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EXPONENT OF CONVERGENCE OF SOLUTIONS OF
A CLASS OF LINEAR DIFFERENTIAL EQUATIONS

IN THE UNIT DISC

Yssaad Somia1 and Saada Hamouda23

Abstract. In this paper, we investigate the exponent of convergence of
f (i) − φ where f (0) = f ̸≡ 0 is a solution of a linear differential equation
with meromorphic coefficients in the unit disc and φ is a small function
of f . Our investigation is based on the behavior of the coefficients in a
subset Γ of the unit disc such that the set Γ0 = {|z| : z ∈ Γ} is of infi-
nite logarithmic measure. By this investigation we can deduce the fixed
points of f (i) by taking φ (z) = z.
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1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna value dis-
tribution theory of meromorphic function on the complex plane C and in the
unit disc D = {z ∈ C : |z| < 1} (see [10, 12, 16]). In addition, for n ∈ N− {0},
the iterated n−order of meromorphic function f (z) in D is defined by

σn (f) = lim sup
r→1−

log+n T (r, f)

− log (1− r)
,

where log+1 x = log+ x = max {log x, 0} , log+n+1 x = log+ log+n x and T (r, f) is
the Nevanlinna characteristic function of f . For an analytic function f (z) in
D, we have also the iterated n−order defined by

σM,n (f) = lim sup
r→1−

log+n+1 M (r, f)

− log (1− r)
,

where M (r, f) = max
|z|=r

|f (z)|. If f is analytic in D, it is well known that σ1 (f)

and σM,1 (f) satisfy the inequalities

σ1 (f) ≤ σM,1 (f) ≤ σ1 (f) + 1,
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which are the best possible in the sense that there are analytic functions g and
h such that σM,1 (g) = σ1 (g) and σM,1 (h) = σ1 (h) + 1, see [6, 14].

For example, the function g (z) = exp

{
1

(1− z)
µ

}
(µ ≥ 1) satisfies σ1 (g) =

µ−1 and σM,1 (g) = µ. We note that the principal branch of logarithm is used.
Obviously, we have

σ1 (f) < ∞ if and only if σM,1 (f) < ∞.

However, it follows by Proposition 2.2.2 in [12] that σM,n (f) = σn (f) for
n ≥ 2.

Definition 1. [11] A meromorphic function f in D is called admissible if and
only if

lim sup
r→1−

T (r, f)

− log (1− r)
= ∞;

and f is called nonadmissible if and only if

lim sup
r→1−

T (r, f)

− log (1− r)
< ∞.

We will use the notation λn (f) to denote the n-iterated exponent of conver-
gence of the zero-sequence of meromorphic function f (z) and λn (f) to denote
the n-iterated exponent of convergence of distinct zero-sequence of f (z), which
are defined as the following:

λn (f) = lim sup
r→1−

logn N
(
r, 1

f

)
− log (1− r)

and λn (f) = lim sup
r→1−

logn N
(
r, 1

f

)
− log (1− r)

.

Many authors investigated the linear differential equation

(1.1) f ′′ +A (z) eazf ′ +B (z) ebzf = 0,

where A (z) and B (z) are entire functions, see for example [1, 4, 5, 7]. Recently
in [8], Hamouda investigated the linear differential equation

f ′′ +A (z) e

a

(z0 − z)
µ
f ′ +B (z) e

b

(z0 − z)
µ
f = 0,

where A (z) and B (z) ̸≡ 0 are analytic functions in the unit disc by making use
the behavior of the coefficients on a neighborhood of a point on the boundary
of the unit disc. After that in [9], Hamouda proved the following results.

Theorem A. [9] Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit
disc D. If there exist a point ω0 on the boundary ∂D of the unit disc D and a
curve γ ⊂ D tending to ω0 such that

lim
z→ω0
z∈γ

k−1∑
j=1

|Aj (z)|+ 1

|A0 (z)| (1− |z|)µ
= 0,
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for any µ > 0, then every meromorphic solution f (z) ̸≡ 0 of the differential
equation

(1.2) f (k) +Ak−1 (z) f
(k−1) + ...+A1 (z) f

′ +A0 (z) f = 0,

is of infinite order.

