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NONLINEAR NEUTRAL INTEGRO-DIFFERENTIAL
EQUATIONS, STABILITY BY FIXED POINT AND

INVERSES OF DELAYS
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Abstract. A class of second order nonlinear neutral integro-differential
equations with variable delays is investigated. We give new conditions
ensuring that the zero solution is asymptotically stable by means of the
fixed point theory. Our work extends and improves previous results in
the literature. An example is given to illustrate our claim.
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1. Introduction

Time-delay systems constitute basic mathematical models of real phenom-
ena such as nuclear reactors, chemical engineering systems, biological systems,
and population dynamics models. Such systems are often sources of instability
and degradation in control performance in many control problems. For more
than 100 years, the Lyapunov direct method has been the ultimate key tool to
study stability problems. The direct method was widely used to study the sta-
bility of solutions of ordinary differential equations and functional differential
equations. Nevertheless, the pointwise nature of this method and the construc-
tion of the Lyapunov functionals have been, and still are, an arduous task (see
[7]). Recently, many authors have realized that the fixed point theory can be
used to study the stability of the solution (see [1]-[11], [14], [16]-[18]). Levin
and Nohel [15] studied the following nonlinear systems of differential equations
of Liénard form

(1.1) ẍ+ h (t, x, ẋ) ẋ+ f (x) = a(t).

They obtained, by constructing a proper Lyapunov function, conditions under
which all solutions of 1.1 tend to zero as t → ∞. In [10], Burton considered
the following delay equation

(1.2) ẍ+ f (t, x, ẋ) ẋ+ b(t)g (x (t− L)) = 0,

1Department of Mathematics and Informatics, Faculty of Science and Technology, Uni-
versity of Souk Ahras, e-mail: abd ardjouni@yahoo.fr

2Corresponding author
3Department of Mathematics, Faculty of Science, University of Annaba, e-mail:

adjoudi@yahoo.com
4Department of Mathematics, Faculty of Science, University of Annaba, e-mail:

hocinegabsi@gmail.com

mailto:abd_ardjouni@yahoo.fr
mailto:adjoudi@yahoo.com
mailto:hocinegabsi@gmail.com


90 A. Ardjouni, A. Djoudi, H. Gabsi

where L is a positive constant. By using the fixed point theory, he gave sufficient
conditions for each solution x (t) to satisfy (x (t) , ẋ (t)) −→ 0 as t → ∞. D.
Pi (see [16, 18]) studied the asymptotic stability of the following two equations
with delays

(1.3) ẍ+ f (t, x, ẋ) ẋ+ b(t)g (x (t− r (t))) = 0,

(1.4) ẍ+ f (t, x, ẋ) ẋ+
N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds = 0.

Nevertheless, Pi results (see [17, 18]) rely on the introduction of an arbitrary
and unknown continuous function h which is contested by the public of this
domain because no one has had any real success at finding such a function.
Many other interesting results on fixed points and stability properties can be
found in the references ([1]-[8]). In this paper, we consider the equation

ẍ+ f (t, x, ẋ) ẋ+
N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds

+
N∑
j=1

bj(t)x
′ (t− τj (t)) = 0,(1.5)

for t ≥ 0. Where, for j = 1, N, functions τj : R+ −→ R+, aj(·, ·) : R+ ×
[−τj (0) ,∞) −→ R, f : R+ × R × R −→ R+, bj : R+ −→ R+ and gj (·, ·) :
[−τj (0) ,∞) × R −→ R are all continuous functions. We assume that, for
j = 1, N , τj is twice differentiable and

(1.6) τ
′

j (t) ̸= 1 for all t ≥ 0,

(1.7) t− τj (t) −→ ∞ as t −→ ∞, j = 1, N,

and that

(1.8) t− τj (t) : R+ −→ [−τj (0) ,∞) ,

is strictly increasing so that t− τj (t) is one-to-one; so it has an inverse which
we denote by pj (t) and which we call, for ease of the terminology, ’inverse of
delay’. For each t0 ≥ 0, define mj (t0) =: inf {s− τj (s) : s ≥ t0} , j = 1, N
and let m (t0) = min

{
mj (t0) , j = 1, N

}
. Let C (t0) := C ([m (t0) , t0] ,R) be

the space of continuous functions endowed with function supremum norm ∥·∥,
that is, for ψ ∈ C (t0) , ∥ψ∥ := sup {|ψ (s)| : m (t0) ≤ s ≤ t0}. We will also use
∥φ∥ := sup {|φ (s)| : s ∈ [m (t0) ,∞)} to express the supremum of continuous
bounded functions on [m (t0) ,∞) later. It is well known (see [13]) that, for
a given continuous function ψ and a number y0, there exists a solution for
equation (1.5) on an interval [−m (t0) , T ), and if the solution remains bounded,
then T = ∞. We denote by (x (t) , y (t)) the solution (x (t, t0, ψ) , y (t, t0, ψ)).
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Denote by A(t) := f ((t, x(t), y(t)). We can rewrite equation (1.5) as

(1.9)


ẋ (t) = y (t) ,

ẏ (t) = −A (t) y(t)−
N∑
j=1

∫ t
t−τj(t) aj(t, s)gj (s, x (s)) ds

−
N∑
j=1

ωj (t)
d
dtx (t− τj (t)) ,

with

(1.10) ωj (t) =
bj(t)

1− τ ′j (t)
.

Our purpose is to give a necessary and sufficient condition ensuring that the
zero solution of the above equation is asymptotically stable. To our knowledge
the considered equation has not yet been studied by any method. Further,
being free of the famous unknown function h(t) that has weakened previous
particular results, we hope that this work is clean and interesting.

2. Preliminaries

Some asymptotic properties on integral equations are needed in this work.
So, let f be a real or complex-valued function of the variable t > 0 and p be
a real or a complex parameter such that Re(p) > 0. We define the Laplace
transform (see [19], [12]) of f as

(2.1) F (p) = L (f (t))(p) =

∫ ∞

0

e−ptf (t) dt.

We also indicate the Laplace transform (2.1) of the power function tγ is given
by

(2.2) L (tγ)(p) =

∫ ∞

0

e−pttγdt =
Γ (γ + 1)

pγ+1
, γ > −1, p > 0,

with Gamma function Γ (z) is defined by the integral

(2.3) Γ (z) =

∫ ∞

0

e−ttz−1dt = L
(
tz−1

)
(1)
,

which converges in the right half of the complex plane Re(z) > 0. Now, let
−∞ ≤ α < β ≤ +∞, φ : [α, β] → R and define for λ ∈ R the integral

(2.4) F (λ) =

∫ β

α

e−λφ(t)f (t) dt.

