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GENERALIZED SCHWARZ INEQUALITIES FOR
GENERALIZED SEMI-INNER PRODUCTS ON
GROUPOIDS CAN BE DERIVED FROM AN

EQUALITY1

Zoltán Boros2 and Árpád Száz34

Abstract. By introducing an appropriate notion of generalized semi-
inner products on groupoids, we shall prove a simple equality which can
be used to easily derive some generalized forms of the famous Schwarz
inequality.

In the case of groups, these generalized forms will turn out to be suf-
ficient to prove the subadditivity of the induced generalized seminorms.
Thus, some results on inner product spaces can be extended to inner
product groups.

AMS Mathematics Subject Classification (2010): 20L05; 46C50; 39B32;
39B62

Key words and phrases: groupoids; generalized inner products; Schwarz
inequalities; seminorms

1. Introduction

Semi-inner products on groups were first introduced by the second author
in [18] to prove a natural generalization of a basic theorem of Maksa and
Volkmann [16] on additive functions without any particular tricks preferred
by functional equationalists.

In [18] , the second author claimed that even a weakened form of Schwarz
inequality cannot be proved for semi-inner products on groups. Moreover, he
asked several mathematicians in Debrecen and Cluj-Napoca, at a conference,
to justify his statement by providing an appropriate example.

However, the first author could disprove this claim by justifying a weak form
of Schwarz inequality [3] which is slightly more than that is needed to prove
the subadditivity of the induced generalized seminorm. Thus, some results on
inner product spaces can be extended to inner product groups.

This weak Schwarz inequality, which was first presented in our joint report
[6] , has later been substantially generalized by the second author by taking
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groupoids instead of groups, and using the smallest denominator function of
[4, 5] . The corresponding results were presented in our joint reports [7] and
[8]

Moreover, the second author has also noticed that instead of the generalized
Schwarz inequalities it is more convenient to prove first an equality which easily
yields the corresponding inequalities [19] . Therefore, our technical report [8]
has to be completely rewritten.

For this, in the present paper, we shall suppose that X is an additively
written groupoid and P is a function of X 2 to C such that, under the nota-
tions

∆P (x) = P (x, x) and P1(x, y) = 2−1
(
P (x, y) + P (x, y)

)
,

for any n ∈ N and x, y ∈ X we have

(a) ∆P (x) = ∆P1
(x) ,

(b) P1(nx , y ) = nP1(x, y) = P1(x, n y) ,

(c) ∆P (x+ y) = ∆P (x) + ∆P (y) + 2P1(x, y) .

By using this generalized semi-inner product P and the notations

αP (x, y) = inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y)

)
and

βP (x, y ) = inf
r∈Q+

1

m(r)n(r)
∆P

(
m (r)x + n (r) y

)
,

with

n (r) = min
{
n ∈ N : r n ∈ N

}
and m (r) = r n (r) ,

we shall show that

βP (x, y ) = αP (x, y ) + 2P1(x, y)

for all x, y ∈ X .

Hence, by assuming that ∆P is nonnegative and proving that

αP (x, y) = 2
√

∆P (x) ∆P (y) ,

for all x, y ∈ X, we can already derive that

−P1(x, y) ≤ p (x) p (y)

for all x, y ∈ X with p (x) =
√

∆P (x) .

Thus, if in addition P1 is biodd (or more generally ∆P is even and P1 is
odd in its fist argument), then we can also state that

|P1(x, y) | ≤ p (x) p (y)

for all x, y ∈ X. In [7, Example 5.6] , the first author has shown that the
function P2 need not have similar properties even if, in particular, P is an
R–bihomogeneous semi-inner product on R2 with nonnegative diagonalization.
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2. A generalized semi-inner product

Our subsequent generalization of the ordinary semi-inner products [17, 6,
20, 7] may be modified according to the ideas of Lumer [15] , Giles [12] ,
Dragomir [9] , Bognár [2] , Antoine and Grossmann [1] and Drygas [10] .

Notation 2.1. Let X be an additively written groupoid. Moreover, suppose
that P is a function of X 2 to C .

For any n ∈ N and x ∈ X, define

nx = x if n = 1 and nx = (n− 1)x + x if n > 1 .

Moreover, for any x, y ∈ X, define

∆P (x) = P (x, x) and P1(x, y) = 2−1
(
P (x, y) + P (x, y)

)
.