Theorem B. [9] Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit
disc D. If there exist ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0
z∈γ

k−1∑
j=1

|Aj (z)|+ 1

|A0 (z)|
expn

{
λ

(1− |z|)µ
}

= 0,

where n ≥ 1 is an integer, (exp1 (z) = exp (z) , expn+1 (z) = exp {expn (z)}),
and λ > 0, µ > 0 are real constants, then every meromorphic solution f (z) ̸≡
0 of the differential equation (1.2) satisfies σn (f) = ∞, and furthermore
σn+1 (f) ≥ µ.

Remark 1. Theorem A and Theorem B remain valid if in their assumptions,
instead of taking limit along a curve γ ⊂ D we take limit as |z| → 1− along
a subset Γ ⊂ D such that the set Γ0 = {|z| : z ∈ Γ} is of infinite logarithmic
measure, that is

∫
Γ0

dr
1−r = +∞. We note that, for a curve γ ⊂ D tending to

a point ω0 ∈ ∂D, the set {|z| : z ∈ γ} is of infinite logarithmic measure; which
means that the curve γ ⊂ D is a particular case of the subset Γ ⊂ D.

Theorem B has been generalized recently by Semochko in [13] by making
use a new approach on the growth, namely φ-orders.

In [15], Xu, Tu and Zheng investigated the relationship between small func-
tion and derivatives of solutions of (1.2) where Aj (z) are entire or meromorphic
functions in the complex plane, and obtained the following results.

Theorem C. [15] Let Aj (z) (j = 0, 1, ..., k − 1) be entire functions with finite
order and satisfy one of the following conditions:
(i) max {σ (Aj) : j = 1, 2, ..., k − 1} < σ (A0) < ∞;
(ii) 0 < σ (Ak−1) = ... = σ (A0) < ∞ and max {τ (Aj) : j = 1, 2, ..., k − 1} =
τ1 < τ (A0) = τ ,
then for every solution f ̸≡ 0 of (1.2) and for any entire function φ (z) ̸≡ 0
satisfying σ2 (φ) < σ (A0), we have

λ2 (f − φ) = λ2 (f
′ − φ) = λ2 (f

′′ − φ) = λ2

(
f (i) − φ

)
= σ2 (f) = σ (A0) (i ∈ N)

Theorem D. [15] Let Aj (z) (j = 1, 2, ..., k − 1) be polynomials, A0 (z) be a
transcendental entire function, then for every solution f ̸≡ 0 of (1.2) and for
any entire function φ (z) of finite order, we have
(i) λ (f − φ) = λ (f − φ) = σ (f) = ∞;
(ii) λ

(
f (i) − φ

)
= λ

(
f (i) − φ

)
= σ

(
f (i) − φ

)
= ∞ (i ≥ 1, i ∈ N) .
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Theorem E. [15] Let Aj (z) (j = 0, 1, ..., k − 1) be meromorphic functions sat-
isfying max {σ (Aj) : j = 1, 2, ..., k − 1} < σ (A0) and δ (∞, A0) > 0. Then, for
every meromorphic solution f ̸≡ 0 of (1.2) and for any meromorphic function
φ (z) ̸≡ 0 satisfying σ2 (φ) < σ (A0), we have

λ2

(
f (i) − φ

)
= λ2

(
f (i) − φ

)
≥ σ (A0) (i ∈ N) , where f (0) = f .

In this paper, we will investigate the exponent of convergence of f (i) − φ
where f is a solution of (1.2) and the coefficients are meromorphic in the
unit disc and satisfy assumptions more general than those of Theorem A and
Theorem B. In fact, we will prove the following results.