We assume that there exists a constant λ0 > 0 such that for every λ ≥ λ0 we
have

(2.5)

∫ β

α

e−λφ(t) |f (t)| dt <∞.

The following theorem is crucial to reach our goal.
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Theorem 2.1. Let φ : [α, β[ −→ R be a function such that φ is of class C1,
φ′ > 0 on [α, β[. Assume that f is function continuous at α and f (α) ̸= 0.
Then,

(2.6) F (λ) ∼ f (α)

φ′ (α)

1

λ
e−λφ(α), (λ −→ +∞) .

Proof. (a) To begin with, φ (t) = t, α = 0;

(2.7) F (λ) =

∫ β

0

e−λtf (t) dt.

We check that F (λ) satisfies the property (2.6). Indeed, since f is continuous
at α = 0, then for any given ε > 0, one can choose η sufficiently small, such
that

(2.8) |f (t)− f (0)| ≤ ε, for 0 ≤ t ≤ η.

Next, we decompose F (λ) in the following manner

(2.9) F (λ) = f (0)

∫ η

0

e−λtdt+

∫ η

0

e−λt (f (t)− f (0)) dt+

∫ β

η

e−λtf (t) dt.

From (2.9) we can establish the following estimates∫ η

0

e−λtdt =
1

λ

(
1− e−λη

)
,(2.10) ∫ η

0

e−λt (f (t)− f (0)) dt ≤ ε

∫ ∞

0

e−λtdt =
ε

λ
.(2.11)

For t ≥ η we have (λ− λ0) (t− η) ≥ 0. Consequently,

(2.12)

∫ β

η

e−λtf (t) dt ≤ e−η(λ−λ0)

∫ β

η

e−λ0tf (t) dt.

(b) Let us return to the general case. For this purpose, consider the function

(2.13) g : [α, β[ −→ [0, β0[ , t 7−→ g (t) := φ (t)− φ (α) ,

where β0 = φ (β)− φ (α). We observe that g is bijective on [α, β[. Denote the
reciprocal function of g by

(2.14) ψ : [0, β0[ −→ [α, β[ , u 7−→ ψ (u) .

The change of variables t = ψ (u) yields the integral formula

(2.15) F (λ) = e−λφ(α)
∫ β0

0

e−λuf (ψ (u))ψ′ (u) du.
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We see that

(2.16)
dψ (u)

dt
= ψ′ (φ (t)− φ (α))φ′ (t) = 1 and ψ′ (0) =

1

φ′ (α)
.

Define

(2.17) f̃ (u) := f (ψ (u))ψ′ (u) .

Clearly, the function f̃ is continuous at 0. Moreover,

(2.18) f̃ (0) = f (ψ (0))ψ′ (0) =
f (α)

φ′ (α)
.

Repeated application of (a) yields

F (λ) = e−λφ(α)f̃ (0)

∫ η

0

e−λudu+ e−λφ(α)
∫ η

0

e−λu
(
f̃ (u)− f̃ (0)

)
du

+ e−λφ(α)
∫ β

η

e−λuf̃ (u) du

≤ e−λφ(α)
f (α)

φ′ (α)

1

λ

(
1− e−λη

)
+
ε

λ
e−λφ(α)

+ e−λφ(α)e−η(λ−λ0)

∫ β0

η

e−λ0uf̃ (u) du.(2.19)

Stability definitions, fixed point technique and more details on delay differ-
ential equations can be found in ([13, 7]).

Definition 2.2. The zero solution of (1.9) is stable if for each ε > 0 there
exists δ = δ (ε, t0) > 0 such that [ψ ∈ C (t0) , y0 ∈ R, ∥ψ∥+ |y0| < δ] implies
that |x (t, t0, ψ)|+ |y (t, t0, ψ)| < ε for t ≥ t0.

Definition 2.3. The zero solution of (1.9) is asymptotically stable if it is stable
and there is a δ1 = δ1 (t0) > 0 such that [ψ ∈ C (t0) , y0 ∈ R, ∥ψ∥+ |y0| < δ1]
implies that |x (t, ψ, y0)|+ |y (t, ψ, y0)| −→ 0 as t −→ ∞.

3. Main Results

In this section, we will prove Theorem 3.5 and Theorem 3.6 on stability
and asymptotic stability, respectively, for equation (1.5) by using the fixed
point theory. But our equation is nonlinear and has no non trivial edo term
so the inversion of that equation needs some preparations to be domesticated.
Lemma 3.1 and Lemma 3.2 are the subject of these aesthetic works. We use the
variation of parameters and then transform the given equation and in Lemma
3.3 we invert it and give the expression of the solutions of (1.5). The proof of
these theorems depends on Theorem 2.1.
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Lemma 3.1. Let pj : [−τj (0) ,∞) −→ R+ denote the inverse of t − τj (t).
Then the second equation of (1.9) is equivalent to

ẋ(t) = −D̂ (t)x (t) +B(t)

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(u)du

∫ s

s−τj(s)
aj(s, v)gj (v, x (v)) dvds

+
N∑
j=1

d

dt

∫ t

t−τ(t)
D̂j (s)x (s) ds

+

N∑
j=1

∫ t

t0

e−
∫ t
s
A(u)durj(s)x (s− τj (s)) ds.(3.1)

Here B, D̂j, rj, D̂ are defined respectively by

(3.2) B(t) :=

ẋ(t0) + N∑
j=1

ωj(t0)x (t0 − τj (t0))

 e
−

∫ t
t0
A(w)dw

,

(3.3) D̂j (t) := Dj (pj (t)) with Dj (t) :=
bj(t)(

1− τ ′j (t)
)2 ,

(3.4) rj (t) =
[(
bj(t)A(t) + b′j(t)

) (
1− τ ′j (t)

)
+ bj(t)τ

′′
j (t)

]
/
(
1− τ ′j (t)

)2
,

(3.5) D̂ (t) :=

N∑
j=1

D̂j(t),

for t ∈ [m(t0),∞) and m(t0) := inf {mj(t0), 1 ≤ j ≤ N} .