Furthermore, suppose that, for any n ∈ N and x, y ∈ X, we have

(a) ∆P (x) = ∆P1
(x) ,

(b) P1(nx , y ) = nP1(x, y) = P1(x, n y) ,

(c) ∆P (x+ y) = ∆P (x) + ∆P (y) + 2P1(x, y) .

Remark 2.2. Properties (a), (b) and (c) will be called the the reality of ∆P ,
N-bihomogeneity of P1 and polarization identity for P , respectively.

The functions ∆P and P1 will be called the diagonalization and real part
(first coordinate function) of P , respectively. Moreover, the function P itself
will be called a generalized semi-inner product on X.

If, in particular, the groupoid X has a zero element 0 , then the generalized
semi-inner product P will be called a generalized inner product if ∆P (x) = 0
implies x = 0 for all x ∈ X.

Some further useful additional properties of X and P will be assumed
gradually as the forthcoming definitions and theorems need. For instance, we
may naturally assume that X is a group and P1 is Z–bihomogeneous.

The following theorem will clarify the appropriateness of our former
assumptions on P .

Theorem 2.3. If Q is a semi inner product on X in the sense that Q is a
conjugate-symmetric function of X 2 to C such that Q is additive in its first
argument, then Q is a generalized semi-inner product on X with several useful
additional properties.

Proof. By the conjugate-symmetry of Q, for any x, y ∈ X, we have

Q (y, x) = Q (x, y) .

Hence, in particular, it clear that

Q (x, x) = Q (x, x) , and thus Q (x, x) = Q1(x, x) .
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Therefore, property (a) holds for Q .

Moreover, we can also at once see that

Q1(x, y) = 2−1
(
Q (x, y) +Q (x, y)

)
= 2−1

(
Q (x, y) +Q (y, x)

)
Thus, Q1 is just the symmetric part of Q. Concerning the imaginary part
(second coordinate function) Q2 of Q , we can quite similarly see that

Q2(x, y) = (i 2)−1
(
Q (x, y)− Q (x, y)

)
= i−1 2−1

(
Q (x, y)− Q (y, x)

)
.

for all x, y ∈ X. Therefore, iQ2 is just the skew-symmetric part of Q [21, p.
294].

Furthermore, by using the conjugate-symmetry and the additivity of Q in
its first argument, we can easily see that

Q (x, y + z) = Q (y + z, x ) = Q (y, x) + Q (z, x) =

= Q (y, x) + Q (z, x) = Q (x, y) + Q (x, z)

for all x, y, z ∈ X. Therefore, Q is additive in its second argument too. That
is, Q is actually biadditive.

Thus, for any x, y ∈ X, the first and second partial functions of Q, defined
by

ϕQ(u) = Q (u, y) and ψQ(v) = Q (x, v)

for all u, v ∈ X, are additive functions of X to C .

Hence, since an additive function of one groupoid to another can easily be
seen to be N–homogeneous, it is clear that ϕQ and ψQ are N–homogeneous.
Therefore, Q and thus its coordinate functions Q1 and Q2 are, as well, N–
bihomogeneous. Thus, in particular, property (b) also holds.

Moreover, by using the biadditivity of Q and our former observation on
Q1, we can also see that

∆Q (x+ y) = Q (x+ y , x+ y ) = Q (x , x+ y ) + Q ( y , x+ y )

= Q (x, x)+Q (x, y)+Q (y, x)+Q (y, y) = ∆Q (x)+ 2Q1(x, y)+ ∆Q (y)

for all x, y ∈ X. Thus, property (c) also holds for Q .

Remark 2.4. Note that, in particular, if X is a group, then instead of the
N–bihomogeneity of Q we can also state the Z–bihomogeneity of Q .

Therefore, in particular, if X is a group, then instead of property (b) it is
convenient to assume the Z–bihomogenity of P1.

Moreover, if P is not conjugate symmetric, then in Notation 2.1 it may be
convenient to take the symmetric part of P instead of P1.

The appropriateness of assumptions (a)–(c) is also apparent from the
following
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Theorem 2.5. For any n, m ∈ N and x, y ∈ X ,

(1) ∆P (nx ) = n2 ∆P (x) ,

(2) ∆P

(
n (x+ y)

)
= ∆P (nx+ n y) ,

(3) ∆P (mx + n y ) = m2∆P (x) + n2∆P (y) + 2mnP1(x, y) .