Theorem 1. Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit
disc D of finite order. If there exist a subset Γ ⊂ D such that the set Γ0 =
{|z| : z ∈ Γ} is of infinite logarithmic measure, that is

∫
Γ0

dr
1−r = +∞, and for

every fixed µ > 0 we have

(1.3) lim
|z|→1−

z∈Γ

k−1∑
j=1

|Aj (z)|+ 1

|A0 (z)| (1− |z|)µ
= 0,

then for every meromorphic solution f ̸≡ 0 of (1.2) and for any meromorphic
function φ (z) ̸≡ 0 in the unit disc D of finite order, we have

(1.4) λ (f − φ) = λ
(
f (i) − φ

)
= λ

(
f (i) − φ

)
= σ (f) = ∞ (i ∈ N) .

Corollary 1. Let A0 (z) ̸≡ 0, ..., Ak−1 (z) be meromorphic functions in the
unit disc of zero order such that A1, ..., Ak−1 are nonadmissible while A0 is
admissible. Then for every solution f (z) ̸≡ 0 of (1.2) and for any meromorphic
function φ (z) ̸≡ 0 in the unit disc D of finite order, we have

λ (f − φ) = λ
(
f (i) − φ

)
= λ

(
f (i) − φ

)
= σ (f) = ∞ (i ∈ N) .

Theorem 2. Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit
disc D with σn (Aj) < ∞. If there exist a subset Γ ⊂ D such that the set
Γ0 = {|z| : z ∈ Γ} is of infinite logarithmic measure and

(1.5) lim
|z|→1−

z∈Γ

k−1∑
j=1

|Aj (z)|+ 1

|A0 (z)|
expn

{
β

(1− |z|)µ
}

= 0,

where n ≥ 1 is an integer and β > 0, µ > 0 are real constants, then for
every meromorphic solution f ̸≡ 0 of (1.2) and for any meromorphic function
φ (z) ̸≡ 0 in the unit disc D satisfying σn+1 (φ) < µ, we have
(1.6)

λn+1 (f − φ) = λn+1

(
f (i) − φ

)
= λn+1

(
f (i) − φ

)
= σn+1 (f) ≥ µ (i ∈ N) .
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Corollary 2. Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit
disc D with σn (Aj) < ∞. If there exist a subset Γ ⊂ D such that the set
Γ0 = {|z| : z ∈ Γ} is of infinite logarithmic measure and

(1.7) |A0 (z)| ≥ expn

{
α

(1− |z|)µ
}
,

(1.8) |Aj (z)| ≤ expn

{
β

(1− |z|)µ
}
, (j = 1, ..., k − 1) ,

as |z| → 1− with z ∈ Γ, where n ≥ 1 is an integer, 0 ≤ β < α, µ > 0 are
real constants, then for every meromorphic solution f ̸≡ 0 of (1.2) and for any
meromorphic function φ (z) ̸≡ 0 in the unit disc D satisfying σn+1 (φ) < µ, we
have

λn+1 (f − φ) = λn+1

(
f (i) − φ

)
= λn+1

(
f (i) − φ

)
= σn+1 (f) ≥ µ (i ∈ N) .

Corollary 3. Let A0 (z) ̸≡ 0, A1 (z) , ..., Ak−1 (z) be analytic functions in the
unit disc with σn (Aj) < ∞. Suppose that α > 1 is a real constant, a and
ω0 are complex numbers such that a ̸= 0, |ω0| = 1. If A0 (z) , ..., Ak−1 (z) are
analytic at ω0 then for every solution f (z) ̸≡ 0 of the differential equation

f (k) +Ak−1 (z) f
(k−1) + ...+A1 (z) f

′ +A0 (z) expn

{
a

(ω0 − z)
α

}
f = 0,

and for any analytic function φ (z) ̸≡ 0 in the unit disc D satisfying σn+1 (φ) <
α, we have

λn+1 (f − φ) = λn+1

(
f (i) − φ

)
= λn+1

(
f (i) − φ

)
= σn+1 (f) ≥ α (i ∈ N) .

Remark 2. The following example shows that the assumption (1.5) of Theorem
2 does not require that the iterated order of growth of A0 is greater than those
of the other coefficients; (the same applies for Theorem 1).