Proof. Indeed, applying the variation of parameters formula by multiplying

both sides of the second equation of (1.9) by the factor e
∫ t
t0
A(u)du

and integrat-
ing from t0 to any t ∈ [t0, T ], we obtain

y(t) = y(t0)e
−

∫ t
t0
A(w)dw

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(w)dw

∫ s

s−τj(s)
aj(s, v)gj (v, x (v)) dvds

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dvωj(s)

d

ds
x (s− τj (s)) ds.(3.6)
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Substituting ẋ(·) into (3.6) and performing an integration by parts to the last
right hand term we obtain

ẋ(t) = ẋ(t0)e
−

∫ t
t0
A(v)dv

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dv

∫ s

s−τj(s)
aj(s, v)gj (v, x (v)) dvds

−
N∑
j=1

ωj(t)x (t− τj (t)) + e
−

∫ t
t0
A(v)dv

N∑
j=1

ωj(t0)x (t0 − τj (t0))

+
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dvrj(s)x (s− τj (s)) ds.(3.7)

Having in mind the fact that pj (t− τj (t)) = t, then, by rewriting the third
term on the right had side of (3.7), we reduce (1.5) (retaining its initial condi-
tion) to a first-order integro-differential equation as follows

ẋ(t) = −D̂ (t)x (t) +

ẋ(t0) + N∑
j=1

ωj(t0)x (t0 − τj (t0))

 e
−

∫ t
t0
A(v)dv

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dv

∫ s

s−τj(s)
aj(s, v)gj (v, x (v)) dvds

+
N∑
j=1

d

dt

∫ t

t−τj(t)
D̂j (s)x (s) ds+

N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dvrj(s)x (s− τj (s)) ds.

Making use of (3.2), we see that this last equation is exactly (3.1).

Lemma 3.2. The equation

(3.8) σ(t) = −
N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds,

is equivalent to

σ (t) =
N∑
j=1

d

dt

∫ t

t−τj(t)
Cj(t, s)gj (s, x(s)) ds

+
N∑
j=1

Cj(t, t− τj(t))(1− τ ′j(t))gj (t− τj(t), x(t− τj(t))) ,(3.9)

where
(3.10)

Cj(t, s) =

∫ s

t

aj(u, s)du and Cj(t, t− τj(t)) =

∫ t−τj(t)

t

aj(u, t− τj(t))du.
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Proof. Differentiating the integral term in (3.8), we have

d

dt

∫ t

t−τj(t)
Cj(t, s)gj (s, x(s)) ds

=

∫ t

t−τj(t)

∂

∂t
Cj(t, s)gj (s, x(s)) ds+ Cj(t, t)gj (t, x(t))

− Cj(t, t− τj(t))(1− τ ′j(t))gj (t− τj(t), x(t− τj(t))) .

It follows that if Cj(t, t) = 0,
∂Cj(t, s)

∂t
= −aj(t, s), then (3.8) is equivalent to

(3.9). The calculation shows that the previous conditions on Cj yields
(3.11)

Cj(t, s) =

∫ s

t

aj(u, s)du and Cj(t, t− τj(t)) =

∫ t−τj(t)

t

aj(u, t− τj(t))du.

Lemma 3.3. Suppose that condition (1.6) is fulfilled and τj (·) is twice dif-
ferentiable for all j = 1, ..., N . If x (t) is a solution of equation (1.9) and
hence solution of (1.5) on an interval [t0, T ) satisfying the initial condition
x(t) = ψ(t) on [m(t0), t0] and y(t0) = ẋ(t0), then x (t) is the solution of the
following integral equation

x(t) =

ψ (t0)−
N∑
j=1

∫ t0

t0−τj(t0)
D̂j (s)ψ (s) ds

 e− ∫ t
t0
D̂(v)dv

+

ẋ(t0) + N∑
j=1

(
bj(t0)

1− τ ′j (t0)
ψ (t0 − τj (t0))

−
∫ t0

t0−τj(t0)
Cj(t0, v)gj (v, ψ (v)) dv

)]

×
∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du+
N∑
j=1

∫ t

t−τj(t)
D̂j (u)x (u) du

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
Cj(u, v)gj (v, x (v)) dvdu

−
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

A (s) e−
∫ u
s
A(v)dv

∫ s

s−τj(s)
Cj(s, v)gj (v, x (v)) dvdsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvCj(s, s− τj(s))(1− τ ′j(s))

× gj (s− τj(s), x(s− τj(s))) dsdu
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−
N∑
j=1

∫ t

t0

D̂ (u) e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
D̂j (s)x (s) dsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvrj(s)x (s− τj (s)) dsdu,(3.12)

on [t0, T ), where rj (·) and D̂ (·) are respectively given by (3.4),(3.5) in Lemma
3.1. Conversely, if a continuous function x (·) is equal to ψ (·) for t ∈ [m(t0), t0]
and is the solution of above integral equation on an interval [t0, T1], then x (·)
is a solution of (1.9) on [t0, T1].

Proof. By Lemma (3.2), equation (3.1) can be written as

ẋ(t) = −D̂ (t)x (t) +

ẋ(t0) + N∑
j=1

ωj(t0)x (t0 − τj (t0))

 e
−

∫ t
t0
A(v)dv

+
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dv d

ds

∫ s

s−τj(s)
Cj(s, v)gj (v, x (v)) dvds

+
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dvCj(s, s− τj(s))(1− τ ′j(s))gj (s− τj(s), x(s− τj(s))) ds

+

N∑
j=1

d

dt

∫ t

t−τj(t)
D̂j (s)x (s) ds+

N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dvrj(s)x (s− τj (s)) ds.

(3.13)

Multiplying both sides of the above equation by e
∫ t
t0
D̂(v)dv

and integrating with
respect to u from t0 to t, we obtain

x(t) = x (t0) e
−

∫ t
t0
D̂(v)dv

+

ẋ(t0) + N∑
j=1

ωj(t0)x (t0 − τj (t0))

∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dv d

ds

∫ s

s−τj(s)
Cj(s, v)gj (v, x (v)) dvdsdu

+

N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvCj(s, s− τj(s))(1− τ ′j(s))

× gj (s− τj(s), x(s− τj(s))) dsdu
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+

N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv d

du

∫ u

u−τj(u)
D̂j (s)x (s) dsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvrj(s)x (s− τj (s)) dsdu.

Performing an integration by parts and using definitions (1.10) and (3.2), we
obtain

x(t) =

ψ (t0)−
N∑
j=1

∫ t0

t0−τj(t0)
D̂j (s)ψ (s) ds

 e− ∫ t
t0
D̂(v)dv

+

ẋ(t0) + N∑
j=1

(
bj(t0)

1− τ ′j (t0)
ψ (t0 − τj (t0))

−
∫ t0

t0−τj(t0)
Cj(t0, v)gj (v, ψ (v)) dv

)]

×
∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du

+
N∑
j=1

∫ t

t−τj(t)
D̂j (u)x (u) du

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
Cj(u, v)gj (v, x (v)) dvdu

−
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

A (s) e−
∫ u
s
A(v)dv

∫ s

s−τj(s)
Cj(s, v)gj (v, x (v)) dvdsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvCj(s, s− τj(s))(1− τ ′j(s))

× gj (s− τj(s), x(s− τj(s))) dsdu

−
N∑
j=1

∫ t

t0

D̂ (u) e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
D̂j (s)x (s) dsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvrj(s)x (s− τj (s)) dsdu,

where rj (t) is defined in (3.4). This leads exactly to (3.12).