Proof. By (a) and (b), we have

∆P (nx ) = ∆P1
(nx ) = P1(nx, n x ) = nP1(x, n x )

= n2P1(x, x ) = n2∆P1 (x) = n2∆P (x) ,

and thus (1) is true.

To prove (2) and (3), note that by (1) and (c) we have

∆P

(
n (x+ y)

)
= n2 ∆P (x+ y) = n2 ∆P (x) + n2 ∆P (y) + 2n2 P1(x, y) .

Moreover, by (c), (1) and (b), we also have

∆P (mx+ n y) = ∆P (mx) + ∆P (n y) + 2P1(mx, n y)

= m2 ∆P (x) + n2 ∆P (y) + 2mnP1(x, y) ,

and thus, in particular,

∆P (nx+ n y) = n2 ∆P (x) + n2 ∆P (y) + 2n2 P1(x, y) .

Remark 2.6. If, in particular, P1 is symmetric, then because of (3) we can also
state that

∆P (n y + mx) = ∆P (mx + n y) .

Remark 2.7. While if, in particular, X is a group and P1 is Z–bihomogeneous,
then equalities (2) and (3) can also be stated for all n, m ∈ Z .

3. A general equality leading to Schwarz inequalities

The appropriateness of the following definition will become quite obvious
from the proof of the forthcoming Theorem 3.4.

Definition 3.1. For any x, y ∈ X, we define

αP (x, y) = inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y)

)
and

βP (x, y ) = inf
r∈Q+

1

m(r)n(r)
∆P

(
m (r)x + n (r) y

)
,

with

n (r) = min
{
n ∈ N : r n ∈ N

}
and m (r) = r n (r) .
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Remark 3.2. The natural numbers n (r) and m (r) are called the smallest
denominator and the associated numerator of r ∈ Q+ , respectively.

Several remarkable properties and important applications of their obvious
extensions to r ∈ Q have been established in our former papers [4] and [5] .

For instance, we have proved that if r = k/l , for some k ∈ Z and l ∈ N ,
then

m (r) = k/(k ; l) and n (r) = l/(k ; l) ,

where (k ; l) is the greatest common divisor of k and l . Thus, in particular
m(r) and n (r) are relatively prime in the sense that

(
m (r); n (r)

)
= 1 .

Remark 3.3. In the next section, we shall see that the extended real number
αP (x, y) can be quite easily determined.

However, concerning βP (x, y ) , we can only note that if ∆P (mx+n y) ≥
0 for all m, n ∈ N with (m; n) = 1 , then βP (x, y ) ≥ 0 .

Fortunately, this simple observation will already allow us to establish some
applicable consequences of the following

Theorem 3.4. For any x, y ∈ X, we have

βP (x, y ) = αP (x, y ) + 2P1(x, y) .

Proof. By (3) in Theorem 2.5, for any r ∈ Q+ , we have

∆P (m (r)x+ n (r) y ) = m (r)2∆P (x) + n (r)2∆P (y) + 2m (r)n (r)P1(x, y) ,

and thus

1

m(r)n(r)
∆P

(
m(r)x+n(r) y) =

m(r)

n(r)
∆P (x)+

n(r)

m(r)
∆P (y)+2P1(x, y)

= r∆P (x) + r−1 ∆P (y) + 2P1(x, y) .

Hence, by using a theorem on infimum, we can already infer that

βP (x, y ) = inf
r∈Q+

1

m(r)n(r)
∆P

(
m (r)x + n (r) y

)
= inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y) + 2P1(x, y)

)
= inf
r∈Q+

(
r∆P (x) + r−1 ∆P (y)

)
+ 2P1(x, y) = αP (x, y) + 2P1(x, y) .

From this theorem, we can immediately derive

Corollary 3.5. If x, y ∈ X such that either αP (x, y ) or βP (x, y ) is finite,
then

−P1(x, y) = 2−1
(
αP (x, y )− βP (x, y )

)
.
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Hence, by Remark 3.3, it is clear that, in particular, we also have

Corollary 3.6. If x, y ∈ X such that ∆P (mx + n y) ≥ 0 for all m, n ∈ N
with (m; n) = 1 , then

−P1(x, y) ≤ 2−1 αP (x, y ) .