Example 1. Consider the differential equation

f ′′ +A1 (z) f
′ +A0 (z) f = 0.

(i) If A1 (z) = exp3

{
1

1−z

}
exp4

{
1

1−z

}
and A0 (z) = exp3

{
2

1−z

}
exp4

{
1

1−z

}
,

then σ4 (A1) = σ4 (A0) = 1; and it is clear that the assumption (1.5) holds by
taking n = 3, β = 1, µ = 1, Γ = {z ∈ D : arg z = 0} ; and so σ4 (f) ≥ 1.

(ii) If A1 (z) = exp3

{
1

1−z

}
exp4

{
1

i−z

}
and A0 (z) = exp3

{
2

1−z

}
exp4

{
1

2+z

}
,

then σ4 (A1) = 1 while σ4 (A0) = 0; and it is clear that the assumption (1.5)
holds by taking n = 3, β = 1, µ = 1, Γ = {z ∈ D : arg z = 0} ; and so σ4 (f) ≥
1.
And for any meromorphic function φ (z) ̸≡ 0 in the unit disc D satisfying
σ4 (φ) < 1, (1.6) holds.
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Now, we give an example to prove the existence of meromorphic solutions in
the case of meromorphic coefficients that satisfy the assumptions of Theorem
1 and Theorem 2.

Example 2. The differential equation

f ′′ +A1 (z) f
′ +A0 (z) f = 0,

admits the two linearly independent solutions

f1 (z) =
1

z
exp2

{
1

1− z

}
, f2 (z) =

1

z
exp2

{
2

1− z

}
,

where

A1 (z) = −
f ′′
2

f2
− f ′′

1

f1
f ′
2

f2
− f ′

1

f1

, A0 (z) = −f ′′
1

f1
−A1 (z)

f ′
1

f1
.

z = 0 is a pole for A0 (z) and A1 (z). By taking

Γ =

{
z ∈ D : arg z = 0 and |z| ≥ 1

2

}
=

[
1

2
, 1

)
and after some computations, we obtain that

|A1 (z)| =
2

(1− |z|)2
exp

{
2

1− |z|

}
(1 + o (1)) ,

|A0 (z)| =
2

(1− |z|)4
exp

{
3

1− |z|

}
(1 + o (1)) ,

as |z| → 1− with z ∈ Γ. It is clear that the assumption (1.5) holds by taking
n = 1, µ = 1, β = 1

2 . Also the assumption (1.3) holds for any fixed µ > 0.

2. Preliminary lemmas

Throughout this paper, we use the following notations that are not neces-
sarily the same at each occurrence:

E ⊂ (0, 1) is a set of finite logarithmic measure, that is
∫
E

dr
1−r < ∞.

ε > 0, α > 0, β > 0, 0 ≤ r0 < 1, are real constants.

Lemma 1. [15] Assume that f ̸≡ 0 is a solution of (1.2). Set g = f −φ; then
g satisfies the equation

(2.1) g(k) +Ak−1g
(k−1) + ...+A0g = −

[
φ(k) +Ak−1φ

(k−1) + ...+A0φ
]
.

Lemma 2. [15] Assume that f ̸≡ 0 is a solution of (1.2). Set gi = f (i) −
φ, (i ∈ N− {0}); then gi satisfies the equation

(2.2) g
(k)
i + U i

k−1g
(k−1)
i + ...+ U i

0gi = −
[
φ(k) + U i

k−1φ
(k−1) + ...+ U i

0φ
]
,
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where

(2.3) U i
j =

(
U i−1
j+1

)′
+ U i−1

j −
(
U i−1
0

)′
U i−1
0

U i−1
j+1,

j = 0, 1, ..., k − 1, U0
j = Aj and U i

k ≡ 1.