Conversely, suppose that a continuous function x (·) is equal to ψ (·) on
[m (t0) , t0] and satisfies (3.12) on an interval [t0, T1). Then it is twice differen-
tiable on [t0, T1). Differentiating (3.12) with the aid of Leibniz’s rule, we obtain
(1.5).
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Next, we will define a mapping directly from (3.12). Remember that, by
Lemma 3.3 a fixed point of that map will be a solution of equation (1.5). To
obtain stability of the zero solution of (1.5), we need the mapping defined by
(3.12) to map bounded functions into bounded functions. For that, we let
(C, ∥·∥) to be the Banach space of real-valued bounded continuous functions on
[m(t0),∞) with the supremum norm ∥·∥, that is for φ ∈ C

∥φ∥ := sup {|φ (t)| ; t ∈ [m (t0) ,∞)} .

Our investigations will be carried out on the complete metric space (C, ρ), where
ρ is the uniform metric. That is, for φ, ϕ ∈ C we set ρ (φ, ϕ) = ∥φ− ϕ∥ .

Let ψ ∈ C([m(t0), t0],R) be fixed and define

Sψ := {φ : [m(t0),∞) → R | φ ∈ C, φ(t) = ψ(t) for t ∈ [m(t0), t0]}.

Being closed in C, (Sψ, ρ) is itself complete. There is no confusion if we use the
norm ∥·∥ on [m(t0), t0] or on [m(t0),∞).

Below we want to force the mapping suggested by (3.12) and explicitly
defined in the next lemma to map Sψ into itself. For that reason we assume
that the followings conditions hold.

i.

(3.14) lim inf
t−→∞

∫ t

t0

D̂(s)ds > −∞.

ii. There exists some functions Rj (·) ∈ C (R,R+) such that, for x1, x2 ∈ R,

|gj (t, x1)− gj (t, x2)| ≤ Rj (t) |x1 − x2| , j = 1, ..., N for all t ∈ R,(3.15)

gj (t, 0) = 0, j = 1, ..., N for t ∈ R+.(3.16)

iii. For t ≥ t0, there is a constant α > 0 satisfying

N∑
j=1

∫ t

t−τj(t)
D̂j (u) du+

N∑
j=1

∫ t

t0

D̂ (u) e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
D̂j (s)x (s) dsdu

+

N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
|Cj(u, v)|Rj (v) dvdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

A (s) e−
∫ u
s
A(v)dv

∫ s

s−τj(s)
|Cj(s, v)|Rj (v) dvdsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dv

∣∣Cj(s, s− τj(s))(1− τ ′j(s))
∣∣

×Rj (s− τj(s))dsdu

+

N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dv |rj(s)| dsdu

≤ α.
(3.17)
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iv. There exist constants a0 > 0, γ > 0, Q0 > 0 and a continuous function
A1 ∈ C (R+,R+) such that, for t ≥ t0

(3.18) f (t, x, y) ≥ A1 (t) ≥ 0 for all x, y ∈ R,

and for each t ≥ u ≥ Q0 we have

(3.19)

∫ t

u

D̂ (υ) dυ +

∫ u

t0

A1 (υ) dυ ≥ a0u
γ + b, b ∈ R.

v. There exists a constant β > 0 that satisfies the following inequality for t ≥ t0

N∑
j=1

|bj(t)|∣∣1− τ ′j (t)
∣∣

+
N∑
j=1

∫ t

t0

e−
∫ t
s
A(u)du

(∫ s

s−τj(s)
|aj(s, v)|Rj (v) dv + |rj(s)|

)
ds ≤ β.(3.20)

Lemma 3.4. Define the mapping P on Sψ as follows, for φ ∈ Sψ,

(Pφ)(t) = ψ(t) if t ∈ [m(t0), t0],

while for t > t0

Pφ(t) =

ψ (t0)−
N∑
j=1

∫ t0

t0−τj(t0)
D̂j (s)ψ (s) ds

 e− ∫ t
t0
D̂(v)dv

+

ẋ(t0) + N∑
j=1

(
bj(t0)

1− τ ′j (t0)
ψ (t0 − τj (t0))

−
∫ t0

t0−τj(t0)
Cj(t0, v)gj (v, ψ (v)) dv

)]

×
∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du

+

N∑
j=1

∫ t

t−τj(t)
D̂j (u)φ (u) du

−
N∑
j=1

∫ t

t0

D̂ (u) e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
D̂j (s)φ (s) dsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
Cj(u, v)gj (v, φ (v)) dvdu
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−
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

A (s) e−
∫ u
s
A(v)dv

×
∫ s

s−τj(s)
Cj(s, v)gj (v, φ (v)) dvdsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvCj(s, s− τj(s))(1− τ ′j(s))

× gj (s− τj(s), φ(s− τj(s))) dsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dvrj(s)φ (s− τj (s)) dsdu.(3.21)

where rj (·) is the expression (3.4). Suppose that the conditions (3.14), (3.15),
(3.16), (3.17), (3.18) and (3.19) hold true. Then P : Sψ → Sψ.

Proof. First, due to condition (3.14) one can define

(3.22) M = sup
t≥t0

{
e
−

∫ t
t0
D̂(v)dv

}
.

Obviously, if φ is continuous then Pφ and agrees with ψ on [m(t0), t0] due to
the definition of P . For t > t0, note that from (3.14), (3.17), (3.15) and (3.16)
it follows

|Pφ (t)| = ∥ψ∥

1 + N∑
j=1

∫ t0

t0−τj(t0)

∣∣∣D̂j (v)
∣∣∣ dv
M

+

|ẋ (t0)|+ ∥ψ∥
N∑
j=1

(∣∣∣∣∣ bj(t0)

1− τ ′j (t0)

∣∣∣∣∣+
∫ t0

t0−τj(t0)
|Cj(t0, v)|Rj (t) dv

)
×
∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du+ α ∥φ∥ .

To prove that P : Sψ → Sψ it is necessary to show that the term∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du,

is bounded. To do that, remember that 3.18 implies that A(t) ≥ A1(t) ≥ 0 for
t ≥ t0, so∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A(v)dv

du ≤
∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu.