Now, by using this corollary, we can also easily prove the following

Theorem 3.7. If X is a group, ∆P is nonnegative and P1 is biodd, then for
any x, y ∈ X we have

|P1(x, y) | ≤ 2−1 αP (x, y ) .

Proof. By property (a) and the biodness of P1 , we have

∆P (−x) = ∆P1
(−x) = P1(−x, −x) = P1(x, x) = ∆P1

(x) = ∆P (x)

for all x ∈ X. Therefore, ∆P is even, and thus αP is bieven.

Moreover, by the nonnegativity of ∆P and Corollary 3.6, we have

−P1(x, y) ≤ 2−1 αP (x, y )

for all x, y ∈ X.

Hence, by using the oddness of P1 and the evenness of αP in their first
arguments, we can already see that

P1(x, y) = −P1(−x, y) ≤ 2−1 αP (−x, y ) = 2−1 αP (x, y )

also holds for all x, y ∈ X. Therefore, by the definition of the absolute value,
the required inequality is also true.

Remark 3.8. Now, to obtain some applicable consequences of Theorem 3.7, we
need only to compute αP (x, y ) for all x, y ∈ X.

4. The determination of αP (x, y )

To compute the values of αP , it seems convenient to prove first the following

Lemma 4.1. For any x, y ∈ X, we have

αP (x, y) = inf
λ>0

(
λ∆P (x) + λ−1 ∆P (y)

)
.

Proof. Because of the lower bound property of infimum, we have

αP (x, y ) ≤ r∆P (x) + r−1 ∆P (y)

for all r ∈ Q+ . Hence, by using the sequential denseness of Q in R and the
sequential continuity of the operations in R , we can infer that

αP (x, y) ≤ λ∆P (x) + λ−1 ∆P (y)
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also holds for all λ ∈ R+ . Therefore, by the maximality property of infimum,
we have

αP (x, y) ≤ inf
λ∈R+

(
λ∆P (x) + λ−1 ∆P (y)

)
.

Moreover, by using the inclusion Q+ ⊆ R+ and the definition of infimum,
we can also easily see that the converse inequality also holds. Therefore, the
required equality is also true.

Remark 4.2. Concerning βP , we can also prove that

βP (x, y ) = inf
m,n∈N

1

mn
∆P (mx + n y ) .

However, because of Theorem 3.4, this fact seems to be of no importance.

Now, by using Lemma 4.1 and some basic facts from calculus, we can also
easily prove the following

Theorem 4.3. For any x, y ∈ X, we have

(1) αP (x, y) = −∞ if either ∆P (y) < 0 or ∆P (x) < 0 ,

(2) αP (x, y) = 2
√

∆P (x) ∆P (y) if ∆P (x) ≥ 0 and ∆P (y) ≥ 0 .

Proof. Here, we shall prove somewhat more than what is stated. For this,
define

a = ∆P (x) , b = ∆P (y) and c = αP (x, y) .

Moreover, define
f (λ) = a λ + b λ−1

for all λ > 0 .

Then, by Lemma 4.1, we have

c = inf
λ>0

f (λ) .

Moreover, we can note that f is a differentiable function of R+ such that

f ′(λ) = a − b λ−2

for all λ > 0 . Therefore,

f ′(λ) < 0 ⇐⇒ a λ2 < b and f ′(λ) > 0 ⇐⇒ b < aλ2.

Hence, if a > 0 and b > 0 , then by defining λ0 =
√
b/a we can see that f

is strictly decreasing on ]−∞, λ0 ] and f is strictly increasing on [λ0 , +∞[ .
Therefore,

f (λ0) = a λ0 + b λ−10 = 2
√
a b

is a strict global minimum of f . Thus, in particular, c = 2
√
a b .

Moreover, if a = 0 and b > 0 , then we can see that f is strictly decreasing
on R+ and limλ→+∞ f (λ) = 0 . Thus, in particular, c = 0 = 2

√
a b .
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While, if a > 0 and b = 0 , then f is strictly increasing on R+ and
limλ→0 f (λ) = 0 . Thus, in particular, c = 0 = 2

√
a b .

On the other hand, if either a < 0 or b < 0 , then by not establishing the
monotonicity properties f , we only note that c = −∞ . Namely, we evidently
have

lim
λ→0

f (λ) = −∞ if b < 0 , and lim
λ→+∞

f (λ) = −∞ if a < 0 .