Lemma 3. [6] Let f be a meromorphic function in the unit disc D such that
f (j) does not vanish identically. Let ε > 0 be a constant; k and j be integers
satisfying k > j ≥ 0 and d ∈ (0, 1). Then there exists a set E ⊂ [0, 1) which
satisfies

∫
E

1
1−rdr < ∞, such that for all z ∈ D satisfying |z| /∈ E, we have

∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤
((

1

1− |z|

)(2+ε)

max

{
log

1

1− |z|
, T (s (|z|) , f)

})k−j

,

where s (|z|) = 1− d (1− |z|). As particular cases:
i) if σ1 (f) = σ1 < ∞, then∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ ( 1

1− |z|

)(k−j)(σ1+2+ε)

, |z| /∈ E;

ii) if σn (f) = σn < ∞ for n ≥ 2, then∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ expn−1

{(
1

1− |z|

)(σn+ε)
}
, |z| /∈ E.

Lemma 4. [3] If f and g are meromorphic functions in the unit disc D, n ∈
N− {0}, then we have

(i) σn (f) = σn

(
1
f

)
, σn (a · f) = σn (f) (a ∈ C− {0}) ;

(ii) σn (f) = σn (f
′) ;

(iii) max {σn (f + g) , σn (f · g)} ≤ max {σn (f) , σn (g)} ;
(iv) If σn (f) < σn (g) , then σn (f + g) = σn (g) and σn (f · g) = σn (g).

Lemma 5. Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit disc
D of finite n−order σn (Aj) < ∞ and satisfying the assumption (1.5). Then
the sequence

{
U i
j

}
defined by (2.3) satisfies

(2.4) lim
|z|→1−

z∈Γ

k−1∑
j=1

∣∣U i
j (z)

∣∣+ 1∣∣U i
0 (z)

∣∣ expn

{
β − ε

(1− |z|)µ
}

= 0, |z| /∈ E,

where 0 < ε < β.

Proof. By induction on i ∈ N. For i = 0, we have U0
j = Aj ; this case is

trivial because we have (1.5); we mention here that Γ0\E remains of infinite
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logarithmic measure. For i = 1, we have U1
j = A′

j+1 + Aj − A′
0

A0
Aj+1 = Aj +

Aj+1

(
A′

j+1

Aj+1
− A′

0

A0

)
(j = 0, 1, ..., k − 1) and Ak ≡ 1. So

(2.5)
∣∣U1

0

∣∣ ≥ |A0| − |A1|
(∣∣∣∣A′

1

A1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣)
and

(2.6)
∣∣U1

j

∣∣ ≤ |Aj |+ |Aj+1|
(∣∣∣∣A′

j+1

Aj+1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣) .

From (2.5) and (2.6), we get

(2.7)

∣∣∣∣∣U1
j

U1
0

∣∣∣∣∣ ≤ |Aj |+ |Aj+1|
(∣∣∣A′

j+1

Aj+1

∣∣∣+ ∣∣∣A′
0

A0

∣∣∣)
|A0|

(
1− |A1|

|A0|

(∣∣∣A′
1

A1

∣∣∣+ ∣∣∣A′
0

A0

∣∣∣)) .
Set σn = max0≤j≤k−1 {σn (Aj)} . Then from Lemma 3, we have

(2.8)

∣∣∣∣A′
j

Aj

∣∣∣∣ ≤ expn−1

{
1

(1− |z|)σn+ε

}
, |z| /∈ E.

From the assumption (1.5), we have

lim
|z|→1−

z∈Γ

|Aj (z)|
|A0 (z)|

expn

{
β

(1− |z|)µ
}

= 0, (j = 1, ..., k)

which means that for every ε > 0 there exists 0 < r0 < 1 such that for all z ∈ Γ
with r0 < |z| = r < 1 we have

|Aj (z)|
|A0 (z)|

expn

{
β

(1− |z|)µ
}

< ε.

In particular for ε = 1, we have

(2.9)

∣∣∣∣Aj

A0

∣∣∣∣ ≤ (expn{ β

(1− |z|)µ
})−1

.