We decompose the last integral term in the following manner∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu =

∫ J

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu

+

∫ t

J

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu,(3.23)
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for some J ≥ Q0. The first term on the right hand side of (3.23) is obviously
bounded. For the second term on the right hand side of (3.23), we use (3.19)
to obtain

(3.24)

∫ t

J

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu ≤ e−b

∫ t

J

e−a0u
γ

du.

Now, we define

(3.25) F (J) :=

∫ ∞

J

e−a0u
γ

du.

Performing the change of variables u = θ
1
γ , we obtain

(3.26) F (J) =
1

γ

∫ ∞

Jγ

e−a0θθ
1
γ −1dθ ≤ 1

γ

∫ ∞

0

e−a0θθ
1
γ −1dθ =

Γ (1/γ)

γa
1/γ
0

.

Then F (J) is bounded for γ > 0. Consequently, |Pφ (t)| < +∞ and thus
Pφ ∈ Sψ.

Seizing upon Lemma (3.3) and Lemma (3.4) we built an existence and
uniqueness result. Under the conditions of the next theorem, we prove that
for a given continuous function ψ : [m(t0), t0] −→ R there exists a unique
continuous function x which is solution of (1.5) on [m(t0),∞) and coincides
with ψ on [m(t0), t0]. We also prove that the zero solution of (1.5) have the
property of Definition 2.2.

Theorem 3.5. Suppose the condition (3.20) and all hypotheses of Lemma
(3.4) hold with α ∈ (0, 1) in (3.17). Then, for each initial continuous function
ψ : [m(t0), t0] −→ R, there is a unique continuous function with x(t) = ψ(t)
on [m(t0), t0] that satisfies (1.5) on [t0,∞). Moreover, x (·) is bounded on
[m(t0),∞) . Furthermore, the zero solution of (1.5) is stable at t = t0.

Proof. Consider Sψ the space defined by the initial continuous function ψ :
[m(t0), t0] → R. By Lemma 3.4 we know that P : Sψ → Sψ. In fact, P is a
contraction with constant α < 1, too. To see this, let φ, ϕ ∈ Sψ. Making use
of condition (3.17) we obtain

∥Pφ− Pϕ∥

≤

 N∑
j=1

∫ t

t−τj(t)
D̂j (u) du+

N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
|Cj(u, v)|Rj (v) dvdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

A (s) e−
∫ u
s
A(v)dv

∫ s

s−τj(s)
|Cj(s, v)|Rj (v) dvdsdu
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+

N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dv

∣∣Cj(s, s− τj(s))(1− τ ′j(s))
∣∣

×Rj (s− τj(s))dsdu

+

N∑
j=1

∫ t

t0

D̂ (u) e−
∫ t
u
D̂(v)dv

∫ u

u−τj(u)
D̂j (s)x (s) dsdu

+
N∑
j=1

∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

t0

e−
∫ u
s
A(v)dv |rj(s)| dsdu

 ∥φ− ϕ∥

≤ α ∥φ− ϕ∥ ,

for t > t0. Trivially, this inequality also holds on [m(t0), t0] . Therefore, P
is a contraction mapping on the complete metric space (Sψ, ρ) since we have
supposed α < 1. By the contraction mapping principle, P possesses a unique
fixed point x in Sψ which is a bounded continuous function. Due to Lemma
3.3, this is a solution of (1.9) and hence a solution of (1.5) on [m(t0),∞). It
follows that x is the only bounded function satisfying (1.5) on [m(t0),∞) and
the initial function. It remains to show that the zero solution of (1.5) is stable.
Toward this, let first

(3.27) L := sup
t≥t0

∫ t

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu.

Let ϵ > 0 be given. Choose |ẋ(t0)| and ψ : [m (t0) , t0] −→ R satisfying ∥ψ∥ < δ
(δ ≤ ε), with δ such that

δ

1 + N∑
j=1

∫ t0

t0−τj(t0)

∣∣∣D̂j (v)
∣∣∣ dv
M

+

|ẋ (t0)|+ δ

N∑
j=1

(∣∣∣∣∣ bj(t0)

1− τ ′j (t0)

∣∣∣∣∣+
∫ t0

t0−τj(t0)
|Cj(t0, v)|Rj (t) dv

)L
≤ (1− α) ϵ.(3.28)

If (x (t) , y (t)) is a solution of (1.9) with y = ẋ on [t0,∞) and, y (t0) = ẋ (t0)
then, x (·) = (Px) (·) defined in (3.21). Notice that with such a δ, |x (s)| =
|ψ (s)| < ϵ on [m (t0) , t0]. We claim that |x (t)| < ϵ for all t ≥ t0. If x is a
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solution with initial function ψ then, as a consequence of (3.21), we have

|x (t)| ≤

δ + δ
N∑
j=1

∫ t0

t0−τj(t0)

∣∣∣D̂j (v)
∣∣∣ dv
M

+

|ẋ (t0)|+ δ

N∑
j=1

|bj(t0)|∣∣1− τ ′j (t0)
∣∣ + δ

∫ t0

t0−τj(t0)
|Cj(t0, v)|Rj (v) dv

L+ εα

≤ (1− α) ε+ εα ≤ ε.
(3.29)

Now, recalling (3.1) of Lemma 3.1, we have

ẋ(t) = ẋ(t0)e
−

∫ t
t0
A(v)dv

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dv

∫ s

s−τj(s)
aj(s, v)gj (v, x (v)) dvds

−
N∑
j=1

∫ t

t0

e−
∫ t
s
A(v)dvωj(s)

d

ds
x (s− τj (s)) ds.

Integrating the last term on right hand side by parts we obtain

ẋ(t) = e
−

∫ t
t0
A(v)dv

ẋ(t0) + N∑
j=1

bj(t0)

1− τ ′j (t0)
x (t0 − τj (t0))


−

N∑
j=1

bj(t)

1− τ ′j (t)
x (t− τj (t))

+

∫ t

t0

e−
∫ t
s
A(v)dv

N∑
j=1

(
rj(s)x (s− τj (s))−

∫ s

s−τj(s)
aj(s, v)gj (v, x (v)) dv

)
ds.

By conditions (3.28) and (3.20) we get the estimation

|ẋ(t)| ≤ |ẋ(t0)|+ δ
N∑
j=1

|bj(t0)|∣∣1− τ ′j (t0)
∣∣

+ ε
N∑
j=1

[
|bj(t)|∣∣1− τ ′j (t)

∣∣
+

∫ t

t0

e−
∫ t
s
A(u)du

(
|rj(s)|+

∫ s

s−τj(s)
|aj(s, v)|Rj (v) dv

)
ds

]

≤ (1− α) ε

L
+ εβ ≤ ε

(
1

L
+ β

)
.