Thus, summarizing the above observations, we can state that

c = 2
√
a b if a ≥ 0 and b ≥ 0 , and c = −∞ if either a < 0 or b < 0 .

Therefore, the required assertions are also true.

Remark 4.4. Now, as an immediate consequence of Theorems 3.4 and 4.3, we
can also state that

(1) βP (x, y) = −∞ if either ∆P (y) < 0 or ∆P (x) < 0 ,

(2) βP (x, y) = 2
√

∆P (x) ∆P (y) + 2P1(x, y) if ∆P (x) ≥ 0 and
∆P (y) ≥ 0 .

5. The induced generalized seminorm

By Theorem 4.3, we may naturally introduce the following

Definition 5.1. If, in particular, ∆P is nonnegative, then for any x ∈ X we
define

p (x) =
√

∆P (x) .

Remark 5.2. The function p will be called the generalized seminorm derived
from P .

Thus, as an immediate consequence of Corollary 3.6 and and Theorem 4.3,
we can state

Theorem 5.3. If ∆P is nonnegative, then for any x, y ∈ X we have

−P1(x, y) ≤ p (x) p (y) .

Moreover, by Theorems 3.7 and 4.3, we can also state

Theorem 5.4. If X is a group, ∆P is nonnegative and P1 biodd, then for
any x, y ∈ X we have

|P1(x, y) | ≤ p (x) p (y) .

Furthermore, by using Theorem 2.5, we can also easily establish



186 Zoltán Boros, Árpád Száz

Theorem 5.5. If ∆P is nonnegative, then for any n, m ∈ N and x, y ∈ X
we have

(1) p (nx) = n p (x) ,

(2) p
(
n (x+ y)

)
= p (nx+ n y) ,

(3) p (mx+ n y )2 = m2p (x)2 + n2p (y)2 + 2mnP1(x, y) .

Remark 5.6. If, in particular, P1 is symmetric, then because of (3) we can also
state that

p (n y + mx) = p (mx + n y) .

Remark 5.7. While if, in particular, X is a group and P1 is Z–bihomogeneous,
then instead of (1) we can also state that

p (nx ) = |n | p (x)

for all n ∈ Z . Moreover, equalities (2) and (3) remain valid for all n, m ∈ Z .

Now, by using Theorems 5.4 and 5.5, we can also prove the following

Theorem 5.8. If X is a group, ∆P is nonnegative and P1 is biodd, then for
any x, y ∈ X we have

(1) p (x+ y) ≤ p (x) + p (y) , (2) | p (x)− p (y) | ≤ p (x− y ) .

Proof. By Theorems 5.5 and 5.4, it is clear that

p (x+ y)2 = p (x)2 + p (y)2 + 2 P1(x, y)

≤ p (x)2 + p (y)2 + 2 p (x) p (y) =
(
p (x) + p (y)

)2
.

Therefore, by the nonnegativity of p , inequality (1) is also true.

Now, by using (1), we can also easily see that

p (x) = p (x−y+ y ) ≤ p (x−y )+ p (y) , and thus p (x)−p (y) ≤ p (x−y ) .

Hence, it is clear that

−
(
p (x)− p (y)) = p (y)− p (x) ≤ p ( y − x ) = p

(
−(x− y)

)
= p (x− y ) ,

and thus (2) is also true. Namely, by the bioddness of P1 , the function ∆P is
even, and thus p is also even.

Remark 5.9. Note that in Theorem 3.7, and thus also in Theorems 5.4 and 5.8,
instead of the bioddness of P1 , it is enough to assume only that ∆P is even
and P1 is odd in its first argument.

Note. Meantime, we observed that, besides Boros [3] and Ger [11],
Kurepa [13, 14] also proved Schwarz inequalities on groups.

The results of Kurepa strongly suggest that instead of semi-inner products,
it may be more convenient to start with quadratic functions.
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tions, Hajdúszoboszló, Hungary 2016. Tech. Rep., Inst. Math., Univ. Debrecen,
2016/9, 34 pp.

[21] Stetkaer, H., Functional Equations on Groups. New Jersey: World Scientific
2013.

Received by the editors January 5, 2017
First published online January 24, 2017


	Introduction
	A generalized semi-inner product
	A general equality leading to Schwarz inequalities
	The determination of P�(�x�, y)
	The induced generalized seminorm