So, from (2.8) and (2.9), we get

|A1|
|A0|

(∣∣∣∣A′
1

A1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣) ≤
(
expn

{
β − ε

2

(1− |z|)µ
})−1

,

as |z| → 1− with z ∈ Γ and |z| /∈ E; and so we can put

(2.10) 1− |A1|
|A0|

(∣∣∣∣A′
1

A1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣) >
1

2
as |z| → 1− with z ∈ Γ and |z| /∈ E.



Exponent of convergence of solutions of LDE in the unit disc 123

By combining (2.7)-(2.10), we obtain
(2.11)∣∣∣∣∣U1

j

U1
0

∣∣∣∣∣ ≤
(
expn

{
λ− ε

2

(1− |z|)µ
})−1

as |z| → 1− with z ∈ Γ and |z| /∈ E.

Now from (2.5) we have

(2.12)
1

|U1
0 |

≤ 1

|A0|
(
1− |A1|

|A0|

(∣∣∣A′
1

A1

∣∣∣+ ∣∣∣A′
0

A0

∣∣∣)) .
By the assumption (1.5), we have

lim
|z|→1−

z∈Γ

1

|A0 (z)|
expn

{
β

(1− |z|)µ
}

= 0;

and by the same previous method for|z| → 1− with z ∈ Γ, we get

(2.13)
1

|A0|
≤
(
expn

{
β

(1− |z|)µ
})−1

.

Using (2.10) and (2.13) in (2.12), we obtain
(2.14)

1

|U1
0 |

≤
(
expn

{
β − ε

2

(1− |z|)µ
})−1

as |z| → 1− with z ∈ Γ and |z| /∈ E.

(2.11) and (2.14) imply that (2.4) is satisfied for i = 1. Now, suppose that (2.4)
is satisfied for i = m; which implies that, as |z| → 1− with z ∈ Γ and |z| /∈ E,
we have ∣∣∣∣Um

j

Um
0

∣∣∣∣ ≤ (expn{ β − ε

(1− |z|)µ
})−1

and
1

|Um
0 |

≤
(
expn

{
β − ε

(1− |z|)µ
})−1

.

From (2.3), we get

∣∣Um+1
j

∣∣ ≤ ∣∣Um
j

∣∣+ ∣∣Um
j+1

∣∣(∣∣∣∣∣Um′
j+1

Um
j+1

∣∣∣∣∣+
∣∣∣∣Um′

0

Um
0

∣∣∣∣
)

and
1∣∣Um+1
0

∣∣ ≤ 1

|Um
0 |
(
1− |Um

1 |
|Um

0 |
(∣∣∣Um′

1

Um
1

∣∣∣+ ∣∣∣Um′
0

U0

∣∣∣)) .

By the same method used in (2.5)-(2.14) and taking into account that σn

(
U i
j

)
≤

max0≤j≤k−1 {σn (Aj)} (this follows from Lemma 4 and by induction on i), we
obtain ∣∣Um+1

j

∣∣∣∣Um+1
0

∣∣ ≤
(
expn

{
β − ε

2

(1− |z|)µ
})−1
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and
1∣∣Um+1
0

∣∣ ≤
(
expn

{
β − ε

2

(1− |z|)µ
})−1

as |z| → 1− with z ∈ Γ and |z| /∈ E; which imply that (2.4) is satisfied for
i = m+ 1. Thus the proof is completed.

Lemma 6. Let A0 (z) , ..., Ak−1 (z) be meromorphic functions in the unit disc
D of finite order satisfying the condition (1.3). Then, for every fixed µ > 0,
the sequence

{
U i
j

}
defined by (2.3) satisfies

(2.15) lim
|z|→1−

z∈Γ

k−1∑
j=1

∣∣U i
j (z)

∣∣+ 1∣∣U i
0 (z)

∣∣ (1− |z|)µ
= 0, |z| /∈ E.

Proof. By induction on i ∈ N. For i = 0, we have U0
j = Aj ; this case is trivial

because we have (1.3). For i = 1; from the assumption (1.3), we have

(2.16) lim
|z|→1−

z∈Γ

|Aj (z)|
|A0 (z)| (1− |z|)µ

= 0, (j = 1, ..., k)

and

(2.17) lim
|z|→1−

z∈Γ

1

|A0 (z)| (1− |z|)µ
= 0.