Therefore, the zero solution is stable at t = t0.
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Theorem 3.6. Under the hypotheses of Theorem 3.5, the zero solution of (1.5)
is asymptotically stable if and only if

(3.30)

∫ t

t0

D̂(s)ds −→ ∞, as t −→ ∞.

Proof. First, suppose that (3.30) holds. We wish the solutions of (1.5) to tend
to zero whenever condition (3.30) holds. For this, we will modify Sψ in order
to functions in S0

ψ tend to zero as t −→ ∞. So, we let

S0
ψ := {φ ∈ [m(t0),∞) → R | φ ∈ C,

φ(t) = ψ(t) for t ∈ [m(t0), t0] and φ(t) → 0 as t→ ∞} .

Since S0
ψ is closed in Sψ and (Sψ, ρ) is complete, then the metric space

(
S0
ψ, ρ
)

is also complete. We begin by proving that Pφ (t) → 0 as t→ ∞ for φ ∈ S0
ψ. To

this end, denote the eight terms on the right hand side of (3.21) by I1,I2,...,I8,

respectively and let φ ∈ S0
ψ be fixed. Since

∫ t
0
D̂(s)ds −→ ∞, as t −→ ∞, by

condition (3.30), we see obviously that the first term I1 of (3.21) tends to zero
as t −→ ∞. For a given ϵ > 0, choose T0 > 0 large enough so that t−τj (t) ≥ T0
for j = 1, N implies |φ (s) | < ϵ if s ≥ t− τj (t). Therefore, the third term I3 in
(3.21) satisfies

|I3| ≤
N∑
j=1

∫ t

t−τj(t)
|φ (v)|

∣∣∣D̂j (v)
∣∣∣ dv ≤ ε

N∑
j=1

∫ t

t−τj(t)

∣∣∣D̂j (v)
∣∣∣ dv

≤ αϵ < ϵ.

Thus, I3 −→ 0 as t −→ ∞. We check that I2 −→ 0 as t −→ ∞. So we have
to prove that the two right hand side terms of the decomposition expression
(3.23) go to zero at infinity. But the first term of that decomposition is as∫ J

t0

e−
∫ t
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu = e−

∫ t
J
D̂(v)dv

∫ J

t0

e−
∫ J
u
D̂(v)dve

−
∫ u
t0
A1(v)dvdu,

which tends to 0 as t −→ ∞ by condition (3.30). Nevertheless, the second term
of on the right had side of (3.23) needs some more details for its convergence to
zero. To overcome the difficulties, remember that from (3.19) we have obtained
(3.25). Upon replacing of u by Jθ in (3.25) we get

(3.31) F (J) = J

∫ ∞

1

e−(a0J
γ)θγdθ.

The functionG (λ) :=
∫∞
1
e−λθ

γ

dθ satisfies the conditions of Theorem 2.1 where
(3.32)
λ = a0J

γ , α = 1, φ (θ) = θγ , f ≡ 1, φ′ (α) = γαγ−1 = γ, f (α) = 1.

It follows that

(3.33) G (λ) ∼ f (α)

φ′ (α)

1

λ
e−λφ(α) =

1

γ

1

λ
e−λ, (λ −→ +∞) .
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Thus we can write

(3.34) F (J) ∼ 1

γa0
J1−γe−a0J

γ

, (J −→ +∞) .

It is enough to make z = a0J
γ and a straightforward computation gives

(3.35)
1

γa0
J1−γe−a0J

γ

=
1

γa
1/γ
0

z
1
γ −1e−z ≤ 1

γa
1/γ
0

zme−z −→ 0 as z −→ ∞.

where m := [1/γ] + 1. Thus, for every ϵ > 0 we can find a J∗ ≫ Q0 large
enough such that for every J ≥ J∗

(3.36)
e−b

γa0
J1−γe−a0J

γ

≤ ϵ.

Clearly, the expansion (3.23) is valid if J is replaced by J∗. So, the last term
tends towards zero when t −→ ∞. Hence the second term I2 in (3.21) tends to
zero as t −→ ∞. Now consider I = |I4|+ ...+ |I8|. To simplify our expressions,
we define

V (u) :=
N∑
j=1

(
D̂ (u)

∫ u

u−τj(u)
D̂j (v) dv +

∫ u

u−τj(u)
|Cj(u, v)|Rj (v) dv

)

+

N∑
j=1

∫ u

t0

e−
∫ u
s
A(v)dv

∣∣Cj(s, s− τj(s))(1− τ ′j(s))
∣∣Rj (s− τj(s)) ds

+

N∑
j=1

∫ u

t0

e−
∫ u
s
A(v)dv

(
A(s)

∫ s

s−τj(s)
|Cj(s, v)|Rj (v) dv + |rj (s)|

)
ds.(3.37)

So, for the given ϵ > 0, there exists a T ∗ > t0 such that s ≥ T ∗ implies
|φ(s− τj (s))| < ϵ for j = 1, N . It is clear that |φ(s)| < ε ( because s >
s − τj (s), j = 1, N ). Thus, for t ≥ T ∗, by making use conditions (3.15) and
(3.16) the term I satisfies

I ≤ ϵ
N∑
j=1

∫ t

t−τj(t)

∣∣∣D̂j (v)
∣∣∣ dv + ε

∫ t

T∗
V (u) e−

∫ t
u
D̂(v)dvdu

+ sup
ζ≥m(t0)

|φ (ζ)|
∫ T∗

t0

V (u) e−
∫ t
u
D̂(v)dvdu

≤ 2αϵ+ sup
ζ≥m(t0)

|φ (ζ)|
∫ T∗

t0

V (u) e−
∫ t
u
D̂(v)dvdu.(3.38)

Also, the condition (3.30) implies that there exists T ∗∗ > T ∗ such that for
t ≥ T ∗∗ we have

(3.39) e−
∫ t
T∗∗ D̂(v)dv sup

ζ≥m(t0)

|φ (ζ)|
∫ t

T∗
V (u) e−

∫ T∗∗
u

D̂(v)dvdu ≤ ϵ.
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So, I −→ 0 as t −→ ∞ and consequently, (Pφ) (t) −→ 0 as t −→ ∞. Thus,
P maps S0

ψ into itself. Also, P is still a contraction on S0
ψ with a unique fixed

point x. By Lemma 3.3, x is a solution of (1.5) on [t0,∞). We conclude that
x (t) is the only continuous solution of (1.5) agreeing with the initial function ψ.
As x ∈ S0

ψ, x (t) → 0 as t→ ∞. Therefore, the zero solution is asymptotically
stable, since it is stable by Theorem 3.5 and we have just concluded that
|x (t)|+ |y (t)| −→ 0 as t −→ ∞ if condition (3.30) holds.

