gx, gu, t),M(gy, gv, t)})

for all x, y, u, v ∈ X and t > 0. Assume that F and g satisfy the following
conditions:

1. F (X ×X) ⊆ g(X),

2. g(X) is complete, and

3. g is continuous and commutes with F .

If ϕ ∈ Φ, then there is a unique x in X such that gx = F (x, x) = x.

Proof. It is enough to set b = 1 in Theorem 3.2.

Now we give an example to support our Theorem 3.2.
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Example 3.6. Let X = [0, 1] and a ∗ c = ac for all a, c ∈ [0, 1] and let M be
the b−fuzzy set on X ×X × (0,+∞) defined as follows:

M(x, y, t) = e
−(x−y)2

t ,

for all t ∈ R+. Then (X,M, ∗) is a b−fuzzy metric space for b = 2. Define
g(x) = x

4 , F (x, y) = 2x+y

32
√
2

and ϕ(t) =
√
t, , for t > 0. It is evident that

F (X ×X) ⊆ g(X), g is continuous.
Since,

(
2x− 2u

32
√
2

+
y − v

32
√
2
)2 ≤ 2

32
[(
x

4
− u

4
)2 + (

y

4
− v

4
)2]

=
1

16
[(
x

4
− u

4
)2 + (

y

4
− v

4
)2]

≤ 2

16
max{(x

4
− u

4
)2, (

y

4
− v

4
)2}

=
1

8
max{(x

4
− u

4
)2, (

y

4
− v

4
)2},

hence it follows that

M(F (x, y), F (u, v), t) = e
−(

2x+y

32
√

2
− 2u+v

32
√

2
)2

t

= e
−( 2x−2u

32
√

2
+

y−v

32
√

2
)2

t

≥ e
−[( x

4
−u

4
)2+(

y
4
− v

4
)2]

8t

≥ e
−max{( x

4
−u

4
)2,(

y
4
− v

4
)2}

8t

=

√
e

−max{( x
4
−u

4
)2,(

y
4
− v

4
)2}

4t

=

√
min{e

−( x
4
−u

4
)2

4t , e
−(

y
4
− v

4
)2

4t }
=

√
min{M(gx, gu, 4t),M(gy, gv, 4t)}

for all x, y, u, v in X. Thus all the conditions of last theorem 3.2 are satisfied
and 0 is a unique point in X such that g0 = F (0, 0) = 0.
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