(2.16) means that for every ε > 0 there exists 0 < r0 < 1 such that for all z ∈ Γ
with r0 < |z| = r < 1 we have

|Aj (z)|
|A0 (z)| (1− |z|)µ

< ε.

In particular for ε = 1, we have

(2.18)
|Aj (z)|
|A0 (z)|

< (1− |z|)µ , for every fixed µ > 0.

The same applies for (2.17); from which we get

(2.19)
1

|A0 (z)|
< (1− |z|)µ , for every fixed µ > 0.

Set σ1 = max0≤j≤k−1 {σ1 (Aj)} . From Lemma 3, we have

(2.20)

∣∣∣∣A′
j

Aj

∣∣∣∣ ≤ 1

(1− |z|)σ1+2+ε , |z| /∈ E.

So, from (2.18) and (2.20), we get

|A1|
|A0|

(∣∣∣∣A′
1

A1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣) ≤ (1− |z|)µ

(1− |z|)σ1+2+ε ;



Exponent of convergence of solutions of LDE in the unit disc 125

and since we have for every fixed µ > 0, we can choose µ > σ1 +2+ ε; thus, as
|z| → 1− with z ∈ Γ and |z| /∈ E, we get

|A1|
|A0|

(∣∣∣∣A′
1

A1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣)→ 0;

and then, we can put

(2.21) 1− |A1|
|A0|

(∣∣∣∣A′
1

A1

∣∣∣∣+ ∣∣∣∣A′
0

A0

∣∣∣∣) >
1

2
as |z| → 1− with z ∈ Γ and |z| /∈ E.

By combining (2.18)-(2.21) with (2.7), we obtain

(2.22)

∣∣∣∣∣U1
j

U1
0

∣∣∣∣∣ ≤ (1− |z|)µ
′

as |z| → 1− with z ∈ Γ and |z| /∈ E,

for every fixed µ′ > 0. Also the combining of (2.19)-(2.21) with (2.12) gives

(2.23)

∣∣∣∣ 1

U1
0

∣∣∣∣ ≤ (1− |z|)µ
′

as |z| → 1− with z ∈ Γ and |z| /∈ E,

for every fixed µ′ > 0. (2.22) and (2.23) imply that (2.15) holds for i = 1.
Now, suppose that (2.15) is satisfied for i = m; which implies that, for every
fixed µ > 0, as |z| → 1− with z ∈ Γ and |z| /∈ E, we have∣∣∣∣Um

j

Um
0

∣∣∣∣ ≤ (1− |z|)µ

and
1

|Um
0 |

≤ (1− |z|)µ

By the same method used above, we obtain that, for every fixed µ′ > 0,∣∣Um+1
j

∣∣∣∣Um+1
0

∣∣ ≤ (1− |z|)µ
′

and
1∣∣Um+1
0

∣∣ ≤ (1− |z|)µ
′

as |z| → 1− with z ∈ Γ and |z| /∈ E; which imply that (2.15) holds for i = m+1.
Thus, the proof is completed.

Lemma 7. Let G ̸≡ 0,Hj (z) j = 0, 1, ..., k − 1 be meromorphic functions in
the unit disc D. If f is a meromorphic solution of the differential equation

(2.24) f (k) +Hk−1 (z) f
(k−1) + ...+H1 (z) f

′ +H0 (z) f = G (z) ,

satisfying max {σn (G) , σn (Hj) ; j = 0, 1, ..., k − 1} < σn (f), then

λn (f) = λn (f) = σn (f) , (n ∈ N− {0}) .