Conversely, we shall prove that
∫∞
t0
D̂(v)dv = ∞. Contrary to this, there ex-

ists a sequence {tn}n≥1 with tn −→ ∞ as n −→ ∞ and such that
∫ tn
t0
D̂(v)dv =

l for a certain finite number l ∈ R+. By condition (3.14), we may also choose

µ > 0 that satisfies the inequality, −µ ≤
∫ tn
t0
D̂(v)dv ≤ µ, for all n ≥ 1. For

convenience of notation we set

C0 :=

N∑
j=1

(
|bj(t0)|∣∣1− τ ′j (t0)

∣∣ |ψ (t0 − τj (t0))|+
∫ t0

t0−τj(t0)
|Cj(t0, v)|Rj (v) |ψ (v)| dv

)
.

Recalling (3.37), we define the function W (·) by

W (u) := V (u) + C0e
−

∫ u
t0
A(v)dv

.

By conditions (3.17), (3.18) and (3.19), we have

(3.40)

∫ tn

t0

e
−

∫ tn
t0

D̂(v)dv
W (u) du ≤ (α+ C0L) .

This yields

(3.41) e
−

∫ tn
t0

D̂(v)dv
∫ tn

t0

e
∫ u
t0
D̂(v)dv

W (u) du ≤ (α+ C0L) .

Then,

(3.42)

∫ tn

t0

e
∫ u
t0
D̂(v)dv

W (u) du ≤ (α+ C0L) e
µ.

The inequality (3.42) leads to the fact that the sequence

(3.43)

∫ tn

t0

e
∫ u
t0
D̂(v)dv

W (u) du,

is bounded, so there exists a convergent subsequence. For brevity, we assume
that

(3.44) lim
t−→∞

∫ tn

0

e
∫ u
0
D̂(v)dvW (u) du = σ > 0.

Then, we can choose a positive integer n0 large enough such that

(3.45)

∫ tn

tn0

e
∫ u
t0
D̂(v)dv

W (u) du <
δ0
8M

.
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for n ≥ n0, where ϵ > δ0 > 0 satisfies|ψ (tn0)|+ δ0

N∑
j=1

∫ tn0

tn0−τj(tn0)

∣∣∣D̂j (v)
∣∣∣ dv
M

+

|ẋ (tn0)|+ δ0

N∑
j=1

|bj(tn0)|∣∣1− τ ′j (tn0)
∣∣ + δ0

∫ tn0

tn0
−τj(tn0)

|Cj(tn0 , v)|Rj (v) dv

L

≤ (1− α) .
(3.46)

Now, we consider the solution x (t) = x (t, ψ, ẋ (tn0)) of equation (1.5), for the
initial values ψ and ẋ (tn0) such that

ψ (tn0) =
3δ0
4

, ẋ (tn0) =
δ0
4
,

|ψ (s)|+ |ẋ (s)| ≤ δ0, s ≤ tn0 .(3.47)

We may choose ψ such that

(3.48) ψ (tn0)−
N∑
j=1

∫ tn0

tn0−τj(tn0)
D̂j (v)ψ (v) dv ≥ δ0

4
.

By a similar argument as in (3.29) and by replacing ϵ by 1, this implies that
|x (t)| ≤ 1. Having in mind the fact that x is a fixed point of P , we have for
n ≥ n0∣∣∣∣∣∣x (tn)−

N∑
j=1

∫ tn

tn−τj(tn)
D̂j (v)x (v) dv

∣∣∣∣∣∣
≥

∣∣∣∣∣∣e−
∫ tn
tn0

D̂(v)dv

ψ (tn0)−
N∑
j=1

∫ tn0

tn0−τj(tn0)
D̂j (v)ψ (v) dv


+ ẋ (tn0)

∫ tn

tn0

e−
∫ tn
u

D̂(v)dve
−

∫ u
tn0

A(v)dv
du

∣∣∣∣∣−
∣∣∣∣∣
∫ tn

tn0

e−
∫ tn
u

D̂(v)dvW (u)du

∣∣∣∣∣
≥ e

−
∫ tn
tn0

D̂(v)dv δ0
4

−
∫ tn

tn0

e−
∫ tn
u

D̂(v)dvW (u)du

≥ e
−

∫ tn
tn0

D̂(v)dv

[
δ0
4

− e−
∫ tn0
0 D̂(v)dv

∫ tn

tn0

e
∫ u
0
D̂(v)dvW (u)du

]
≥ δ0

8
e−2µ > 0.

(3.49)

On the other hand, if the zero solution is asymptotically stable, then x (t) =
x (t, ψ, ẋ(tn0)) −→ 0, as t −→ ∞. It remains only to check that the term
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N∑
j=1

∫ tn
tn−τj(tn) D̂j (v)x (v) dv decays to zero at infinity to obtain the contradic-

tion . By the mean value theorem and condition (3.17), we have∣∣∣∣∣∣
N∑
j=1

∫ tn

tn−τj(tn)
D̂j (v)x (v) dv

∣∣∣∣∣∣ = |x (ηtn)|

∣∣∣∣∣∣
N∑
j=1

∫ tn

tn−τj(tn)
D̂j (v) dv

∣∣∣∣∣∣
≤ α |x (ηtn)| ≤ |x (ηtn)| .(3.50)

Since tn and tn − τj (tn) → ∞ as n→ ∞, then also ηtn −→ ∞. It follows that

lim
tn−→∞

x (tn)− N∑
j=1

∫ tn

tn−τj(tn)
D̂j (v)x (v) dv

 = 0,

which leads to a contradiction. This completes the proof of our claim.

In this section, we will give an example to apply our results

Example 3.7. Consider the following nonlinear neutral integro-differential
equation with variable delay

(3.51) ẍ+ f (t, x, ẋ) ẋ+

∫ t

t−τ(t)
a(t, s)g (s, x (s)) ds+ b(t)x′ (t− τ (t)) = 0,

for t ≥ 0. We let A (t) := f (t, x (t) , ẋ (t)) =
1− 0.5 cos (ẋ(t)x(t))

5 (t+ 1)
1
5

+ 2 tanh t,

g (t, x (t)) := t sinx (t), a (t, s) := e−3(t+s), τ (t) := 0.5t and b (t) := α0
t

t2 + 1
,

where 0 < α0 ≤ 1/7. Then the zero solution of (3.51) is asymptotically stable.