Proof. The same reasoning of the proof of Lemma 3.5 in [2] when G ̸≡ 0, Hj (z)
are analytic in the unit disc D.
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3. Proof of theorems

Proof of Theorem 1. Suppose that f ̸≡ 0 is a solution of (1.2) and φ (z) ̸≡ 0
is a meromorphic function of finite order in the unit disc D. We start to prove
(1.4) for i = 0, i.e. λ1 (f − φ) = λ1 (f − φ) = σ1 (f) = ∞. From Theorem
A and Remark 1, we have σ1 (f) = ∞. Set g = f − φ. Since σ1 (φ) < ∞,
we have σ1 (g) = σ1 (f) = ∞. By Lemma 1, g satisfies (2.1). Set G (z) =
φ(k) + Ak−1φ

(k−1) + ... + A0φ. If G ≡ 0, then by Theorem A and Remark
1, we have σ1 (φ) = ∞, a contradiction; thus G ̸≡ 0. We have σ1 (g) =
σ1 (f) = ∞ > max {σ1 (G) , σ1 (Aj)}; so the assumption of Lemma 7 holds for
the differential equation (2.1); and then we have λ1 (g) = λ1 (g) = σ1 (g). Then,
we conclude that λ1 (f − φ) = λ1 (f − φ) = σ1 (f) = ∞. Now, we prove (1.4)
for i ≥ 1. Set gi = f (i)−φ. By Lemma 4, we have σ1

(
f (i)
)
= σ1 (f) = ∞, and

since σ1 (φ) < ∞, we obtain σ1 (gi) = σ1 (f) = ∞. By Lemma 2, gi satisfies
(2.2). Set Gi = φ(k)+U i

k−1φ
(k−1)+ ...+U i

0φ. If Gi ≡ 0, by Lemma 6, Theorem
A and Remark 1, we get σ1 (φ) = ∞, a contradiction; so Gi ̸≡ 0. Now, by
Lemma 7, as above, we obtain λ1 (gi) = λ1 (gi) = σ1 (gi) i.e. λ1

(
f (i) − φ

)
=

λ1

(
f (i) − φ

)
= σ1 (f) = ∞.

Proof of Theorem 2. Suppose that f ̸≡ 0 is a solution of (1.2) and φ (z) ̸≡ 0 is
a meromorphic function in the unit disc D satisfying σn+1 (φ) < µ. We start
to prove (1.6) for i = 0, i.e. λn+1 (f − φ) = λn+1 (f − φ) = σn+1 (f) ≥ µ.
From Theorem B and Remark 1, we have σn+1 (f) ≥ µ. Set g = f − φ. From
σn+1 (φ) < µ, we get σn+1 (g) = σn+1 (f) . By Lemma 1, g satisfies (2.1).
Set G (z) = φ(k) + Ak−1φ

(k−1) + ... + A0φ. If G ≡ 0, then by Theorem B
and Remark 1, we obtain σn+1 (φ) ≥ µ, a contradiction; thus G ̸≡ 0. Now,
from σn+1 (g) = σn+1 (f) ≥ µ > max {σn+1 (G) , σn+1 (Aj)}, the assumption
of Lemma 7 holds; and then we have λn+1 (g) = λn+1 (g) = σn+1 (g). Then,
we conclude that λn+1 (f − φ) = λn+1 (f − φ) = σn+1 (f) ≥ µ. Now we prove
(1.6) for i ≥ 1. Set gi = f (i) − φ. From σn+1

(
f (i)
)
= σn+1 (f) ≥ µ and

σn+1 (φ) < µ, we have σn+1 (gi) = σn+1 (f) ≥ µ. By Lemma 2, gi satisfies
(2.2). Set Gi = φ(k) + U i

k−1φ
(k−1) + ... + U i

0φ. If Gi ≡ 0, by Lemma 5,
Theorem B and Remark 1, we get σn+1 (φ) ≥ µ, a contradiction; so Gi ̸≡ 0.
Now, by Lemma 7, as above, we obtain λn+1 (gi) = λn+1 (gi) = σn+1 (gi) i.e.
λn+1

(
f (i) − φ

)
= λn+1

(
f (i) − φ

)
= σn+1 (f) ≥ µ.
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