Proof. We prove that all the hypotheses of Theorem (3.6) hold for equation
(3.51). Observe that the conditions (3.15), (3.16) and (3.18) are satisfied, with

R(t) := t and A1 (t) :=
0.5

5 (t+ 1)
1
5

+ 2 tanh t, for t ≥ 0. Now, clearly, the

conditions (3.14) and (3.30) hold. Furthermore, for t ≥ u ≥ 0 we have∫ t

u

D̂ (v) dv +

∫ u

0

A1 (t) dv ≥
∫ u

0

A1 (t) dv ≥ 0.5

∫ u

0

1

5 (v + 1)
1
5

dv

≥ 1

8
u

4
5 − 1

8
.(3.52)

Consequently, condition (3.19) is satisfied with a0 = 1/8, b0 = −1/8 and
γ = 4/5.

It remains to prove that the condition (3.17) is also satisfied. There are six
terms on the left hand side of (3.17). Performing the substitution u = s− τ (s)
we obtain s = p (u) = 2u, (1− τ ′ (s)) ds = du and∫ t

t−τ(t)
D̂ (u) du =

∫ p(t)

t

D (s) (1− τ ′ (s)) ds = 2

∫ 2t

t

b (s) ds,
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and by integration we see that,

(3.53)

∫ t

t−τ(t)
D̂ (u) du = α0

(
ln

4t2 + 1

t2 + 1

)
≤ α01.39.

Since D̂(t) ≥ 0 for t ≥ 0, then making use of (3.53) we can derive the estimation

∫ t

0

e−
∫ t
u
D̂(v)dvD̂ (u)

∫ u

u−τ(u)
D̂ (v) dvdu

≤
(
sup
u≥0

∫ u

0.5u

D̂ (u) dv

)∫ t

0

e−
∫ t
u
D̂(v)dvD̂ (u) du

≤ α01.39.(3.54)

For the third term of (3.17) we observe that

|C (u, v)| =
∣∣∣∣∫ v

u

a (w, v) dw

∣∣∣∣ = ∣∣∣∣e−3v

∫ v

u

e−3wdw

∣∣∣∣
=

1

3

∣∣e−3v
(
e−3u − e−3v

)∣∣ .(3.55)

But, (
e−3v − e−3u

)
≥ 0, for 0 ≤ v ≤ u.

So, ∫ t

0

e−
∫ t
u
D̂(v)dv

∫ u

u−τ(u)
|C(u, v)|R (v) dvdu

≤
∫ t

0

∫ u

0.5u

|C(u, v)| |R (v)| dvdu

≤ 1

3

∫ t

0

∫ u

0.5u

(
e−6v − e−3v−3u

)
vdvdu := N (t)

≤ 0.0013.(3.56)

This is because, the function N (·) is a strictly positive and increasing on [0,∞)
satisfying N (t) → 0.0013717 as t −→ ∞. To estimate the fourth term of (3.17),
note that

A(t) ≤ 1

5 (t+ 1)
1
5

+ 2 tanh t ≤ 2.3,

and

e−
∫ u
s
A(v)dv ≤ e−

∫ u
s
A1(v)dv ≤ e−2

∫ u
s (

sinh v
cosh v )dv =

cosh2 s

cosh2 u
.
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Therefore,∫ t

0

e−
∫ t
u
D̂(v)dv

∫ u

0

A(s)e−
∫ u
s
A(v)dv

∫ s

s−τ(s)
|C(s, v)| |R (v)| dvdsdu

≤ 2.3

∫ t

0

∫ u

0

e−2
∫ u
s

tanh vdv 1

3

∫ s

0.5s

(
e−6v − e−3v−3s

)
vdsdvdu

≤ 2.3

∫ t

0

1

cosh2 u

∫ u

0

1

3

1

4

(
e2s + 2 + e−2s

) ∫ s

0.5s

(
e−6v − e−3v−3s

)
vdsdvdu

≤ 2.3

12
sup
u≥0

∣∣N̄ (u)
∣∣ ∫ t

0

1

cosh2 u
du

≤ 2.3

12
0.09

∫ t

0

1

cosh2 u
du =

2.3

12
0.09 tanh t ≤ 2.3

0.09

12
= 0.01725.

(3.57)

This follows from the fact that,

N̄ (u) :=

∫ u

0

(
e2s + 2 + e−2s

) ∫ s

0.5s

(
e−6v − e−3v−3s

)
vdvds,

is a positive function, increasing on [0,∞) and N̄ (u) ≤ 0.09 for any u ≥ 0.
Moreover, similar arguments as above show that one can estimate the fifth term
of (3.17) as∫ t

t0

e−
∫ t
u
D̂(v)dv

∫ u

0

e−
∫ u
s
A(v)dv |C(s, s− τj(s))| |(1− τ ′(s)| |R (s− τ(s))| dsdu

≤
∫ t

0

1

cosh2 u

∫ u

0

1

4

(
e2s + 2 + e−2s

) 0.25
3

(
e−3s − e−4.5s

)
sdsdu

≤ 0.25

12

∫ t

0

1

cosh2 u

∫ u

0

(
e2s + 2 + e−2s

) (
e−3s − e−4.5s

)
sdsdu ≤ 0.020833.

(3.58)

For the sixth we have, for t ≥ 0,

r (t) = α02

(
t

t2 + 1
A(t) +

1− t2

(t2 + 1)
2

)

≥ α02
1

t2 + 1

(
0.5t

5 (t+ 1)
1
5

+ t2 tanh t+
1− t2

(t2 + 1)

)

≥ α02
1

t2 + 1
> 0.(3.59)

It is clear that the function r (·) is positive, because 2t tanh t+ 1−t2
(t2+1) > 0, and

D (t) =
b (t)

(0.5)
2 , D̂ (t) = D (p (t)) =

b (p (t))

(0.5)
2 =

b (2t)

(0.5)
2

= 4α0
2t

(4t2 + 1)
≥ 2α0

t

t2 + 1
≥ 2b (t) for t ≥ 0.
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Which implies that∫ t

0

e−
∫ t
u
D̂(v)dv

∫ u

0

e−
∫ u
s
A(v)dv |r (s)| dsdu

=

∫ t

0

e−
∫ t
u
D̂(v)dvb (u) du ≤ 1

2

∫ t

0

e−
∫ t
u
2b(v)dv2b (u) du

≤ 0.5.(3.60)

The summation yields

α := 2α01.39 + 0.0013 + 0.01725 + 0.020833 + 0.5

≤ 2.78
1

7
+ 0.53938 = 0.93652.

Also, we remark that the condition (3.20) holds, because 0 ≤ 2b (t)+
1

12
N̄ (t) <

+∞. Consequently, the zero solution of equation (3.51) is asymptotically sta-
ble.
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